Properties

Label 162.13.d.c.53.3
Level $162$
Weight $13$
Character 162.53
Analytic conductor $148.067$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [162,13,Mod(53,162)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(162, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([5]))
 
N = Newforms(chi, 13, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("162.53");
 
S:= CuspForms(chi, 13);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 162 = 2 \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 13 \)
Character orbit: \([\chi]\) \(=\) 162.d (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(148.066998399\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4 x^{7} - 18478 x^{6} + 55448 x^{5} + 128029439 x^{4} - 256151296 x^{3} - 394230846230 x^{2} + 394358931120 x + 455189180292012 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{24}\cdot 3^{12} \)
Twist minimal: no (minimal twist has level 54)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 53.3
Root \(67.2477 + 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 162.53
Dual form 162.13.d.c.107.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(39.1918 - 22.6274i) q^{2} +(1024.00 - 1773.62i) q^{4} +(-12529.2 - 7233.73i) q^{5} +(-48617.5 - 84208.1i) q^{7} -92681.9i q^{8} +O(q^{10})\) \(q+(39.1918 - 22.6274i) q^{2} +(1024.00 - 1773.62i) q^{4} +(-12529.2 - 7233.73i) q^{5} +(-48617.5 - 84208.1i) q^{7} -92681.9i q^{8} -654723. q^{10} +(-1.20670e6 + 696690. i) q^{11} +(3.01088e6 - 5.21499e6i) q^{13} +(-3.81082e6 - 2.20018e6i) q^{14} +(-2.09715e6 - 3.63237e6i) q^{16} +2.96631e7i q^{17} -4.55192e7 q^{19} +(-2.56598e7 + 1.48147e7i) q^{20} +(-3.15286e7 + 5.46091e7i) q^{22} +(-8.46661e7 - 4.88820e7i) q^{23} +(-1.74165e7 - 3.01663e7i) q^{25} -2.72513e8i q^{26} -1.99137e8 q^{28} +(-4.17778e8 + 2.41204e8i) q^{29} +(2.34743e8 - 4.06586e8i) q^{31} +(-1.64382e8 - 9.49063e7i) q^{32} +(6.71200e8 + 1.16255e9i) q^{34} +1.40675e9i q^{35} -4.39480e9 q^{37} +(-1.78398e9 + 1.02998e9i) q^{38} +(-6.70436e8 + 1.16123e9i) q^{40} +(4.92680e9 + 2.84449e9i) q^{41} +(-2.15314e9 - 3.72934e9i) q^{43} +2.85364e9i q^{44} -4.42430e9 q^{46} +(-3.32101e9 + 1.91738e9i) q^{47} +(2.19331e9 - 3.79893e9i) q^{49} +(-1.36517e9 - 7.88182e8i) q^{50} +(-6.16627e9 - 1.06803e10i) q^{52} -2.52870e10i q^{53} +2.01587e10 q^{55} +(-7.80456e9 + 4.50597e9i) q^{56} +(-1.09156e10 + 1.89065e10i) q^{58} +(5.60254e10 + 3.23463e10i) q^{59} +(1.61241e10 + 2.79278e10i) q^{61} -2.12465e10i q^{62} -8.58993e9 q^{64} +(-7.54477e10 + 4.35597e10i) q^{65} +(-2.90443e10 + 5.03063e10i) q^{67} +(5.26111e10 + 3.03750e10i) q^{68} +(3.18310e10 + 5.51329e10i) q^{70} -3.98191e10i q^{71} +1.63455e11 q^{73} +(-1.72240e11 + 9.94430e10i) q^{74} +(-4.66117e10 + 8.07338e10i) q^{76} +(1.17334e11 + 6.77427e10i) q^{77} +(9.35920e10 + 1.62106e11i) q^{79} +6.06809e10i q^{80} +2.57454e11 q^{82} +(6.69378e10 - 3.86466e10i) q^{83} +(2.14575e11 - 3.71655e11i) q^{85} +(-1.68771e11 - 9.74399e10i) q^{86} +(6.45706e10 + 1.11839e11i) q^{88} -9.19946e11i q^{89} -5.85525e11 q^{91} +(-1.73396e11 + 1.00110e11i) q^{92} +(-8.67709e10 + 1.50292e11i) q^{94} +(5.70319e11 + 3.29274e11i) q^{95} +(7.16954e11 + 1.24180e12i) q^{97} -1.98516e11i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8192 q^{4} - 271484 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 8 q + 8192 q^{4} - 271484 q^{7} + 2279424 q^{10} - 696284 q^{13} - 16777216 q^{16} - 175753928 q^{19} - 30471168 q^{22} + 906499004 q^{25} - 1111998464 q^{28} + 2382534136 q^{31} + 2915232768 q^{34} - 1146574280 q^{37} + 2334130176 q^{40} + 15116732344 q^{43} + 5281241088 q^{46} + 33490260096 q^{49} + 1425989632 q^{52} + 195012288000 q^{55} - 121550997504 q^{58} - 58362866396 q^{61} - 68719476736 q^{64} - 308975155100 q^{67} + 33014547456 q^{70} - 357741406856 q^{73} - 179972022272 q^{76} + 905099168836 q^{79} + 722937556992 q^{82} + 720516135168 q^{85} + 62404952064 q^{88} - 1360962234040 q^{91} - 1147443557376 q^{94} + 5671281236356 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/162\mathbb{Z}\right)^\times\).

\(n\) \(83\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 39.1918 22.6274i 0.612372 0.353553i
\(3\) 0 0
\(4\) 1024.00 1773.62i 0.250000 0.433013i
\(5\) −12529.2 7233.73i −0.801868 0.462959i 0.0422557 0.999107i \(-0.486546\pi\)
−0.844124 + 0.536148i \(0.819879\pi\)
\(6\) 0 0
\(7\) −48617.5 84208.1i −0.413242 0.715757i 0.582000 0.813189i \(-0.302270\pi\)
−0.995242 + 0.0974322i \(0.968937\pi\)
\(8\) 92681.9i 0.353553i
\(9\) 0 0
\(10\) −654723. −0.654723
\(11\) −1.20670e6 + 696690.i −0.681152 + 0.393263i −0.800289 0.599614i \(-0.795321\pi\)
0.119137 + 0.992878i \(0.461987\pi\)
\(12\) 0 0
\(13\) 3.01088e6 5.21499e6i 0.623782 1.08042i −0.364993 0.931010i \(-0.618929\pi\)
0.988775 0.149412i \(-0.0477379\pi\)
\(14\) −3.81082e6 2.20018e6i −0.506116 0.292206i
\(15\) 0 0
\(16\) −2.09715e6 3.63237e6i −0.125000 0.216506i
\(17\) 2.96631e7i 1.22892i 0.788948 + 0.614460i \(0.210626\pi\)
−0.788948 + 0.614460i \(0.789374\pi\)
\(18\) 0 0
\(19\) −4.55192e7 −0.967550 −0.483775 0.875192i \(-0.660735\pi\)
−0.483775 + 0.875192i \(0.660735\pi\)
\(20\) −2.56598e7 + 1.48147e7i −0.400934 + 0.231479i
\(21\) 0 0
\(22\) −3.15286e7 + 5.46091e7i −0.278079 + 0.481647i
\(23\) −8.46661e7 4.88820e7i −0.571930 0.330204i 0.185990 0.982552i \(-0.440451\pi\)
−0.757920 + 0.652348i \(0.773784\pi\)
\(24\) 0 0
\(25\) −1.74165e7 3.01663e7i −0.0713381 0.123561i
\(26\) 2.72513e8i 0.882161i
\(27\) 0 0
\(28\) −1.99137e8 −0.413242
\(29\) −4.17778e8 + 2.41204e8i −0.702356 + 0.405505i −0.808224 0.588875i \(-0.799571\pi\)
0.105869 + 0.994380i \(0.466238\pi\)
\(30\) 0 0
\(31\) 2.34743e8 4.06586e8i 0.264498 0.458124i −0.702934 0.711255i \(-0.748127\pi\)
0.967432 + 0.253131i \(0.0814605\pi\)
\(32\) −1.64382e8 9.49063e7i −0.153093 0.0883883i
\(33\) 0 0
\(34\) 6.71200e8 + 1.16255e9i 0.434489 + 0.752557i
\(35\) 1.40675e9i 0.765257i
\(36\) 0 0
\(37\) −4.39480e9 −1.71289 −0.856444 0.516240i \(-0.827331\pi\)
−0.856444 + 0.516240i \(0.827331\pi\)
\(38\) −1.78398e9 + 1.02998e9i −0.592501 + 0.342081i
\(39\) 0 0
\(40\) −6.70436e8 + 1.16123e9i −0.163681 + 0.283503i
\(41\) 4.92680e9 + 2.84449e9i 1.03720 + 0.598827i 0.919039 0.394167i \(-0.128967\pi\)
0.118160 + 0.992995i \(0.462300\pi\)
\(42\) 0 0
\(43\) −2.15314e9 3.72934e9i −0.340613 0.589959i 0.643934 0.765081i \(-0.277301\pi\)
−0.984547 + 0.175122i \(0.943968\pi\)
\(44\) 2.85364e9i 0.393263i
\(45\) 0 0
\(46\) −4.42430e9 −0.466979
\(47\) −3.32101e9 + 1.91738e9i −0.308094 + 0.177878i −0.646073 0.763276i \(-0.723590\pi\)
0.337979 + 0.941153i \(0.390257\pi\)
\(48\) 0 0
\(49\) 2.19331e9 3.79893e9i 0.158462 0.274464i
\(50\) −1.36517e9 7.88182e8i −0.0873710 0.0504437i
\(51\) 0 0
\(52\) −6.16627e9 1.06803e10i −0.311891 0.540211i
\(53\) 2.52870e10i 1.14089i −0.821337 0.570443i \(-0.806772\pi\)
0.821337 0.570443i \(-0.193228\pi\)
\(54\) 0 0
\(55\) 2.01587e10 0.728259
\(56\) −7.80456e9 + 4.50597e9i −0.253058 + 0.146103i
\(57\) 0 0
\(58\) −1.09156e10 + 1.89065e10i −0.286735 + 0.496640i
\(59\) 5.60254e10 + 3.23463e10i 1.32823 + 0.766854i 0.985026 0.172407i \(-0.0551545\pi\)
0.343204 + 0.939261i \(0.388488\pi\)
\(60\) 0 0
\(61\) 1.61241e10 + 2.79278e10i 0.312966 + 0.542072i 0.979003 0.203846i \(-0.0653442\pi\)
−0.666037 + 0.745918i \(0.732011\pi\)
\(62\) 2.12465e10i 0.374056i
\(63\) 0 0
\(64\) −8.58993e9 −0.125000
\(65\) −7.54477e10 + 4.35597e10i −1.00038 + 0.577571i
\(66\) 0 0
\(67\) −2.90443e10 + 5.03063e10i −0.321079 + 0.556126i −0.980711 0.195463i \(-0.937379\pi\)
0.659632 + 0.751589i \(0.270712\pi\)
\(68\) 5.26111e10 + 3.03750e10i 0.532138 + 0.307230i
\(69\) 0 0
\(70\) 3.18310e10 + 5.51329e10i 0.270559 + 0.468622i
\(71\) 3.98191e10i 0.310843i −0.987848 0.155422i \(-0.950326\pi\)
0.987848 0.155422i \(-0.0496736\pi\)
\(72\) 0 0
\(73\) 1.63455e11 1.08009 0.540045 0.841636i \(-0.318407\pi\)
0.540045 + 0.841636i \(0.318407\pi\)
\(74\) −1.72240e11 + 9.94430e10i −1.04893 + 0.605597i
\(75\) 0 0
\(76\) −4.66117e10 + 8.07338e10i −0.241887 + 0.418961i
\(77\) 1.17334e11 + 6.77427e10i 0.562962 + 0.325026i
\(78\) 0 0
\(79\) 9.35920e10 + 1.62106e11i 0.385014 + 0.666863i 0.991771 0.128024i \(-0.0408633\pi\)
−0.606757 + 0.794887i \(0.707530\pi\)
\(80\) 6.06809e10i 0.231479i
\(81\) 0 0
\(82\) 2.57454e11 0.846870
\(83\) 6.69378e10 3.86466e10i 0.204740 0.118207i −0.394124 0.919057i \(-0.628952\pi\)
0.598865 + 0.800850i \(0.295619\pi\)
\(84\) 0 0
\(85\) 2.14575e11 3.71655e11i 0.568939 0.985432i
\(86\) −1.68771e11 9.74399e10i −0.417164 0.240850i
\(87\) 0 0
\(88\) 6.45706e10 + 1.11839e11i 0.139040 + 0.240824i
\(89\) 9.19946e11i 1.85107i −0.378665 0.925534i \(-0.623617\pi\)
0.378665 0.925534i \(-0.376383\pi\)
\(90\) 0 0
\(91\) −5.85525e11 −1.03109
\(92\) −1.73396e11 + 1.00110e11i −0.285965 + 0.165102i
\(93\) 0 0
\(94\) −8.67709e10 + 1.50292e11i −0.125779 + 0.217855i
\(95\) 5.70319e11 + 3.29274e11i 0.775848 + 0.447936i
\(96\) 0 0
\(97\) 7.16954e11 + 1.24180e12i 0.860718 + 1.49081i 0.871237 + 0.490862i \(0.163318\pi\)
−0.0105198 + 0.999945i \(0.503349\pi\)
\(98\) 1.98516e11i 0.224099i
\(99\) 0 0
\(100\) −7.13381e10 −0.0713381
\(101\) 8.20501e11 4.73716e11i 0.772949 0.446262i −0.0609766 0.998139i \(-0.519421\pi\)
0.833926 + 0.551877i \(0.186088\pi\)
\(102\) 0 0
\(103\) −9.26886e11 + 1.60541e12i −0.776252 + 1.34451i 0.157836 + 0.987465i \(0.449548\pi\)
−0.934088 + 0.357043i \(0.883785\pi\)
\(104\) −4.83335e11 2.79054e11i −0.381987 0.220540i
\(105\) 0 0
\(106\) −5.72180e11 9.91044e11i −0.403364 0.698647i
\(107\) 2.27324e12i 1.51475i 0.652977 + 0.757377i \(0.273520\pi\)
−0.652977 + 0.757377i \(0.726480\pi\)
\(108\) 0 0
\(109\) −2.04503e11 −0.121938 −0.0609692 0.998140i \(-0.519419\pi\)
−0.0609692 + 0.998140i \(0.519419\pi\)
\(110\) 7.90056e11 4.56139e11i 0.445966 0.257478i
\(111\) 0 0
\(112\) −2.03917e11 + 3.53194e11i −0.103311 + 0.178939i
\(113\) 2.45337e11 + 1.41645e11i 0.117840 + 0.0680349i 0.557761 0.830001i \(-0.311660\pi\)
−0.439922 + 0.898036i \(0.644994\pi\)
\(114\) 0 0
\(115\) 7.07199e11 + 1.22490e12i 0.305742 + 0.529560i
\(116\) 9.87971e11i 0.405505i
\(117\) 0 0
\(118\) 2.92765e12 1.08450
\(119\) 2.49787e12 1.44215e12i 0.879607 0.507842i
\(120\) 0 0
\(121\) −5.98460e11 + 1.03656e12i −0.190688 + 0.330281i
\(122\) 1.26387e12 + 7.29693e11i 0.383303 + 0.221300i
\(123\) 0 0
\(124\) −4.80753e11 8.32689e11i −0.132249 0.229062i
\(125\) 4.03604e12i 1.05802i
\(126\) 0 0
\(127\) −3.29909e12 −0.786271 −0.393136 0.919480i \(-0.628610\pi\)
−0.393136 + 0.919480i \(0.628610\pi\)
\(128\) −3.36655e11 + 1.94368e11i −0.0765466 + 0.0441942i
\(129\) 0 0
\(130\) −1.97129e12 + 3.41437e12i −0.408404 + 0.707377i
\(131\) −6.04050e12 3.48748e12i −1.19521 0.690056i −0.235728 0.971819i \(-0.575747\pi\)
−0.959484 + 0.281763i \(0.909081\pi\)
\(132\) 0 0
\(133\) 2.21303e12 + 3.83309e12i 0.399833 + 0.692530i
\(134\) 2.62879e12i 0.454075i
\(135\) 0 0
\(136\) 2.74924e12 0.434489
\(137\) −2.35726e12 + 1.36097e12i −0.356520 + 0.205837i −0.667553 0.744562i \(-0.732658\pi\)
0.311033 + 0.950399i \(0.399325\pi\)
\(138\) 0 0
\(139\) 5.02531e12 8.70410e12i 0.696746 1.20680i −0.272843 0.962059i \(-0.587964\pi\)
0.969589 0.244740i \(-0.0787027\pi\)
\(140\) 2.49503e12 + 1.44051e12i 0.331366 + 0.191314i
\(141\) 0 0
\(142\) −9.01004e11 1.56058e12i −0.109900 0.190352i
\(143\) 8.39059e12i 0.981242i
\(144\) 0 0
\(145\) 6.97922e12 0.750929
\(146\) 6.40609e12 3.69856e12i 0.661418 0.381870i
\(147\) 0 0
\(148\) −4.50028e12 + 7.79471e12i −0.428222 + 0.741702i
\(149\) 1.40788e13 + 8.12840e12i 1.28661 + 0.742827i 0.978049 0.208376i \(-0.0668179\pi\)
0.308565 + 0.951203i \(0.400151\pi\)
\(150\) 0 0
\(151\) 4.73231e12 + 8.19660e12i 0.399219 + 0.691468i 0.993630 0.112694i \(-0.0359478\pi\)
−0.594410 + 0.804162i \(0.702614\pi\)
\(152\) 4.21881e12i 0.342081i
\(153\) 0 0
\(154\) 6.13137e12 0.459656
\(155\) −5.88227e12 + 3.39613e12i −0.424185 + 0.244903i
\(156\) 0 0
\(157\) 9.22889e12 1.59849e13i 0.616242 1.06736i −0.373923 0.927460i \(-0.621987\pi\)
0.990165 0.139903i \(-0.0446792\pi\)
\(158\) 7.33609e12 + 4.23549e12i 0.471544 + 0.272246i
\(159\) 0 0
\(160\) 1.37305e12 + 2.37820e12i 0.0818403 + 0.141752i
\(161\) 9.50609e12i 0.545817i
\(162\) 0 0
\(163\) −1.76328e13 −0.940145 −0.470073 0.882628i \(-0.655772\pi\)
−0.470073 + 0.882628i \(0.655772\pi\)
\(164\) 1.00901e13 5.82552e12i 0.518600 0.299414i
\(165\) 0 0
\(166\) 1.74894e12 3.02926e12i 0.0835848 0.144773i
\(167\) 3.53071e13 + 2.03845e13i 1.62766 + 0.939728i 0.984790 + 0.173750i \(0.0555884\pi\)
0.642867 + 0.765978i \(0.277745\pi\)
\(168\) 0 0
\(169\) −6.48170e12 1.12266e13i −0.278207 0.481869i
\(170\) 1.94211e13i 0.804602i
\(171\) 0 0
\(172\) −8.81925e12 −0.340613
\(173\) 2.65381e13 1.53218e13i 0.989905 0.571522i 0.0846590 0.996410i \(-0.473020\pi\)
0.905246 + 0.424888i \(0.139687\pi\)
\(174\) 0 0
\(175\) −1.69350e12 + 2.93322e12i −0.0589599 + 0.102121i
\(176\) 5.06128e12 + 2.92213e12i 0.170288 + 0.0983158i
\(177\) 0 0
\(178\) −2.08160e13 3.60544e13i −0.654451 1.13354i
\(179\) 2.05014e13i 0.623254i −0.950204 0.311627i \(-0.899126\pi\)
0.950204 0.311627i \(-0.100874\pi\)
\(180\) 0 0
\(181\) −4.90808e13 −1.39585 −0.697927 0.716169i \(-0.745894\pi\)
−0.697927 + 0.716169i \(0.745894\pi\)
\(182\) −2.29478e13 + 1.32489e13i −0.631412 + 0.364546i
\(183\) 0 0
\(184\) −4.53048e12 + 7.84702e12i −0.116745 + 0.202208i
\(185\) 5.50633e13 + 3.17908e13i 1.37351 + 0.792997i
\(186\) 0 0
\(187\) −2.06660e13 3.57946e13i −0.483289 0.837081i
\(188\) 7.85361e12i 0.177878i
\(189\) 0 0
\(190\) 2.98025e13 0.633477
\(191\) −3.85302e13 + 2.22454e13i −0.793600 + 0.458185i −0.841228 0.540680i \(-0.818167\pi\)
0.0476285 + 0.998865i \(0.484834\pi\)
\(192\) 0 0
\(193\) −2.82943e12 + 4.90072e12i −0.0547464 + 0.0948235i −0.892100 0.451838i \(-0.850768\pi\)
0.837353 + 0.546662i \(0.184102\pi\)
\(194\) 5.61975e13 + 3.24456e13i 1.05416 + 0.608619i
\(195\) 0 0
\(196\) −4.49190e12 7.78021e12i −0.0792308 0.137232i
\(197\) 4.31845e13i 0.738806i 0.929269 + 0.369403i \(0.120438\pi\)
−0.929269 + 0.369403i \(0.879562\pi\)
\(198\) 0 0
\(199\) 4.74962e13 0.764787 0.382394 0.924000i \(-0.375100\pi\)
0.382394 + 0.924000i \(0.375100\pi\)
\(200\) −2.79587e12 + 1.61420e12i −0.0436855 + 0.0252218i
\(201\) 0 0
\(202\) 2.14380e13 3.71316e13i 0.315555 0.546558i
\(203\) 4.06226e13 + 2.34535e13i 0.580486 + 0.335144i
\(204\) 0 0
\(205\) −4.11526e13 7.12784e13i −0.554465 0.960361i
\(206\) 8.38921e13i 1.09779i
\(207\) 0 0
\(208\) −2.52571e13 −0.311891
\(209\) 5.49282e13 3.17128e13i 0.659049 0.380502i
\(210\) 0 0
\(211\) −1.39456e13 + 2.41545e13i −0.158031 + 0.273718i −0.934159 0.356858i \(-0.883848\pi\)
0.776127 + 0.630576i \(0.217181\pi\)
\(212\) −4.48495e13 2.58939e13i −0.494018 0.285221i
\(213\) 0 0
\(214\) 5.14375e13 + 8.90924e13i 0.535547 + 0.927594i
\(215\) 6.23009e13i 0.630759i
\(216\) 0 0
\(217\) −4.56505e13 −0.437207
\(218\) −8.01484e12 + 4.62737e12i −0.0746717 + 0.0431117i
\(219\) 0 0
\(220\) 2.06425e13 3.57538e13i 0.182065 0.315345i
\(221\) 1.54693e14 + 8.93120e13i 1.32775 + 0.766578i
\(222\) 0 0
\(223\) 5.37603e13 + 9.31156e13i 0.437152 + 0.757170i 0.997469 0.0711088i \(-0.0226538\pi\)
−0.560316 + 0.828279i \(0.689320\pi\)
\(224\) 1.84564e13i 0.146103i
\(225\) 0 0
\(226\) 1.28203e13 0.0962159
\(227\) 2.29884e14 1.32723e14i 1.68017 0.970047i 0.718626 0.695397i \(-0.244771\pi\)
0.961544 0.274650i \(-0.0885619\pi\)
\(228\) 0 0
\(229\) 3.94551e13 6.83382e13i 0.273583 0.473860i −0.696193 0.717854i \(-0.745124\pi\)
0.969777 + 0.243994i \(0.0784577\pi\)
\(230\) 5.54328e13 + 3.20042e13i 0.374455 + 0.216192i
\(231\) 0 0
\(232\) 2.23552e13 + 3.87204e13i 0.143368 + 0.248320i
\(233\) 3.12595e14i 1.95365i 0.214040 + 0.976825i \(0.431338\pi\)
−0.214040 + 0.976825i \(0.568662\pi\)
\(234\) 0 0
\(235\) 5.54794e13 0.329401
\(236\) 1.14740e14 6.62452e13i 0.664115 0.383427i
\(237\) 0 0
\(238\) 6.52642e13 1.13041e14i 0.359098 0.621976i
\(239\) 2.32962e14 + 1.34501e14i 1.24996 + 0.721667i 0.971102 0.238664i \(-0.0767094\pi\)
0.278862 + 0.960331i \(0.410043\pi\)
\(240\) 0 0
\(241\) −1.04212e14 1.80500e14i −0.531880 0.921244i −0.999307 0.0372122i \(-0.988152\pi\)
0.467427 0.884032i \(-0.345181\pi\)
\(242\) 5.41664e13i 0.269673i
\(243\) 0 0
\(244\) 6.60443e13 0.312966
\(245\) −5.49609e13 + 3.17317e13i −0.254131 + 0.146722i
\(246\) 0 0
\(247\) −1.37053e14 + 2.37382e14i −0.603540 + 1.04536i
\(248\) −3.76832e13 2.17564e13i −0.161971 0.0935141i
\(249\) 0 0
\(250\) 9.13252e13 + 1.58180e14i 0.374068 + 0.647905i
\(251\) 2.11752e14i 0.846809i 0.905941 + 0.423404i \(0.139165\pi\)
−0.905941 + 0.423404i \(0.860835\pi\)
\(252\) 0 0
\(253\) 1.36222e14 0.519428
\(254\) −1.29298e14 + 7.46500e13i −0.481491 + 0.277989i
\(255\) 0 0
\(256\) −8.79609e12 + 1.52353e13i −0.0312500 + 0.0541266i
\(257\) −2.71787e14 1.56916e14i −0.943255 0.544589i −0.0522760 0.998633i \(-0.516648\pi\)
−0.890979 + 0.454044i \(0.849981\pi\)
\(258\) 0 0
\(259\) 2.13664e14 + 3.70078e14i 0.707838 + 1.22601i
\(260\) 1.78421e14i 0.577571i
\(261\) 0 0
\(262\) −3.15651e14 −0.975886
\(263\) 3.99989e14 2.30934e14i 1.20869 0.697835i 0.246214 0.969216i \(-0.420813\pi\)
0.962472 + 0.271380i \(0.0874801\pi\)
\(264\) 0 0
\(265\) −1.82919e14 + 3.16826e14i −0.528183 + 0.914840i
\(266\) 1.73466e14 + 1.00150e14i 0.489693 + 0.282724i
\(267\) 0 0
\(268\) 5.94828e13 + 1.03027e14i 0.160540 + 0.278063i
\(269\) 1.40054e14i 0.369642i 0.982772 + 0.184821i \(0.0591706\pi\)
−0.982772 + 0.184821i \(0.940829\pi\)
\(270\) 0 0
\(271\) 1.78016e14 0.449411 0.224706 0.974427i \(-0.427858\pi\)
0.224706 + 0.974427i \(0.427858\pi\)
\(272\) 1.07748e14 6.22081e13i 0.266069 0.153615i
\(273\) 0 0
\(274\) −6.15903e13 + 1.06678e14i −0.145549 + 0.252098i
\(275\) 4.20332e13 + 2.42679e13i 0.0971842 + 0.0561093i
\(276\) 0 0
\(277\) −2.70621e14 4.68729e14i −0.599077 1.03763i −0.992958 0.118471i \(-0.962201\pi\)
0.393880 0.919162i \(-0.371132\pi\)
\(278\) 4.54839e14i 0.985347i
\(279\) 0 0
\(280\) 1.30380e14 0.270559
\(281\) −5.26175e14 + 3.03787e14i −1.06879 + 0.617066i −0.927850 0.372953i \(-0.878345\pi\)
−0.140939 + 0.990018i \(0.545012\pi\)
\(282\) 0 0
\(283\) −2.46102e13 + 4.26261e13i −0.0479067 + 0.0829769i −0.888984 0.457937i \(-0.848588\pi\)
0.841078 + 0.540914i \(0.181922\pi\)
\(284\) −7.06240e13 4.07748e13i −0.134599 0.0777108i
\(285\) 0 0
\(286\) 1.89857e14 + 3.28843e14i 0.346921 + 0.600886i
\(287\) 5.53169e14i 0.989843i
\(288\) 0 0
\(289\) −2.97279e14 −0.510243
\(290\) 2.73528e14 1.57922e14i 0.459848 0.265493i
\(291\) 0 0
\(292\) 1.67378e14 2.89907e14i 0.270023 0.467693i
\(293\) 5.49782e14 + 3.17417e14i 0.868931 + 0.501677i 0.866993 0.498321i \(-0.166050\pi\)
0.00193795 + 0.999998i \(0.499383\pi\)
\(294\) 0 0
\(295\) −4.67969e14 8.10546e14i −0.710044 1.22983i
\(296\) 4.07319e14i 0.605597i
\(297\) 0 0
\(298\) 7.35699e14 1.05052
\(299\) −5.09838e14 + 2.94355e14i −0.713519 + 0.411950i
\(300\) 0 0
\(301\) −2.09361e14 + 3.62623e14i −0.281511 + 0.487592i
\(302\) 3.70936e14 + 2.14160e14i 0.488942 + 0.282291i
\(303\) 0 0
\(304\) 9.54608e13 + 1.65343e14i 0.120944 + 0.209481i
\(305\) 4.66550e14i 0.579561i
\(306\) 0 0
\(307\) −1.14005e15 −1.36174 −0.680871 0.732403i \(-0.738399\pi\)
−0.680871 + 0.732403i \(0.738399\pi\)
\(308\) 2.40300e14 1.38737e14i 0.281481 0.162513i
\(309\) 0 0
\(310\) −1.53691e14 + 2.66201e14i −0.173173 + 0.299944i
\(311\) −6.83695e14 3.94731e14i −0.755614 0.436254i 0.0721048 0.997397i \(-0.477028\pi\)
−0.827719 + 0.561143i \(0.810362\pi\)
\(312\) 0 0
\(313\) 5.76629e14 + 9.98750e14i 0.613240 + 1.06216i 0.990691 + 0.136133i \(0.0434673\pi\)
−0.377451 + 0.926030i \(0.623199\pi\)
\(314\) 8.35304e14i 0.871498i
\(315\) 0 0
\(316\) 3.83353e14 0.385014
\(317\) −9.76548e14 + 5.63810e14i −0.962361 + 0.555619i −0.896899 0.442236i \(-0.854185\pi\)
−0.0654618 + 0.997855i \(0.520852\pi\)
\(318\) 0 0
\(319\) 3.36089e14 5.82123e14i 0.318941 0.552421i
\(320\) 1.07625e14 + 6.21373e13i 0.100234 + 0.0578699i
\(321\) 0 0
\(322\) 2.15098e14 + 3.72561e14i 0.192975 + 0.334243i
\(323\) 1.35024e15i 1.18904i
\(324\) 0 0
\(325\) −2.09756e14 −0.177998
\(326\) −6.91061e14 + 3.98984e14i −0.575719 + 0.332392i
\(327\) 0 0
\(328\) 2.63633e14 4.56626e14i 0.211717 0.366705i
\(329\) 3.22918e14 + 1.86437e14i 0.254635 + 0.147013i
\(330\) 0 0
\(331\) 6.91154e14 + 1.19711e15i 0.525541 + 0.910264i 0.999557 + 0.0297477i \(0.00947039\pi\)
−0.474016 + 0.880516i \(0.657196\pi\)
\(332\) 1.58296e14i 0.118207i
\(333\) 0 0
\(334\) 1.84500e15 1.32898
\(335\) 7.27804e14 4.20198e14i 0.514927 0.297293i
\(336\) 0 0
\(337\) 2.46463e14 4.26886e14i 0.168256 0.291429i −0.769550 0.638586i \(-0.779520\pi\)
0.937807 + 0.347157i \(0.112853\pi\)
\(338\) −5.08059e14 2.93328e14i −0.340733 0.196722i
\(339\) 0 0
\(340\) −4.39450e14 7.61150e14i −0.284470 0.492716i
\(341\) 6.54172e14i 0.416069i
\(342\) 0 0
\(343\) −1.77239e15 −1.08842
\(344\) −3.45643e14 + 1.99557e14i −0.208582 + 0.120425i
\(345\) 0 0
\(346\) 6.93385e14 1.20098e15i 0.404127 0.699968i
\(347\) −2.19672e15 1.26828e15i −1.25834 0.726504i −0.285590 0.958352i \(-0.592190\pi\)
−0.972752 + 0.231848i \(0.925523\pi\)
\(348\) 0 0
\(349\) −1.16998e15 2.02647e15i −0.647481 1.12147i −0.983723 0.179694i \(-0.942489\pi\)
0.336241 0.941776i \(-0.390844\pi\)
\(350\) 1.53278e14i 0.0833818i
\(351\) 0 0
\(352\) 2.64481e14 0.139040
\(353\) 9.07166e14 5.23753e14i 0.468855 0.270694i −0.246905 0.969040i \(-0.579414\pi\)
0.715760 + 0.698346i \(0.246080\pi\)
\(354\) 0 0
\(355\) −2.88041e14 + 4.98901e14i −0.143908 + 0.249255i
\(356\) −1.63163e15 9.42025e14i −0.801536 0.462767i
\(357\) 0 0
\(358\) −4.63894e14 8.03487e14i −0.220354 0.381664i
\(359\) 1.80008e15i 0.840861i −0.907325 0.420431i \(-0.861879\pi\)
0.907325 0.420431i \(-0.138121\pi\)
\(360\) 0 0
\(361\) −1.41314e14 −0.0638472
\(362\) −1.92357e15 + 1.11057e15i −0.854783 + 0.493509i
\(363\) 0 0
\(364\) −5.99578e14 + 1.03850e15i −0.257773 + 0.446476i
\(365\) −2.04796e15 1.18239e15i −0.866091 0.500038i
\(366\) 0 0
\(367\) −1.63875e15 2.83839e15i −0.670680 1.16165i −0.977712 0.209952i \(-0.932669\pi\)
0.307032 0.951699i \(-0.400664\pi\)
\(368\) 4.10052e14i 0.165102i
\(369\) 0 0
\(370\) 2.87738e15 1.12147
\(371\) −2.12937e15 + 1.22939e15i −0.816596 + 0.471462i
\(372\) 0 0
\(373\) 7.38996e14 1.27998e15i 0.274403 0.475280i −0.695581 0.718448i \(-0.744853\pi\)
0.969984 + 0.243167i \(0.0781864\pi\)
\(374\) −1.61988e15 9.35237e14i −0.591906 0.341737i
\(375\) 0 0
\(376\) 1.77707e14 + 3.07797e14i 0.0628893 + 0.108928i
\(377\) 2.90494e15i 1.01179i
\(378\) 0 0
\(379\) −5.85878e15 −1.97684 −0.988420 0.151741i \(-0.951512\pi\)
−0.988420 + 0.151741i \(0.951512\pi\)
\(380\) 1.16801e15 6.74353e14i 0.387924 0.223968i
\(381\) 0 0
\(382\) −1.00671e15 + 1.74368e15i −0.323986 + 0.561160i
\(383\) −1.51358e15 8.73864e14i −0.479526 0.276854i 0.240693 0.970601i \(-0.422625\pi\)
−0.720219 + 0.693747i \(0.755959\pi\)
\(384\) 0 0
\(385\) −9.80065e14 1.69752e15i −0.300947 0.521256i
\(386\) 2.56091e14i 0.0774230i
\(387\) 0 0
\(388\) 2.93664e15 0.860718
\(389\) 1.79778e14 1.03795e14i 0.0518846 0.0299556i −0.473833 0.880615i \(-0.657130\pi\)
0.525718 + 0.850659i \(0.323797\pi\)
\(390\) 0 0
\(391\) 1.44999e15 2.51146e15i 0.405794 0.702856i
\(392\) −3.52092e14 2.03280e14i −0.0970375 0.0560246i
\(393\) 0 0
\(394\) 9.77153e14 + 1.69248e15i 0.261207 + 0.452424i
\(395\) 2.70808e15i 0.712982i
\(396\) 0 0
\(397\) −4.92065e15 −1.25684 −0.628419 0.777875i \(-0.716297\pi\)
−0.628419 + 0.777875i \(0.716297\pi\)
\(398\) 1.86146e15 1.07472e15i 0.468334 0.270393i
\(399\) 0 0
\(400\) −7.30502e13 + 1.26527e14i −0.0178345 + 0.0308903i
\(401\) −5.83715e15 3.37008e15i −1.40389 0.810538i −0.409104 0.912488i \(-0.634159\pi\)
−0.994790 + 0.101949i \(0.967492\pi\)
\(402\) 0 0
\(403\) −1.41356e15 2.44836e15i −0.329978 0.571538i
\(404\) 1.94034e15i 0.446262i
\(405\) 0 0
\(406\) 2.12277e15 0.473965
\(407\) 5.30322e15 3.06181e15i 1.16674 0.673616i
\(408\) 0 0
\(409\) −2.42365e15 + 4.19789e15i −0.517763 + 0.896791i 0.482024 + 0.876158i \(0.339902\pi\)
−0.999787 + 0.0206335i \(0.993432\pi\)
\(410\) −3.22569e15 1.86235e15i −0.679078 0.392066i
\(411\) 0 0
\(412\) 1.89826e15 + 3.28789e15i 0.388126 + 0.672254i
\(413\) 6.29039e15i 1.26759i
\(414\) 0 0
\(415\) −1.11824e15 −0.218900
\(416\) −9.89870e14 + 5.71502e14i −0.190993 + 0.110270i
\(417\) 0 0
\(418\) 1.43516e15 2.48577e15i 0.269056 0.466018i
\(419\) −4.45459e15 2.57186e15i −0.823234 0.475294i 0.0282963 0.999600i \(-0.490992\pi\)
−0.851530 + 0.524305i \(0.824325\pi\)
\(420\) 0 0
\(421\) −8.05297e13 1.39482e14i −0.0144632 0.0250509i 0.858703 0.512473i \(-0.171271\pi\)
−0.873166 + 0.487422i \(0.837937\pi\)
\(422\) 1.26221e15i 0.223490i
\(423\) 0 0
\(424\) −2.34365e15 −0.403364
\(425\) 8.94828e14 5.16629e14i 0.151847 0.0876688i
\(426\) 0 0
\(427\) 1.56783e15 2.71556e15i 0.258661 0.448014i
\(428\) 4.03186e15 + 2.32780e15i 0.655908 + 0.378689i
\(429\) 0 0
\(430\) 1.40971e15 + 2.44169e15i 0.223007 + 0.386260i
\(431\) 6.68591e15i 1.04303i −0.853242 0.521515i \(-0.825367\pi\)
0.853242 0.521515i \(-0.174633\pi\)
\(432\) 0 0
\(433\) 5.39263e15 0.818226 0.409113 0.912484i \(-0.365838\pi\)
0.409113 + 0.912484i \(0.365838\pi\)
\(434\) −1.78913e15 + 1.03295e15i −0.267733 + 0.154576i
\(435\) 0 0
\(436\) −2.09411e14 + 3.62710e14i −0.0304846 + 0.0528009i
\(437\) 3.85394e15 + 2.22507e15i 0.553371 + 0.319489i
\(438\) 0 0
\(439\) 5.03987e15 + 8.72931e15i 0.704096 + 1.21953i 0.967017 + 0.254713i \(0.0819811\pi\)
−0.262920 + 0.964818i \(0.584686\pi\)
\(440\) 1.86834e15i 0.257478i
\(441\) 0 0
\(442\) 8.08360e15 1.08410
\(443\) −8.85904e15 + 5.11477e15i −1.17210 + 0.676712i −0.954174 0.299254i \(-0.903262\pi\)
−0.217925 + 0.975965i \(0.569929\pi\)
\(444\) 0 0
\(445\) −6.65464e15 + 1.15262e16i −0.856968 + 1.48431i
\(446\) 4.21393e15 + 2.43291e15i 0.535400 + 0.309113i
\(447\) 0 0
\(448\) 4.17622e14 + 7.23342e14i 0.0516553 + 0.0894696i
\(449\) 7.99330e15i 0.975547i 0.872970 + 0.487773i \(0.162191\pi\)
−0.872970 + 0.487773i \(0.837809\pi\)
\(450\) 0 0
\(451\) −7.92692e15 −0.941987
\(452\) 5.02450e14 2.90090e14i 0.0589199 0.0340174i
\(453\) 0 0
\(454\) 6.00638e15 1.04034e16i 0.685927 1.18806i
\(455\) 7.33616e15 + 4.23553e15i 0.826800 + 0.477353i
\(456\) 0 0
\(457\) −4.13927e15 7.16943e15i −0.454388 0.787023i 0.544265 0.838913i \(-0.316809\pi\)
−0.998653 + 0.0518906i \(0.983475\pi\)
\(458\) 3.57106e15i 0.386905i
\(459\) 0 0
\(460\) 2.89669e15 0.305742
\(461\) −1.09173e16 + 6.30311e15i −1.13739 + 0.656673i −0.945783 0.324799i \(-0.894703\pi\)
−0.191607 + 0.981472i \(0.561370\pi\)
\(462\) 0 0
\(463\) 3.48265e15 6.03212e15i 0.353528 0.612328i −0.633337 0.773876i \(-0.718315\pi\)
0.986865 + 0.161548i \(0.0516486\pi\)
\(464\) 1.75229e15 + 1.01168e15i 0.175589 + 0.101376i
\(465\) 0 0
\(466\) 7.07322e15 + 1.22512e16i 0.690720 + 1.19636i
\(467\) 1.26089e16i 1.21556i 0.794106 + 0.607779i \(0.207939\pi\)
−0.794106 + 0.607779i \(0.792061\pi\)
\(468\) 0 0
\(469\) 5.64826e15 0.530734
\(470\) 2.17434e15 1.25536e15i 0.201716 0.116461i
\(471\) 0 0
\(472\) 2.99792e15 5.19254e15i 0.271124 0.469600i
\(473\) 5.19640e15 + 3.00014e15i 0.464019 + 0.267901i
\(474\) 0 0
\(475\) 7.92787e14 + 1.37315e15i 0.0690232 + 0.119552i
\(476\) 5.90704e15i 0.507842i
\(477\) 0 0
\(478\) 1.21736e16 1.02059
\(479\) −3.32071e15 + 1.91721e15i −0.274927 + 0.158729i −0.631125 0.775681i \(-0.717406\pi\)
0.356197 + 0.934411i \(0.384073\pi\)
\(480\) 0 0
\(481\) −1.32322e16 + 2.29188e16i −1.06847 + 1.85064i
\(482\) −8.16849e15 4.71608e15i −0.651418 0.376096i
\(483\) 0 0
\(484\) 1.22565e15 + 2.12288e15i 0.0953439 + 0.165141i
\(485\) 2.07450e16i 1.59391i
\(486\) 0 0
\(487\) 1.99630e15 0.149641 0.0748207 0.997197i \(-0.476162\pi\)
0.0748207 + 0.997197i \(0.476162\pi\)
\(488\) 2.58840e15 1.49441e15i 0.191651 0.110650i
\(489\) 0 0
\(490\) −1.43601e15 + 2.48725e15i −0.103748 + 0.179698i
\(491\) 5.72082e15 + 3.30292e15i 0.408290 + 0.235727i 0.690055 0.723757i \(-0.257586\pi\)
−0.281764 + 0.959484i \(0.590920\pi\)
\(492\) 0 0
\(493\) −7.15486e15 1.23926e16i −0.498333 0.863139i
\(494\) 1.24046e16i 0.853534i
\(495\) 0 0
\(496\) −1.96916e15 −0.132249
\(497\) −3.35309e15 + 1.93591e15i −0.222488 + 0.128454i
\(498\) 0 0
\(499\) −1.00653e16 + 1.74336e16i −0.651963 + 1.12923i 0.330683 + 0.943742i \(0.392721\pi\)
−0.982646 + 0.185491i \(0.940612\pi\)
\(500\) 7.15841e15 + 4.13291e15i 0.458138 + 0.264506i
\(501\) 0 0
\(502\) 4.79140e15 + 8.29895e15i 0.299392 + 0.518562i
\(503\) 1.72099e16i 1.06260i 0.847184 + 0.531300i \(0.178296\pi\)
−0.847184 + 0.531300i \(0.821704\pi\)
\(504\) 0 0
\(505\) −1.37070e16 −0.826404
\(506\) 5.33881e15 3.08236e15i 0.318084 0.183646i
\(507\) 0 0
\(508\) −3.37827e15 + 5.85134e15i −0.196568 + 0.340465i
\(509\) 1.39053e16 + 8.02821e15i 0.799600 + 0.461649i 0.843331 0.537394i \(-0.180591\pi\)
−0.0437313 + 0.999043i \(0.513925\pi\)
\(510\) 0 0
\(511\) −7.94677e15 1.37642e16i −0.446339 0.773082i
\(512\) 7.96131e14i 0.0441942i
\(513\) 0 0
\(514\) −1.42024e16 −0.770165
\(515\) 2.32263e16 1.34097e16i 1.24490 0.718746i
\(516\) 0 0
\(517\) 2.67165e15 4.62743e15i 0.139906 0.242324i
\(518\) 1.67478e16 + 9.66935e15i 0.866920 + 0.500517i
\(519\) 0 0
\(520\) 4.03720e15 + 6.99263e15i 0.204202 + 0.353688i
\(521\) 2.27894e16i 1.13948i 0.821825 + 0.569740i \(0.192956\pi\)
−0.821825 + 0.569740i \(0.807044\pi\)
\(522\) 0 0
\(523\) −2.36146e16 −1.15390 −0.576952 0.816778i \(-0.695758\pi\)
−0.576952 + 0.816778i \(0.695758\pi\)
\(524\) −1.23709e16 + 7.14236e15i −0.597606 + 0.345028i
\(525\) 0 0
\(526\) 1.04509e16 1.81014e16i 0.493444 0.854670i
\(527\) 1.20606e16 + 6.96320e15i 0.562997 + 0.325046i
\(528\) 0 0
\(529\) −6.17841e15 1.07013e16i −0.281931 0.488319i
\(530\) 1.65560e16i 0.746964i
\(531\) 0 0
\(532\) 9.06459e15 0.399833
\(533\) 2.96680e16 1.71288e16i 1.29397 0.747075i
\(534\) 0 0
\(535\) 1.64440e16 2.84818e16i 0.701269 1.21463i
\(536\) 4.66248e15 + 2.69188e15i 0.196620 + 0.113519i
\(537\) 0 0
\(538\) 3.16906e15 + 5.48897e15i 0.130688 + 0.226359i
\(539\) 6.11224e15i 0.249269i
\(540\) 0 0
\(541\) 1.91409e16 0.763449 0.381724 0.924276i \(-0.375330\pi\)
0.381724 + 0.924276i \(0.375330\pi\)
\(542\) 6.97678e15 4.02805e15i 0.275207 0.158891i
\(543\) 0 0
\(544\) 2.81522e15 4.87610e15i 0.108622 0.188139i
\(545\) 2.56226e15 + 1.47932e15i 0.0977785 + 0.0564525i
\(546\) 0 0
\(547\) 4.53225e15 + 7.85009e15i 0.169196 + 0.293056i 0.938137 0.346263i \(-0.112550\pi\)
−0.768941 + 0.639319i \(0.779216\pi\)
\(548\) 5.57452e15i 0.205837i
\(549\) 0 0
\(550\) 2.19648e15 0.0793506
\(551\) 1.90169e16 1.09794e16i 0.679564 0.392347i
\(552\) 0 0
\(553\) 9.10043e15 1.57624e16i 0.318208 0.551152i
\(554\) −2.12123e16 1.22469e16i −0.733717 0.423612i
\(555\) 0 0
\(556\) −1.02918e16 1.78260e16i −0.348373 0.603399i
\(557\) 2.68418e16i 0.898837i 0.893321 + 0.449419i \(0.148369\pi\)
−0.893321 + 0.449419i \(0.851631\pi\)
\(558\) 0 0
\(559\) −2.59313e16 −0.849873
\(560\) 5.10982e15 2.95016e15i 0.165683 0.0956571i
\(561\) 0 0
\(562\) −1.37478e16 + 2.38119e16i −0.436331 + 0.755748i
\(563\) 1.00983e16 + 5.83025e15i 0.317101 + 0.183078i 0.650100 0.759849i \(-0.274727\pi\)
−0.332999 + 0.942927i \(0.608061\pi\)
\(564\) 0 0
\(565\) −2.04925e15 3.54940e15i −0.0629947 0.109110i
\(566\) 2.22746e15i 0.0677503i
\(567\) 0 0
\(568\) −3.69051e15 −0.109900
\(569\) 1.76847e16 1.02103e16i 0.521104 0.300860i −0.216282 0.976331i \(-0.569393\pi\)
0.737386 + 0.675471i \(0.236060\pi\)
\(570\) 0 0
\(571\) 4.38932e15 7.60252e15i 0.126643 0.219352i −0.795731 0.605650i \(-0.792913\pi\)
0.922374 + 0.386298i \(0.126246\pi\)
\(572\) 1.48817e16 + 8.59196e15i 0.424890 + 0.245311i
\(573\) 0 0
\(574\) −1.25168e16 2.16797e16i −0.349962 0.606153i
\(575\) 3.40542e15i 0.0942245i
\(576\) 0 0
\(577\) 3.12644e16 0.847219 0.423609 0.905845i \(-0.360763\pi\)
0.423609 + 0.905845i \(0.360763\pi\)
\(578\) −1.16509e16 + 6.72666e15i −0.312459 + 0.180398i
\(579\) 0 0
\(580\) 7.14672e15 1.23785e16i 0.187732 0.325162i
\(581\) −6.50870e15 3.75780e15i −0.169215 0.0976961i
\(582\) 0 0
\(583\) 1.76172e16 + 3.05139e16i 0.448669 + 0.777117i
\(584\) 1.51493e16i 0.381870i
\(585\) 0 0
\(586\) 2.87293e16 0.709479
\(587\) −1.38519e16 + 7.99742e15i −0.338596 + 0.195488i −0.659651 0.751572i \(-0.729296\pi\)
0.321055 + 0.947061i \(0.395963\pi\)
\(588\) 0 0
\(589\) −1.06853e16 + 1.85075e16i −0.255915 + 0.443257i
\(590\) −3.66811e16 2.11779e16i −0.869622 0.502077i
\(591\) 0 0
\(592\) 9.21657e15 + 1.59636e16i 0.214111 + 0.370851i
\(593\) 2.23212e16i 0.513322i 0.966501 + 0.256661i \(0.0826224\pi\)
−0.966501 + 0.256661i \(0.917378\pi\)
\(594\) 0 0
\(595\) −4.17285e16 −0.940439
\(596\) 2.88334e16 1.66470e16i 0.643307 0.371413i
\(597\) 0 0
\(598\) −1.33210e16 + 2.30727e16i −0.291293 + 0.504534i
\(599\) 2.09928e16 + 1.21202e16i 0.454475 + 0.262391i 0.709718 0.704485i \(-0.248822\pi\)
−0.255243 + 0.966877i \(0.582155\pi\)
\(600\) 0 0
\(601\) −3.65059e16 6.32300e16i −0.774669 1.34177i −0.934980 0.354699i \(-0.884583\pi\)
0.160312 0.987066i \(-0.448750\pi\)
\(602\) 1.89492e16i 0.398117i
\(603\) 0 0
\(604\) 1.93835e16 0.399219
\(605\) 1.49964e16 8.65820e15i 0.305813 0.176561i
\(606\) 0 0
\(607\) 2.61136e16 4.52301e16i 0.522077 0.904265i −0.477593 0.878581i \(-0.658491\pi\)
0.999670 0.0256833i \(-0.00817616\pi\)
\(608\) 7.48256e15 + 4.32006e15i 0.148125 + 0.0855201i
\(609\) 0 0
\(610\) −1.05568e16 1.82849e16i −0.204906 0.354907i
\(611\) 2.30920e16i 0.443828i
\(612\) 0 0
\(613\) 8.18124e16 1.54190 0.770950 0.636895i \(-0.219782\pi\)
0.770950 + 0.636895i \(0.219782\pi\)
\(614\) −4.46808e16 + 2.57965e16i −0.833893 + 0.481449i
\(615\) 0 0
\(616\) 6.27852e15 1.08747e16i 0.114914 0.199037i
\(617\) 6.09006e16 + 3.51610e16i 1.10385 + 0.637309i 0.937230 0.348712i \(-0.113381\pi\)
0.166622 + 0.986021i \(0.446714\pi\)
\(618\) 0 0
\(619\) 2.93637e16 + 5.08594e16i 0.521995 + 0.904122i 0.999673 + 0.0255868i \(0.00814543\pi\)
−0.477677 + 0.878535i \(0.658521\pi\)
\(620\) 1.39106e16i 0.244903i
\(621\) 0 0
\(622\) −3.57270e16 −0.616956
\(623\) −7.74669e16 + 4.47255e16i −1.32491 + 0.764939i
\(624\) 0 0
\(625\) 2.49436e16 4.32035e16i 0.418484 0.724835i
\(626\) 4.51983e16 + 2.60952e16i 0.751062 + 0.433626i
\(627\) 0 0
\(628\) −1.89008e16 3.27371e16i −0.308121 0.533682i
\(629\) 1.30364e17i 2.10500i
\(630\) 0 0
\(631\) −7.07787e16 −1.12131 −0.560656 0.828049i \(-0.689451\pi\)
−0.560656 + 0.828049i \(0.689451\pi\)
\(632\) 1.50243e16 8.67429e15i 0.235772 0.136123i
\(633\) 0 0
\(634\) −2.55151e16 + 4.41935e16i −0.392882 + 0.680492i
\(635\) 4.13350e16 + 2.38648e16i 0.630486 + 0.364011i
\(636\) 0 0
\(637\) −1.32076e16 2.28762e16i −0.197691 0.342411i
\(638\) 3.04193e16i 0.451050i
\(639\) 0 0
\(640\) 5.62403e15 0.0818403
\(641\) −7.18335e15 + 4.14731e15i −0.103557 + 0.0597886i −0.550884 0.834582i \(-0.685709\pi\)
0.447327 + 0.894370i \(0.352376\pi\)
\(642\) 0 0
\(643\) −4.02701e16 + 6.97498e16i −0.569792 + 0.986909i 0.426794 + 0.904349i \(0.359643\pi\)
−0.996586 + 0.0825600i \(0.973690\pi\)
\(644\) 1.68602e16 + 9.73424e15i 0.236346 + 0.136454i
\(645\) 0 0
\(646\) −3.05525e16 5.29185e16i −0.420390 0.728136i
\(647\) 7.39646e16i 1.00832i 0.863610 + 0.504160i \(0.168198\pi\)
−0.863610 + 0.504160i \(0.831802\pi\)
\(648\) 0 0
\(649\) −9.01414e16 −1.20630
\(650\) −8.22073e15 + 4.74624e15i −0.109001 + 0.0629317i
\(651\) 0 0
\(652\) −1.80560e16 + 3.12738e16i −0.235036 + 0.407095i
\(653\) −9.93720e16 5.73725e16i −1.28170 0.739988i −0.304538 0.952500i \(-0.598502\pi\)
−0.977158 + 0.212513i \(0.931835\pi\)
\(654\) 0 0
\(655\) 5.04550e16 + 8.73907e16i 0.638935 + 1.10667i
\(656\) 2.38613e16i 0.299414i
\(657\) 0 0
\(658\) 1.68744e16 0.207908
\(659\) −1.51010e16 + 8.71858e15i −0.184371 + 0.106447i −0.589345 0.807882i \(-0.700614\pi\)
0.404973 + 0.914328i \(0.367281\pi\)
\(660\) 0 0
\(661\) −1.73419e16 + 3.00371e16i −0.207916 + 0.360121i −0.951058 0.309013i \(-0.900001\pi\)
0.743142 + 0.669134i \(0.233335\pi\)
\(662\) 5.41752e16 + 3.12780e16i 0.643654 + 0.371614i
\(663\) 0 0
\(664\) −3.58184e15 6.20392e15i −0.0417924 0.0723866i
\(665\) 6.40340e16i 0.740424i
\(666\) 0 0
\(667\) 4.71621e16 0.535597
\(668\) 7.23089e16 4.17475e16i 0.813828 0.469864i
\(669\) 0 0
\(670\) 1.90160e16 3.29366e16i 0.210218 0.364108i
\(671\) −3.89140e16 2.24670e16i −0.426354 0.246156i
\(672\) 0 0
\(673\) 1.33393e16 + 2.31043e16i 0.143563 + 0.248658i 0.928836 0.370492i \(-0.120811\pi\)
−0.785273 + 0.619149i \(0.787478\pi\)
\(674\) 2.23073e16i 0.237951i
\(675\) 0 0
\(676\) −2.65490e16 −0.278207
\(677\) −3.99632e16 + 2.30728e16i −0.415076 + 0.239645i −0.692969 0.720968i \(-0.743698\pi\)
0.277892 + 0.960612i \(0.410364\pi\)
\(678\) 0 0
\(679\) 6.97130e16 1.20747e17i 0.711370 1.23213i
\(680\) −3.44457e16 1.98872e16i −0.348403 0.201150i
\(681\) 0 0
\(682\) 1.48022e16 + 2.56382e16i 0.147103 + 0.254789i
\(683\) 1.03018e17i 1.01482i −0.861706 0.507408i \(-0.830604\pi\)
0.861706 0.507408i \(-0.169396\pi\)
\(684\) 0 0
\(685\) 3.93795e16 0.381177
\(686\) −6.94633e16 + 4.01047e16i −0.666516 + 0.384813i
\(687\) 0 0
\(688\) −9.03092e15 + 1.56420e16i −0.0851532 + 0.147490i
\(689\) −1.31871e17 7.61360e16i −1.23264 0.711664i
\(690\) 0 0
\(691\) 7.44211e16 + 1.28901e17i 0.683640 + 1.18410i 0.973862 + 0.227141i \(0.0729377\pi\)
−0.290221 + 0.956959i \(0.593729\pi\)
\(692\) 6.27580e16i 0.571522i
\(693\) 0 0
\(694\) −1.14792e17 −1.02743
\(695\) −1.25926e17 + 7.27035e16i −1.11740 + 0.645129i
\(696\) 0 0
\(697\) −8.43765e16 + 1.46144e17i −0.735911 + 1.27463i
\(698\) −9.17076e16 5.29474e16i −0.792999 0.457838i
\(699\) 0 0
\(700\) 3.46828e15 + 6.00724e15i 0.0294799 + 0.0510607i
\(701\) 9.48887e15i 0.0799662i 0.999200 + 0.0399831i \(0.0127304\pi\)
−0.999200 + 0.0399831i \(0.987270\pi\)
\(702\) 0 0
\(703\) 2.00048e17 1.65730
\(704\) 1.03655e16 5.98452e15i 0.0851440 0.0491579i
\(705\) 0 0
\(706\) 2.37023e16 4.10537e16i 0.191409 0.331531i
\(707\) −7.97815e16 4.60619e16i −0.638830 0.368829i
\(708\) 0 0
\(709\) 8.47181e16 + 1.46736e17i 0.666959 + 1.15521i 0.978750 + 0.205056i \(0.0657377\pi\)
−0.311791 + 0.950151i \(0.600929\pi\)
\(710\) 2.60705e16i 0.203516i
\(711\) 0 0
\(712\) −8.52623e16 −0.654451
\(713\) −3.97495e16 + 2.29494e16i −0.302548 + 0.174676i
\(714\) 0 0
\(715\) 6.06953e16 1.05127e17i 0.454275 0.786827i
\(716\) −3.63617e16 2.09934e16i −0.269877 0.155814i
\(717\) 0 0
\(718\) −4.07311e16 7.05483e16i −0.297289 0.514920i
\(719\) 1.16432e16i 0.0842754i 0.999112 + 0.0421377i \(0.0134168\pi\)
−0.999112 + 0.0421377i \(0.986583\pi\)
\(720\) 0 0
\(721\) 1.80252e17 1.28312
\(722\) −5.53835e15 + 3.19757e15i −0.0390983 + 0.0225734i
\(723\) 0 0
\(724\) −5.02587e16 + 8.70507e16i −0.348964 + 0.604423i
\(725\) 1.45525e16 + 8.40187e15i 0.100209 + 0.0578560i
\(726\) 0 0
\(727\) −2.28530e16 3.95826e16i −0.154788 0.268101i 0.778194 0.628024i \(-0.216136\pi\)
−0.932982 + 0.359923i \(0.882803\pi\)
\(728\) 5.42676e16i 0.364546i
\(729\) 0 0
\(730\) −1.07018e17 −0.707160
\(731\) 1.10624e17 6.38688e16i 0.725012 0.418586i
\(732\) 0 0
\(733\) 1.04080e16 1.80272e16i 0.0671032 0.116226i −0.830522 0.556986i \(-0.811958\pi\)
0.897625 + 0.440760i \(0.145291\pi\)
\(734\) −1.28451e17 7.41612e16i −0.821412 0.474242i
\(735\) 0 0
\(736\) 9.27842e15 + 1.60707e16i 0.0583723 + 0.101104i
\(737\) 8.09396e16i 0.505075i
\(738\) 0 0
\(739\) 2.08350e17 1.27917 0.639584 0.768721i \(-0.279107\pi\)
0.639584 + 0.768721i \(0.279107\pi\)
\(740\) 1.12770e17 6.51076e16i 0.686755 0.396498i
\(741\) 0 0
\(742\) −5.56359e16 + 9.63642e16i −0.333374 + 0.577421i
\(743\) −2.70067e17 1.55923e17i −1.60523 0.926783i −0.990416 0.138114i \(-0.955896\pi\)
−0.614818 0.788669i \(-0.710771\pi\)
\(744\) 0 0
\(745\) −1.17597e17 2.03685e17i −0.687797 1.19130i
\(746\) 6.68863e16i 0.388065i
\(747\) 0 0
\(748\) −8.46480e16 −0.483289
\(749\) 1.91425e17 1.10519e17i 1.08420 0.625961i
\(750\) 0 0
\(751\) −1.30877e17 + 2.26686e17i −0.729499 + 1.26353i 0.227596 + 0.973756i \(0.426914\pi\)
−0.957095 + 0.289774i \(0.906420\pi\)
\(752\) 1.39293e16 + 8.04209e15i 0.0770234 + 0.0444695i
\(753\) 0 0
\(754\) 6.57313e16 + 1.13850e17i 0.357721 + 0.619590i
\(755\) 1.36929e17i 0.739289i
\(756\) 0 0
\(757\) 1.02581e17 0.545119 0.272559 0.962139i \(-0.412130\pi\)
0.272559 + 0.962139i \(0.412130\pi\)
\(758\) −2.29616e17 + 1.32569e17i −1.21056 + 0.698919i
\(759\) 0 0
\(760\) 3.05177e16 5.28583e16i 0.158369 0.274304i
\(761\) 1.48043e16 + 8.54727e15i 0.0762220 + 0.0440068i 0.537627 0.843183i \(-0.319321\pi\)
−0.461405 + 0.887190i \(0.652654\pi\)
\(762\) 0 0
\(763\) 9.94243e15 + 1.72208e16i 0.0503901 + 0.0872782i
\(764\) 9.11173e16i 0.458185i
\(765\)