Properties

Label 162.13.d.c.107.2
Level $162$
Weight $13$
Character 162.107
Analytic conductor $148.067$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [162,13,Mod(53,162)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(162, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([5]))
 
N = Newforms(chi, 13, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("162.53");
 
S:= CuspForms(chi, 13);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 162 = 2 \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 13 \)
Character orbit: \([\chi]\) \(=\) 162.d (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(148.066998399\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4 x^{7} - 18478 x^{6} + 55448 x^{5} + 128029439 x^{4} - 256151296 x^{3} - 394230846230 x^{2} + 394358931120 x + 455189180292012 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{24}\cdot 3^{12} \)
Twist minimal: no (minimal twist has level 54)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 107.2
Root \(69.6972 + 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 162.107
Dual form 162.13.d.c.53.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-39.1918 - 22.6274i) q^{2} +(1024.00 + 1773.62i) q^{4} +(12529.2 - 7233.73i) q^{5} +(-48617.5 + 84208.1i) q^{7} -92681.9i q^{8} +O(q^{10})\) \(q+(-39.1918 - 22.6274i) q^{2} +(1024.00 + 1773.62i) q^{4} +(12529.2 - 7233.73i) q^{5} +(-48617.5 + 84208.1i) q^{7} -92681.9i q^{8} -654723. q^{10} +(1.20670e6 + 696690. i) q^{11} +(3.01088e6 + 5.21499e6i) q^{13} +(3.81082e6 - 2.20018e6i) q^{14} +(-2.09715e6 + 3.63237e6i) q^{16} +2.96631e7i q^{17} -4.55192e7 q^{19} +(2.56598e7 + 1.48147e7i) q^{20} +(-3.15286e7 - 5.46091e7i) q^{22} +(8.46661e7 - 4.88820e7i) q^{23} +(-1.74165e7 + 3.01663e7i) q^{25} -2.72513e8i q^{26} -1.99137e8 q^{28} +(4.17778e8 + 2.41204e8i) q^{29} +(2.34743e8 + 4.06586e8i) q^{31} +(1.64382e8 - 9.49063e7i) q^{32} +(6.71200e8 - 1.16255e9i) q^{34} +1.40675e9i q^{35} -4.39480e9 q^{37} +(1.78398e9 + 1.02998e9i) q^{38} +(-6.70436e8 - 1.16123e9i) q^{40} +(-4.92680e9 + 2.84449e9i) q^{41} +(-2.15314e9 + 3.72934e9i) q^{43} +2.85364e9i q^{44} -4.42430e9 q^{46} +(3.32101e9 + 1.91738e9i) q^{47} +(2.19331e9 + 3.79893e9i) q^{49} +(1.36517e9 - 7.88182e8i) q^{50} +(-6.16627e9 + 1.06803e10i) q^{52} -2.52870e10i q^{53} +2.01587e10 q^{55} +(7.80456e9 + 4.50597e9i) q^{56} +(-1.09156e10 - 1.89065e10i) q^{58} +(-5.60254e10 + 3.23463e10i) q^{59} +(1.61241e10 - 2.79278e10i) q^{61} -2.12465e10i q^{62} -8.58993e9 q^{64} +(7.54477e10 + 4.35597e10i) q^{65} +(-2.90443e10 - 5.03063e10i) q^{67} +(-5.26111e10 + 3.03750e10i) q^{68} +(3.18310e10 - 5.51329e10i) q^{70} -3.98191e10i q^{71} +1.63455e11 q^{73} +(1.72240e11 + 9.94430e10i) q^{74} +(-4.66117e10 - 8.07338e10i) q^{76} +(-1.17334e11 + 6.77427e10i) q^{77} +(9.35920e10 - 1.62106e11i) q^{79} +6.06809e10i q^{80} +2.57454e11 q^{82} +(-6.69378e10 - 3.86466e10i) q^{83} +(2.14575e11 + 3.71655e11i) q^{85} +(1.68771e11 - 9.74399e10i) q^{86} +(6.45706e10 - 1.11839e11i) q^{88} -9.19946e11i q^{89} -5.85525e11 q^{91} +(1.73396e11 + 1.00110e11i) q^{92} +(-8.67709e10 - 1.50292e11i) q^{94} +(-5.70319e11 + 3.29274e11i) q^{95} +(7.16954e11 - 1.24180e12i) q^{97} -1.98516e11i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8192 q^{4} - 271484 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 8 q + 8192 q^{4} - 271484 q^{7} + 2279424 q^{10} - 696284 q^{13} - 16777216 q^{16} - 175753928 q^{19} - 30471168 q^{22} + 906499004 q^{25} - 1111998464 q^{28} + 2382534136 q^{31} + 2915232768 q^{34} - 1146574280 q^{37} + 2334130176 q^{40} + 15116732344 q^{43} + 5281241088 q^{46} + 33490260096 q^{49} + 1425989632 q^{52} + 195012288000 q^{55} - 121550997504 q^{58} - 58362866396 q^{61} - 68719476736 q^{64} - 308975155100 q^{67} + 33014547456 q^{70} - 357741406856 q^{73} - 179972022272 q^{76} + 905099168836 q^{79} + 722937556992 q^{82} + 720516135168 q^{85} + 62404952064 q^{88} - 1360962234040 q^{91} - 1147443557376 q^{94} + 5671281236356 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/162\mathbb{Z}\right)^\times\).

\(n\) \(83\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −39.1918 22.6274i −0.612372 0.353553i
\(3\) 0 0
\(4\) 1024.00 + 1773.62i 0.250000 + 0.433013i
\(5\) 12529.2 7233.73i 0.801868 0.462959i −0.0422557 0.999107i \(-0.513454\pi\)
0.844124 + 0.536148i \(0.180121\pi\)
\(6\) 0 0
\(7\) −48617.5 + 84208.1i −0.413242 + 0.715757i −0.995242 0.0974322i \(-0.968937\pi\)
0.582000 + 0.813189i \(0.302270\pi\)
\(8\) 92681.9i 0.353553i
\(9\) 0 0
\(10\) −654723. −0.654723
\(11\) 1.20670e6 + 696690.i 0.681152 + 0.393263i 0.800289 0.599614i \(-0.204679\pi\)
−0.119137 + 0.992878i \(0.538013\pi\)
\(12\) 0 0
\(13\) 3.01088e6 + 5.21499e6i 0.623782 + 1.08042i 0.988775 + 0.149412i \(0.0477379\pi\)
−0.364993 + 0.931010i \(0.618929\pi\)
\(14\) 3.81082e6 2.20018e6i 0.506116 0.292206i
\(15\) 0 0
\(16\) −2.09715e6 + 3.63237e6i −0.125000 + 0.216506i
\(17\) 2.96631e7i 1.22892i 0.788948 + 0.614460i \(0.210626\pi\)
−0.788948 + 0.614460i \(0.789374\pi\)
\(18\) 0 0
\(19\) −4.55192e7 −0.967550 −0.483775 0.875192i \(-0.660735\pi\)
−0.483775 + 0.875192i \(0.660735\pi\)
\(20\) 2.56598e7 + 1.48147e7i 0.400934 + 0.231479i
\(21\) 0 0
\(22\) −3.15286e7 5.46091e7i −0.278079 0.481647i
\(23\) 8.46661e7 4.88820e7i 0.571930 0.330204i −0.185990 0.982552i \(-0.559549\pi\)
0.757920 + 0.652348i \(0.226216\pi\)
\(24\) 0 0
\(25\) −1.74165e7 + 3.01663e7i −0.0713381 + 0.123561i
\(26\) 2.72513e8i 0.882161i
\(27\) 0 0
\(28\) −1.99137e8 −0.413242
\(29\) 4.17778e8 + 2.41204e8i 0.702356 + 0.405505i 0.808224 0.588875i \(-0.200429\pi\)
−0.105869 + 0.994380i \(0.533762\pi\)
\(30\) 0 0
\(31\) 2.34743e8 + 4.06586e8i 0.264498 + 0.458124i 0.967432 0.253131i \(-0.0814605\pi\)
−0.702934 + 0.711255i \(0.748127\pi\)
\(32\) 1.64382e8 9.49063e7i 0.153093 0.0883883i
\(33\) 0 0
\(34\) 6.71200e8 1.16255e9i 0.434489 0.752557i
\(35\) 1.40675e9i 0.765257i
\(36\) 0 0
\(37\) −4.39480e9 −1.71289 −0.856444 0.516240i \(-0.827331\pi\)
−0.856444 + 0.516240i \(0.827331\pi\)
\(38\) 1.78398e9 + 1.02998e9i 0.592501 + 0.342081i
\(39\) 0 0
\(40\) −6.70436e8 1.16123e9i −0.163681 0.283503i
\(41\) −4.92680e9 + 2.84449e9i −1.03720 + 0.598827i −0.919039 0.394167i \(-0.871033\pi\)
−0.118160 + 0.992995i \(0.537700\pi\)
\(42\) 0 0
\(43\) −2.15314e9 + 3.72934e9i −0.340613 + 0.589959i −0.984547 0.175122i \(-0.943968\pi\)
0.643934 + 0.765081i \(0.277301\pi\)
\(44\) 2.85364e9i 0.393263i
\(45\) 0 0
\(46\) −4.42430e9 −0.466979
\(47\) 3.32101e9 + 1.91738e9i 0.308094 + 0.177878i 0.646073 0.763276i \(-0.276410\pi\)
−0.337979 + 0.941153i \(0.609743\pi\)
\(48\) 0 0
\(49\) 2.19331e9 + 3.79893e9i 0.158462 + 0.274464i
\(50\) 1.36517e9 7.88182e8i 0.0873710 0.0504437i
\(51\) 0 0
\(52\) −6.16627e9 + 1.06803e10i −0.311891 + 0.540211i
\(53\) 2.52870e10i 1.14089i −0.821337 0.570443i \(-0.806772\pi\)
0.821337 0.570443i \(-0.193228\pi\)
\(54\) 0 0
\(55\) 2.01587e10 0.728259
\(56\) 7.80456e9 + 4.50597e9i 0.253058 + 0.146103i
\(57\) 0 0
\(58\) −1.09156e10 1.89065e10i −0.286735 0.496640i
\(59\) −5.60254e10 + 3.23463e10i −1.32823 + 0.766854i −0.985026 0.172407i \(-0.944846\pi\)
−0.343204 + 0.939261i \(0.611512\pi\)
\(60\) 0 0
\(61\) 1.61241e10 2.79278e10i 0.312966 0.542072i −0.666037 0.745918i \(-0.732011\pi\)
0.979003 + 0.203846i \(0.0653442\pi\)
\(62\) 2.12465e10i 0.374056i
\(63\) 0 0
\(64\) −8.58993e9 −0.125000
\(65\) 7.54477e10 + 4.35597e10i 1.00038 + 0.577571i
\(66\) 0 0
\(67\) −2.90443e10 5.03063e10i −0.321079 0.556126i 0.659632 0.751589i \(-0.270712\pi\)
−0.980711 + 0.195463i \(0.937379\pi\)
\(68\) −5.26111e10 + 3.03750e10i −0.532138 + 0.307230i
\(69\) 0 0
\(70\) 3.18310e10 5.51329e10i 0.270559 0.468622i
\(71\) 3.98191e10i 0.310843i −0.987848 0.155422i \(-0.950326\pi\)
0.987848 0.155422i \(-0.0496736\pi\)
\(72\) 0 0
\(73\) 1.63455e11 1.08009 0.540045 0.841636i \(-0.318407\pi\)
0.540045 + 0.841636i \(0.318407\pi\)
\(74\) 1.72240e11 + 9.94430e10i 1.04893 + 0.605597i
\(75\) 0 0
\(76\) −4.66117e10 8.07338e10i −0.241887 0.418961i
\(77\) −1.17334e11 + 6.77427e10i −0.562962 + 0.325026i
\(78\) 0 0
\(79\) 9.35920e10 1.62106e11i 0.385014 0.666863i −0.606757 0.794887i \(-0.707530\pi\)
0.991771 + 0.128024i \(0.0408633\pi\)
\(80\) 6.06809e10i 0.231479i
\(81\) 0 0
\(82\) 2.57454e11 0.846870
\(83\) −6.69378e10 3.86466e10i −0.204740 0.118207i 0.394124 0.919057i \(-0.371048\pi\)
−0.598865 + 0.800850i \(0.704381\pi\)
\(84\) 0 0
\(85\) 2.14575e11 + 3.71655e11i 0.568939 + 0.985432i
\(86\) 1.68771e11 9.74399e10i 0.417164 0.240850i
\(87\) 0 0
\(88\) 6.45706e10 1.11839e11i 0.139040 0.240824i
\(89\) 9.19946e11i 1.85107i −0.378665 0.925534i \(-0.623617\pi\)
0.378665 0.925534i \(-0.376383\pi\)
\(90\) 0 0
\(91\) −5.85525e11 −1.03109
\(92\) 1.73396e11 + 1.00110e11i 0.285965 + 0.165102i
\(93\) 0 0
\(94\) −8.67709e10 1.50292e11i −0.125779 0.217855i
\(95\) −5.70319e11 + 3.29274e11i −0.775848 + 0.447936i
\(96\) 0 0
\(97\) 7.16954e11 1.24180e12i 0.860718 1.49081i −0.0105198 0.999945i \(-0.503349\pi\)
0.871237 0.490862i \(-0.163318\pi\)
\(98\) 1.98516e11i 0.224099i
\(99\) 0 0
\(100\) −7.13381e10 −0.0713381
\(101\) −8.20501e11 4.73716e11i −0.772949 0.446262i 0.0609766 0.998139i \(-0.480579\pi\)
−0.833926 + 0.551877i \(0.813912\pi\)
\(102\) 0 0
\(103\) −9.26886e11 1.60541e12i −0.776252 1.34451i −0.934088 0.357043i \(-0.883785\pi\)
0.157836 0.987465i \(-0.449548\pi\)
\(104\) 4.83335e11 2.79054e11i 0.381987 0.220540i
\(105\) 0 0
\(106\) −5.72180e11 + 9.91044e11i −0.403364 + 0.698647i
\(107\) 2.27324e12i 1.51475i 0.652977 + 0.757377i \(0.273520\pi\)
−0.652977 + 0.757377i \(0.726480\pi\)
\(108\) 0 0
\(109\) −2.04503e11 −0.121938 −0.0609692 0.998140i \(-0.519419\pi\)
−0.0609692 + 0.998140i \(0.519419\pi\)
\(110\) −7.90056e11 4.56139e11i −0.445966 0.257478i
\(111\) 0 0
\(112\) −2.03917e11 3.53194e11i −0.103311 0.178939i
\(113\) −2.45337e11 + 1.41645e11i −0.117840 + 0.0680349i −0.557761 0.830001i \(-0.688340\pi\)
0.439922 + 0.898036i \(0.355006\pi\)
\(114\) 0 0
\(115\) 7.07199e11 1.22490e12i 0.305742 0.529560i
\(116\) 9.87971e11i 0.405505i
\(117\) 0 0
\(118\) 2.92765e12 1.08450
\(119\) −2.49787e12 1.44215e12i −0.879607 0.507842i
\(120\) 0 0
\(121\) −5.98460e11 1.03656e12i −0.190688 0.330281i
\(122\) −1.26387e12 + 7.29693e11i −0.383303 + 0.221300i
\(123\) 0 0
\(124\) −4.80753e11 + 8.32689e11i −0.132249 + 0.229062i
\(125\) 4.03604e12i 1.05802i
\(126\) 0 0
\(127\) −3.29909e12 −0.786271 −0.393136 0.919480i \(-0.628610\pi\)
−0.393136 + 0.919480i \(0.628610\pi\)
\(128\) 3.36655e11 + 1.94368e11i 0.0765466 + 0.0441942i
\(129\) 0 0
\(130\) −1.97129e12 3.41437e12i −0.408404 0.707377i
\(131\) 6.04050e12 3.48748e12i 1.19521 0.690056i 0.235728 0.971819i \(-0.424253\pi\)
0.959484 + 0.281763i \(0.0909193\pi\)
\(132\) 0 0
\(133\) 2.21303e12 3.83309e12i 0.399833 0.692530i
\(134\) 2.62879e12i 0.454075i
\(135\) 0 0
\(136\) 2.74924e12 0.434489
\(137\) 2.35726e12 + 1.36097e12i 0.356520 + 0.205837i 0.667553 0.744562i \(-0.267342\pi\)
−0.311033 + 0.950399i \(0.600675\pi\)
\(138\) 0 0
\(139\) 5.02531e12 + 8.70410e12i 0.696746 + 1.20680i 0.969589 + 0.244740i \(0.0787027\pi\)
−0.272843 + 0.962059i \(0.587964\pi\)
\(140\) −2.49503e12 + 1.44051e12i −0.331366 + 0.191314i
\(141\) 0 0
\(142\) −9.01004e11 + 1.56058e12i −0.109900 + 0.190352i
\(143\) 8.39059e12i 0.981242i
\(144\) 0 0
\(145\) 6.97922e12 0.750929
\(146\) −6.40609e12 3.69856e12i −0.661418 0.381870i
\(147\) 0 0
\(148\) −4.50028e12 7.79471e12i −0.428222 0.741702i
\(149\) −1.40788e13 + 8.12840e12i −1.28661 + 0.742827i −0.978049 0.208376i \(-0.933182\pi\)
−0.308565 + 0.951203i \(0.599849\pi\)
\(150\) 0 0
\(151\) 4.73231e12 8.19660e12i 0.399219 0.691468i −0.594410 0.804162i \(-0.702614\pi\)
0.993630 + 0.112694i \(0.0359478\pi\)
\(152\) 4.21881e12i 0.342081i
\(153\) 0 0
\(154\) 6.13137e12 0.459656
\(155\) 5.88227e12 + 3.39613e12i 0.424185 + 0.244903i
\(156\) 0 0
\(157\) 9.22889e12 + 1.59849e13i 0.616242 + 1.06736i 0.990165 + 0.139903i \(0.0446792\pi\)
−0.373923 + 0.927460i \(0.621987\pi\)
\(158\) −7.33609e12 + 4.23549e12i −0.471544 + 0.272246i
\(159\) 0 0
\(160\) 1.37305e12 2.37820e12i 0.0818403 0.141752i
\(161\) 9.50609e12i 0.545817i
\(162\) 0 0
\(163\) −1.76328e13 −0.940145 −0.470073 0.882628i \(-0.655772\pi\)
−0.470073 + 0.882628i \(0.655772\pi\)
\(164\) −1.00901e13 5.82552e12i −0.518600 0.299414i
\(165\) 0 0
\(166\) 1.74894e12 + 3.02926e12i 0.0835848 + 0.144773i
\(167\) −3.53071e13 + 2.03845e13i −1.62766 + 0.939728i −0.642867 + 0.765978i \(0.722255\pi\)
−0.984790 + 0.173750i \(0.944412\pi\)
\(168\) 0 0
\(169\) −6.48170e12 + 1.12266e13i −0.278207 + 0.481869i
\(170\) 1.94211e13i 0.804602i
\(171\) 0 0
\(172\) −8.81925e12 −0.340613
\(173\) −2.65381e13 1.53218e13i −0.989905 0.571522i −0.0846590 0.996410i \(-0.526980\pi\)
−0.905246 + 0.424888i \(0.860313\pi\)
\(174\) 0 0
\(175\) −1.69350e12 2.93322e12i −0.0589599 0.102121i
\(176\) −5.06128e12 + 2.92213e12i −0.170288 + 0.0983158i
\(177\) 0 0
\(178\) −2.08160e13 + 3.60544e13i −0.654451 + 1.13354i
\(179\) 2.05014e13i 0.623254i −0.950204 0.311627i \(-0.899126\pi\)
0.950204 0.311627i \(-0.100874\pi\)
\(180\) 0 0
\(181\) −4.90808e13 −1.39585 −0.697927 0.716169i \(-0.745894\pi\)
−0.697927 + 0.716169i \(0.745894\pi\)
\(182\) 2.29478e13 + 1.32489e13i 0.631412 + 0.364546i
\(183\) 0 0
\(184\) −4.53048e12 7.84702e12i −0.116745 0.202208i
\(185\) −5.50633e13 + 3.17908e13i −1.37351 + 0.792997i
\(186\) 0 0
\(187\) −2.06660e13 + 3.57946e13i −0.483289 + 0.837081i
\(188\) 7.85361e12i 0.177878i
\(189\) 0 0
\(190\) 2.98025e13 0.633477
\(191\) 3.85302e13 + 2.22454e13i 0.793600 + 0.458185i 0.841228 0.540680i \(-0.181833\pi\)
−0.0476285 + 0.998865i \(0.515166\pi\)
\(192\) 0 0
\(193\) −2.82943e12 4.90072e12i −0.0547464 0.0948235i 0.837353 0.546662i \(-0.184102\pi\)
−0.892100 + 0.451838i \(0.850768\pi\)
\(194\) −5.61975e13 + 3.24456e13i −1.05416 + 0.608619i
\(195\) 0 0
\(196\) −4.49190e12 + 7.78021e12i −0.0792308 + 0.137232i
\(197\) 4.31845e13i 0.738806i 0.929269 + 0.369403i \(0.120438\pi\)
−0.929269 + 0.369403i \(0.879562\pi\)
\(198\) 0 0
\(199\) 4.74962e13 0.764787 0.382394 0.924000i \(-0.375100\pi\)
0.382394 + 0.924000i \(0.375100\pi\)
\(200\) 2.79587e12 + 1.61420e12i 0.0436855 + 0.0252218i
\(201\) 0 0
\(202\) 2.14380e13 + 3.71316e13i 0.315555 + 0.546558i
\(203\) −4.06226e13 + 2.34535e13i −0.580486 + 0.335144i
\(204\) 0 0
\(205\) −4.11526e13 + 7.12784e13i −0.554465 + 0.960361i
\(206\) 8.38921e13i 1.09779i
\(207\) 0 0
\(208\) −2.52571e13 −0.311891
\(209\) −5.49282e13 3.17128e13i −0.659049 0.380502i
\(210\) 0 0
\(211\) −1.39456e13 2.41545e13i −0.158031 0.273718i 0.776127 0.630576i \(-0.217181\pi\)
−0.934159 + 0.356858i \(0.883848\pi\)
\(212\) 4.48495e13 2.58939e13i 0.494018 0.285221i
\(213\) 0 0
\(214\) 5.14375e13 8.90924e13i 0.535547 0.927594i
\(215\) 6.23009e13i 0.630759i
\(216\) 0 0
\(217\) −4.56505e13 −0.437207
\(218\) 8.01484e12 + 4.62737e12i 0.0746717 + 0.0431117i
\(219\) 0 0
\(220\) 2.06425e13 + 3.57538e13i 0.182065 + 0.315345i
\(221\) −1.54693e14 + 8.93120e13i −1.32775 + 0.766578i
\(222\) 0 0
\(223\) 5.37603e13 9.31156e13i 0.437152 0.757170i −0.560316 0.828279i \(-0.689320\pi\)
0.997469 + 0.0711088i \(0.0226538\pi\)
\(224\) 1.84564e13i 0.146103i
\(225\) 0 0
\(226\) 1.28203e13 0.0962159
\(227\) −2.29884e14 1.32723e14i −1.68017 0.970047i −0.961544 0.274650i \(-0.911438\pi\)
−0.718626 0.695397i \(-0.755229\pi\)
\(228\) 0 0
\(229\) 3.94551e13 + 6.83382e13i 0.273583 + 0.473860i 0.969777 0.243994i \(-0.0784577\pi\)
−0.696193 + 0.717854i \(0.745124\pi\)
\(230\) −5.54328e13 + 3.20042e13i −0.374455 + 0.216192i
\(231\) 0 0
\(232\) 2.23552e13 3.87204e13i 0.143368 0.248320i
\(233\) 3.12595e14i 1.95365i 0.214040 + 0.976825i \(0.431338\pi\)
−0.214040 + 0.976825i \(0.568662\pi\)
\(234\) 0 0
\(235\) 5.54794e13 0.329401
\(236\) −1.14740e14 6.62452e13i −0.664115 0.383427i
\(237\) 0 0
\(238\) 6.52642e13 + 1.13041e14i 0.359098 + 0.621976i
\(239\) −2.32962e14 + 1.34501e14i −1.24996 + 0.721667i −0.971102 0.238664i \(-0.923291\pi\)
−0.278862 + 0.960331i \(0.589957\pi\)
\(240\) 0 0
\(241\) −1.04212e14 + 1.80500e14i −0.531880 + 0.921244i 0.467427 + 0.884032i \(0.345181\pi\)
−0.999307 + 0.0372122i \(0.988152\pi\)
\(242\) 5.41664e13i 0.269673i
\(243\) 0 0
\(244\) 6.60443e13 0.312966
\(245\) 5.49609e13 + 3.17317e13i 0.254131 + 0.146722i
\(246\) 0 0
\(247\) −1.37053e14 2.37382e14i −0.603540 1.04536i
\(248\) 3.76832e13 2.17564e13i 0.161971 0.0935141i
\(249\) 0 0
\(250\) 9.13252e13 1.58180e14i 0.374068 0.647905i
\(251\) 2.11752e14i 0.846809i 0.905941 + 0.423404i \(0.139165\pi\)
−0.905941 + 0.423404i \(0.860835\pi\)
\(252\) 0 0
\(253\) 1.36222e14 0.519428
\(254\) 1.29298e14 + 7.46500e13i 0.481491 + 0.277989i
\(255\) 0 0
\(256\) −8.79609e12 1.52353e13i −0.0312500 0.0541266i
\(257\) 2.71787e14 1.56916e14i 0.943255 0.544589i 0.0522760 0.998633i \(-0.483352\pi\)
0.890979 + 0.454044i \(0.150019\pi\)
\(258\) 0 0
\(259\) 2.13664e14 3.70078e14i 0.707838 1.22601i
\(260\) 1.78421e14i 0.577571i
\(261\) 0 0
\(262\) −3.15651e14 −0.975886
\(263\) −3.99989e14 2.30934e14i −1.20869 0.697835i −0.246214 0.969216i \(-0.579187\pi\)
−0.962472 + 0.271380i \(0.912520\pi\)
\(264\) 0 0
\(265\) −1.82919e14 3.16826e14i −0.528183 0.914840i
\(266\) −1.73466e14 + 1.00150e14i −0.489693 + 0.282724i
\(267\) 0 0
\(268\) 5.94828e13 1.03027e14i 0.160540 0.278063i
\(269\) 1.40054e14i 0.369642i 0.982772 + 0.184821i \(0.0591706\pi\)
−0.982772 + 0.184821i \(0.940829\pi\)
\(270\) 0 0
\(271\) 1.78016e14 0.449411 0.224706 0.974427i \(-0.427858\pi\)
0.224706 + 0.974427i \(0.427858\pi\)
\(272\) −1.07748e14 6.22081e13i −0.266069 0.153615i
\(273\) 0 0
\(274\) −6.15903e13 1.06678e14i −0.145549 0.252098i
\(275\) −4.20332e13 + 2.42679e13i −0.0971842 + 0.0561093i
\(276\) 0 0
\(277\) −2.70621e14 + 4.68729e14i −0.599077 + 1.03763i 0.393880 + 0.919162i \(0.371132\pi\)
−0.992958 + 0.118471i \(0.962201\pi\)
\(278\) 4.54839e14i 0.985347i
\(279\) 0 0
\(280\) 1.30380e14 0.270559
\(281\) 5.26175e14 + 3.03787e14i 1.06879 + 0.617066i 0.927850 0.372953i \(-0.121655\pi\)
0.140939 + 0.990018i \(0.454988\pi\)
\(282\) 0 0
\(283\) −2.46102e13 4.26261e13i −0.0479067 0.0829769i 0.841078 0.540914i \(-0.181922\pi\)
−0.888984 + 0.457937i \(0.848588\pi\)
\(284\) 7.06240e13 4.07748e13i 0.134599 0.0777108i
\(285\) 0 0
\(286\) 1.89857e14 3.28843e14i 0.346921 0.600886i
\(287\) 5.53169e14i 0.989843i
\(288\) 0 0
\(289\) −2.97279e14 −0.510243
\(290\) −2.73528e14 1.57922e14i −0.459848 0.265493i
\(291\) 0 0
\(292\) 1.67378e14 + 2.89907e14i 0.270023 + 0.467693i
\(293\) −5.49782e14 + 3.17417e14i −0.868931 + 0.501677i −0.866993 0.498321i \(-0.833950\pi\)
−0.00193795 + 0.999998i \(0.500617\pi\)
\(294\) 0 0
\(295\) −4.67969e14 + 8.10546e14i −0.710044 + 1.22983i
\(296\) 4.07319e14i 0.605597i
\(297\) 0 0
\(298\) 7.35699e14 1.05052
\(299\) 5.09838e14 + 2.94355e14i 0.713519 + 0.411950i
\(300\) 0 0
\(301\) −2.09361e14 3.62623e14i −0.281511 0.487592i
\(302\) −3.70936e14 + 2.14160e14i −0.488942 + 0.282291i
\(303\) 0 0
\(304\) 9.54608e13 1.65343e14i 0.120944 0.209481i
\(305\) 4.66550e14i 0.579561i
\(306\) 0 0
\(307\) −1.14005e15 −1.36174 −0.680871 0.732403i \(-0.738399\pi\)
−0.680871 + 0.732403i \(0.738399\pi\)
\(308\) −2.40300e14 1.38737e14i −0.281481 0.162513i
\(309\) 0 0
\(310\) −1.53691e14 2.66201e14i −0.173173 0.299944i
\(311\) 6.83695e14 3.94731e14i 0.755614 0.436254i −0.0721048 0.997397i \(-0.522972\pi\)
0.827719 + 0.561143i \(0.189638\pi\)
\(312\) 0 0
\(313\) 5.76629e14 9.98750e14i 0.613240 1.06216i −0.377451 0.926030i \(-0.623199\pi\)
0.990691 0.136133i \(-0.0434673\pi\)
\(314\) 8.35304e14i 0.871498i
\(315\) 0 0
\(316\) 3.83353e14 0.385014
\(317\) 9.76548e14 + 5.63810e14i 0.962361 + 0.555619i 0.896899 0.442236i \(-0.145815\pi\)
0.0654618 + 0.997855i \(0.479148\pi\)
\(318\) 0 0
\(319\) 3.36089e14 + 5.82123e14i 0.318941 + 0.552421i
\(320\) −1.07625e14 + 6.21373e13i −0.100234 + 0.0578699i
\(321\) 0 0
\(322\) 2.15098e14 3.72561e14i 0.192975 0.334243i
\(323\) 1.35024e15i 1.18904i
\(324\) 0 0
\(325\) −2.09756e14 −0.177998
\(326\) 6.91061e14 + 3.98984e14i 0.575719 + 0.332392i
\(327\) 0 0
\(328\) 2.63633e14 + 4.56626e14i 0.211717 + 0.366705i
\(329\) −3.22918e14 + 1.86437e14i −0.254635 + 0.147013i
\(330\) 0 0
\(331\) 6.91154e14 1.19711e15i 0.525541 0.910264i −0.474016 0.880516i \(-0.657196\pi\)
0.999557 0.0297477i \(-0.00947039\pi\)
\(332\) 1.58296e14i 0.118207i
\(333\) 0 0
\(334\) 1.84500e15 1.32898
\(335\) −7.27804e14 4.20198e14i −0.514927 0.297293i
\(336\) 0 0
\(337\) 2.46463e14 + 4.26886e14i 0.168256 + 0.291429i 0.937807 0.347157i \(-0.112853\pi\)
−0.769550 + 0.638586i \(0.779520\pi\)
\(338\) 5.08059e14 2.93328e14i 0.340733 0.196722i
\(339\) 0 0
\(340\) −4.39450e14 + 7.61150e14i −0.284470 + 0.492716i
\(341\) 6.54172e14i 0.416069i
\(342\) 0 0
\(343\) −1.77239e15 −1.08842
\(344\) 3.45643e14 + 1.99557e14i 0.208582 + 0.120425i
\(345\) 0 0
\(346\) 6.93385e14 + 1.20098e15i 0.404127 + 0.699968i
\(347\) 2.19672e15 1.26828e15i 1.25834 0.726504i 0.285590 0.958352i \(-0.407810\pi\)
0.972752 + 0.231848i \(0.0744771\pi\)
\(348\) 0 0
\(349\) −1.16998e15 + 2.02647e15i −0.647481 + 1.12147i 0.336241 + 0.941776i \(0.390844\pi\)
−0.983723 + 0.179694i \(0.942489\pi\)
\(350\) 1.53278e14i 0.0833818i
\(351\) 0 0
\(352\) 2.64481e14 0.139040
\(353\) −9.07166e14 5.23753e14i −0.468855 0.270694i 0.246905 0.969040i \(-0.420586\pi\)
−0.715760 + 0.698346i \(0.753920\pi\)
\(354\) 0 0
\(355\) −2.88041e14 4.98901e14i −0.143908 0.249255i
\(356\) 1.63163e15 9.42025e14i 0.801536 0.462767i
\(357\) 0 0
\(358\) −4.63894e14 + 8.03487e14i −0.220354 + 0.381664i
\(359\) 1.80008e15i 0.840861i −0.907325 0.420431i \(-0.861879\pi\)
0.907325 0.420431i \(-0.138121\pi\)
\(360\) 0 0
\(361\) −1.41314e14 −0.0638472
\(362\) 1.92357e15 + 1.11057e15i 0.854783 + 0.493509i
\(363\) 0 0
\(364\) −5.99578e14 1.03850e15i −0.257773 0.446476i
\(365\) 2.04796e15 1.18239e15i 0.866091 0.500038i
\(366\) 0 0
\(367\) −1.63875e15 + 2.83839e15i −0.670680 + 1.16165i 0.307032 + 0.951699i \(0.400664\pi\)
−0.977712 + 0.209952i \(0.932669\pi\)
\(368\) 4.10052e14i 0.165102i
\(369\) 0 0
\(370\) 2.87738e15 1.12147
\(371\) 2.12937e15 + 1.22939e15i 0.816596 + 0.471462i
\(372\) 0 0
\(373\) 7.38996e14 + 1.27998e15i 0.274403 + 0.475280i 0.969984 0.243167i \(-0.0781864\pi\)
−0.695581 + 0.718448i \(0.744853\pi\)
\(374\) 1.61988e15 9.35237e14i 0.591906 0.341737i
\(375\) 0 0
\(376\) 1.77707e14 3.07797e14i 0.0628893 0.108928i
\(377\) 2.90494e15i 1.01179i
\(378\) 0 0
\(379\) −5.85878e15 −1.97684 −0.988420 0.151741i \(-0.951512\pi\)
−0.988420 + 0.151741i \(0.951512\pi\)
\(380\) −1.16801e15 6.74353e14i −0.387924 0.223968i
\(381\) 0 0
\(382\) −1.00671e15 1.74368e15i −0.323986 0.561160i
\(383\) 1.51358e15 8.73864e14i 0.479526 0.276854i −0.240693 0.970601i \(-0.577375\pi\)
0.720219 + 0.693747i \(0.244041\pi\)
\(384\) 0 0
\(385\) −9.80065e14 + 1.69752e15i −0.300947 + 0.521256i
\(386\) 2.56091e14i 0.0774230i
\(387\) 0 0
\(388\) 2.93664e15 0.860718
\(389\) −1.79778e14 1.03795e14i −0.0518846 0.0299556i 0.473833 0.880615i \(-0.342870\pi\)
−0.525718 + 0.850659i \(0.676203\pi\)
\(390\) 0 0
\(391\) 1.44999e15 + 2.51146e15i 0.405794 + 0.702856i
\(392\) 3.52092e14 2.03280e14i 0.0970375 0.0560246i
\(393\) 0 0
\(394\) 9.77153e14 1.69248e15i 0.261207 0.452424i
\(395\) 2.70808e15i 0.712982i
\(396\) 0 0
\(397\) −4.92065e15 −1.25684 −0.628419 0.777875i \(-0.716297\pi\)
−0.628419 + 0.777875i \(0.716297\pi\)
\(398\) −1.86146e15 1.07472e15i −0.468334 0.270393i
\(399\) 0 0
\(400\) −7.30502e13 1.26527e14i −0.0178345 0.0308903i
\(401\) 5.83715e15 3.37008e15i 1.40389 0.810538i 0.409104 0.912488i \(-0.365841\pi\)
0.994790 + 0.101949i \(0.0325079\pi\)
\(402\) 0 0
\(403\) −1.41356e15 + 2.44836e15i −0.329978 + 0.571538i
\(404\) 1.94034e15i 0.446262i
\(405\) 0 0
\(406\) 2.12277e15 0.473965
\(407\) −5.30322e15 3.06181e15i −1.16674 0.673616i
\(408\) 0 0
\(409\) −2.42365e15 4.19789e15i −0.517763 0.896791i −0.999787 0.0206335i \(-0.993432\pi\)
0.482024 0.876158i \(-0.339902\pi\)
\(410\) 3.22569e15 1.86235e15i 0.679078 0.392066i
\(411\) 0 0
\(412\) 1.89826e15 3.28789e15i 0.388126 0.672254i
\(413\) 6.29039e15i 1.26759i
\(414\) 0 0
\(415\) −1.11824e15 −0.218900
\(416\) 9.89870e14 + 5.71502e14i 0.190993 + 0.110270i
\(417\) 0 0
\(418\) 1.43516e15 + 2.48577e15i 0.269056 + 0.466018i
\(419\) 4.45459e15 2.57186e15i 0.823234 0.475294i −0.0282963 0.999600i \(-0.509008\pi\)
0.851530 + 0.524305i \(0.175675\pi\)
\(420\) 0 0
\(421\) −8.05297e13 + 1.39482e14i −0.0144632 + 0.0250509i −0.873166 0.487422i \(-0.837937\pi\)
0.858703 + 0.512473i \(0.171271\pi\)
\(422\) 1.26221e15i 0.223490i
\(423\) 0 0
\(424\) −2.34365e15 −0.403364
\(425\) −8.94828e14 5.16629e14i −0.151847 0.0876688i
\(426\) 0 0
\(427\) 1.56783e15 + 2.71556e15i 0.258661 + 0.448014i
\(428\) −4.03186e15 + 2.32780e15i −0.655908 + 0.378689i
\(429\) 0 0
\(430\) 1.40971e15 2.44169e15i 0.223007 0.386260i
\(431\) 6.68591e15i 1.04303i −0.853242 0.521515i \(-0.825367\pi\)
0.853242 0.521515i \(-0.174633\pi\)
\(432\) 0 0
\(433\) 5.39263e15 0.818226 0.409113 0.912484i \(-0.365838\pi\)
0.409113 + 0.912484i \(0.365838\pi\)
\(434\) 1.78913e15 + 1.03295e15i 0.267733 + 0.154576i
\(435\) 0 0
\(436\) −2.09411e14 3.62710e14i −0.0304846 0.0528009i
\(437\) −3.85394e15 + 2.22507e15i −0.553371 + 0.319489i
\(438\) 0 0
\(439\) 5.03987e15 8.72931e15i 0.704096 1.21953i −0.262920 0.964818i \(-0.584686\pi\)
0.967017 0.254713i \(-0.0819811\pi\)
\(440\) 1.86834e15i 0.257478i
\(441\) 0 0
\(442\) 8.08360e15 1.08410
\(443\) 8.85904e15 + 5.11477e15i 1.17210 + 0.676712i 0.954174 0.299254i \(-0.0967378\pi\)
0.217925 + 0.975965i \(0.430071\pi\)
\(444\) 0 0
\(445\) −6.65464e15 1.15262e16i −0.856968 1.48431i
\(446\) −4.21393e15 + 2.43291e15i −0.535400 + 0.309113i
\(447\) 0 0
\(448\) 4.17622e14 7.23342e14i 0.0516553 0.0894696i
\(449\) 7.99330e15i 0.975547i 0.872970 + 0.487773i \(0.162191\pi\)
−0.872970 + 0.487773i \(0.837809\pi\)
\(450\) 0 0
\(451\) −7.92692e15 −0.941987
\(452\) −5.02450e14 2.90090e14i −0.0589199 0.0340174i
\(453\) 0 0
\(454\) 6.00638e15 + 1.04034e16i 0.685927 + 1.18806i
\(455\) −7.33616e15 + 4.23553e15i −0.826800 + 0.477353i
\(456\) 0 0
\(457\) −4.13927e15 + 7.16943e15i −0.454388 + 0.787023i −0.998653 0.0518906i \(-0.983475\pi\)
0.544265 + 0.838913i \(0.316809\pi\)
\(458\) 3.57106e15i 0.386905i
\(459\) 0 0
\(460\) 2.89669e15 0.305742
\(461\) 1.09173e16 + 6.30311e15i 1.13739 + 0.656673i 0.945783 0.324799i \(-0.105297\pi\)
0.191607 + 0.981472i \(0.438630\pi\)
\(462\) 0 0
\(463\) 3.48265e15 + 6.03212e15i 0.353528 + 0.612328i 0.986865 0.161548i \(-0.0516486\pi\)
−0.633337 + 0.773876i \(0.718315\pi\)
\(464\) −1.75229e15 + 1.01168e15i −0.175589 + 0.101376i
\(465\) 0 0
\(466\) 7.07322e15 1.22512e16i 0.690720 1.19636i
\(467\) 1.26089e16i 1.21556i 0.794106 + 0.607779i \(0.207939\pi\)
−0.794106 + 0.607779i \(0.792061\pi\)
\(468\) 0 0
\(469\) 5.64826e15 0.530734
\(470\) −2.17434e15 1.25536e15i −0.201716 0.116461i
\(471\) 0 0
\(472\) 2.99792e15 + 5.19254e15i 0.271124 + 0.469600i
\(473\) −5.19640e15 + 3.00014e15i −0.464019 + 0.267901i
\(474\) 0 0
\(475\) 7.92787e14 1.37315e15i 0.0690232 0.119552i
\(476\) 5.90704e15i 0.507842i
\(477\) 0 0
\(478\) 1.21736e16 1.02059
\(479\) 3.32071e15 + 1.91721e15i 0.274927 + 0.158729i 0.631125 0.775681i \(-0.282594\pi\)
−0.356197 + 0.934411i \(0.615927\pi\)
\(480\) 0 0
\(481\) −1.32322e16 2.29188e16i −1.06847 1.85064i
\(482\) 8.16849e15 4.71608e15i 0.651418 0.376096i
\(483\) 0 0
\(484\) 1.22565e15 2.12288e15i 0.0953439 0.165141i
\(485\) 2.07450e16i 1.59391i
\(486\) 0 0
\(487\) 1.99630e15 0.149641 0.0748207 0.997197i \(-0.476162\pi\)
0.0748207 + 0.997197i \(0.476162\pi\)
\(488\) −2.58840e15 1.49441e15i −0.191651 0.110650i
\(489\) 0 0
\(490\) −1.43601e15 2.48725e15i −0.103748 0.179698i
\(491\) −5.72082e15 + 3.30292e15i −0.408290 + 0.235727i −0.690055 0.723757i \(-0.742414\pi\)
0.281764 + 0.959484i \(0.409080\pi\)
\(492\) 0 0
\(493\) −7.15486e15 + 1.23926e16i −0.498333 + 0.863139i
\(494\) 1.24046e16i 0.853534i
\(495\) 0 0
\(496\) −1.96916e15 −0.132249
\(497\) 3.35309e15 + 1.93591e15i 0.222488 + 0.128454i
\(498\) 0 0
\(499\) −1.00653e16 1.74336e16i −0.651963 1.12923i −0.982646 0.185491i \(-0.940612\pi\)
0.330683 0.943742i \(-0.392721\pi\)
\(500\) −7.15841e15 + 4.13291e15i −0.458138 + 0.264506i
\(501\) 0 0
\(502\) 4.79140e15 8.29895e15i 0.299392 0.518562i
\(503\) 1.72099e16i 1.06260i 0.847184 + 0.531300i \(0.178296\pi\)
−0.847184 + 0.531300i \(0.821704\pi\)
\(504\) 0 0
\(505\) −1.37070e16 −0.826404
\(506\) −5.33881e15 3.08236e15i −0.318084 0.183646i
\(507\) 0 0
\(508\) −3.37827e15 5.85134e15i −0.196568 0.340465i
\(509\) −1.39053e16 + 8.02821e15i −0.799600 + 0.461649i −0.843331 0.537394i \(-0.819409\pi\)
0.0437313 + 0.999043i \(0.486075\pi\)
\(510\) 0 0
\(511\) −7.94677e15 + 1.37642e16i −0.446339 + 0.773082i
\(512\) 7.96131e14i 0.0441942i
\(513\) 0 0
\(514\) −1.42024e16 −0.770165
\(515\) −2.32263e16 1.34097e16i −1.24490 0.718746i
\(516\) 0 0
\(517\) 2.67165e15 + 4.62743e15i 0.139906 + 0.242324i
\(518\) −1.67478e16 + 9.66935e15i −0.866920 + 0.500517i
\(519\) 0 0
\(520\) 4.03720e15 6.99263e15i 0.204202 0.353688i
\(521\) 2.27894e16i 1.13948i 0.821825 + 0.569740i \(0.192956\pi\)
−0.821825 + 0.569740i \(0.807044\pi\)
\(522\) 0 0
\(523\) −2.36146e16 −1.15390 −0.576952 0.816778i \(-0.695758\pi\)
−0.576952 + 0.816778i \(0.695758\pi\)
\(524\) 1.23709e16 + 7.14236e15i 0.597606 + 0.345028i
\(525\) 0 0
\(526\) 1.04509e16 + 1.81014e16i 0.493444 + 0.854670i
\(527\) −1.20606e16 + 6.96320e15i −0.562997 + 0.325046i
\(528\) 0 0
\(529\) −6.17841e15 + 1.07013e16i −0.281931 + 0.488319i
\(530\) 1.65560e16i 0.746964i
\(531\) 0 0
\(532\) 9.06459e15 0.399833
\(533\) −2.96680e16 1.71288e16i −1.29397 0.747075i
\(534\) 0 0
\(535\) 1.64440e16 + 2.84818e16i 0.701269 + 1.21463i
\(536\) −4.66248e15 + 2.69188e15i −0.196620 + 0.113519i
\(537\) 0 0
\(538\) 3.16906e15 5.48897e15i 0.130688 0.226359i
\(539\) 6.11224e15i 0.249269i
\(540\) 0 0
\(541\) 1.91409e16 0.763449 0.381724 0.924276i \(-0.375330\pi\)
0.381724 + 0.924276i \(0.375330\pi\)
\(542\) −6.97678e15 4.02805e15i −0.275207 0.158891i
\(543\) 0 0
\(544\) 2.81522e15 + 4.87610e15i 0.108622 + 0.188139i
\(545\) −2.56226e15 + 1.47932e15i −0.0977785 + 0.0564525i
\(546\) 0 0
\(547\) 4.53225e15 7.85009e15i 0.169196 0.293056i −0.768941 0.639319i \(-0.779216\pi\)
0.938137 + 0.346263i \(0.112550\pi\)
\(548\) 5.57452e15i 0.205837i
\(549\) 0 0
\(550\) 2.19648e15 0.0793506
\(551\) −1.90169e16 1.09794e16i −0.679564 0.392347i
\(552\) 0 0
\(553\) 9.10043e15 + 1.57624e16i 0.318208 + 0.551152i
\(554\) 2.12123e16 1.22469e16i 0.733717 0.423612i
\(555\) 0 0
\(556\) −1.02918e16 + 1.78260e16i −0.348373 + 0.603399i
\(557\) 2.68418e16i 0.898837i 0.893321 + 0.449419i \(0.148369\pi\)
−0.893321 + 0.449419i \(0.851631\pi\)
\(558\) 0 0
\(559\) −2.59313e16 −0.849873
\(560\) −5.10982e15 2.95016e15i −0.165683 0.0956571i
\(561\) 0 0
\(562\) −1.37478e16 2.38119e16i −0.436331 0.755748i
\(563\) −1.00983e16 + 5.83025e15i −0.317101 + 0.183078i −0.650100 0.759849i \(-0.725273\pi\)
0.332999 + 0.942927i \(0.391939\pi\)
\(564\) 0 0
\(565\) −2.04925e15 + 3.54940e15i −0.0629947 + 0.109110i
\(566\) 2.22746e15i 0.0677503i
\(567\) 0 0
\(568\) −3.69051e15 −0.109900
\(569\) −1.76847e16 1.02103e16i −0.521104 0.300860i 0.216282 0.976331i \(-0.430607\pi\)
−0.737386 + 0.675471i \(0.763940\pi\)
\(570\) 0 0
\(571\) 4.38932e15 + 7.60252e15i 0.126643 + 0.219352i 0.922374 0.386298i \(-0.126246\pi\)
−0.795731 + 0.605650i \(0.792913\pi\)
\(572\) −1.48817e16 + 8.59196e15i −0.424890 + 0.245311i
\(573\) 0 0
\(574\) −1.25168e16 + 2.16797e16i −0.349962 + 0.606153i
\(575\) 3.40542e15i 0.0942245i
\(576\) 0 0
\(577\) 3.12644e16 0.847219 0.423609 0.905845i \(-0.360763\pi\)
0.423609 + 0.905845i \(0.360763\pi\)
\(578\) 1.16509e16 + 6.72666e15i 0.312459 + 0.180398i
\(579\) 0 0
\(580\) 7.14672e15 + 1.23785e16i 0.187732 + 0.325162i
\(581\) 6.50870e15 3.75780e15i 0.169215 0.0976961i
\(582\) 0 0
\(583\) 1.76172e16 3.05139e16i 0.448669 0.777117i
\(584\) 1.51493e16i 0.381870i
\(585\) 0 0
\(586\) 2.87293e16 0.709479
\(587\) 1.38519e16 + 7.99742e15i 0.338596 + 0.195488i 0.659651 0.751572i \(-0.270704\pi\)
−0.321055 + 0.947061i \(0.604037\pi\)
\(588\) 0 0
\(589\) −1.06853e16 1.85075e16i −0.255915 0.443257i
\(590\) 3.66811e16 2.11779e16i 0.869622 0.502077i
\(591\) 0 0
\(592\) 9.21657e15 1.59636e16i 0.214111 0.370851i
\(593\) 2.23212e16i 0.513322i 0.966501 + 0.256661i \(0.0826224\pi\)
−0.966501 + 0.256661i \(0.917378\pi\)
\(594\) 0 0
\(595\) −4.17285e16 −0.940439
\(596\) −2.88334e16 1.66470e16i −0.643307 0.371413i
\(597\) 0 0
\(598\) −1.33210e16 2.30727e16i −0.291293 0.504534i
\(599\) −2.09928e16 + 1.21202e16i −0.454475 + 0.262391i −0.709718 0.704485i \(-0.751178\pi\)
0.255243 + 0.966877i \(0.417845\pi\)
\(600\) 0 0
\(601\) −3.65059e16 + 6.32300e16i −0.774669 + 1.34177i 0.160312 + 0.987066i \(0.448750\pi\)
−0.934980 + 0.354699i \(0.884583\pi\)
\(602\) 1.89492e16i 0.398117i
\(603\) 0 0
\(604\) 1.93835e16 0.399219
\(605\) −1.49964e16 8.65820e15i −0.305813 0.176561i
\(606\) 0 0
\(607\) 2.61136e16 + 4.52301e16i 0.522077 + 0.904265i 0.999670 + 0.0256833i \(0.00817616\pi\)
−0.477593 + 0.878581i \(0.658491\pi\)
\(608\) −7.48256e15 + 4.32006e15i −0.148125 + 0.0855201i
\(609\) 0 0
\(610\) −1.05568e16 + 1.82849e16i −0.204906 + 0.354907i
\(611\) 2.30920e16i 0.443828i
\(612\) 0 0
\(613\) 8.18124e16 1.54190 0.770950 0.636895i \(-0.219782\pi\)
0.770950 + 0.636895i \(0.219782\pi\)
\(614\) 4.46808e16 + 2.57965e16i 0.833893 + 0.481449i
\(615\) 0 0
\(616\) 6.27852e15 + 1.08747e16i 0.114914 + 0.199037i
\(617\) −6.09006e16 + 3.51610e16i −1.10385 + 0.637309i −0.937230 0.348712i \(-0.886619\pi\)
−0.166622 + 0.986021i \(0.553286\pi\)
\(618\) 0 0
\(619\) 2.93637e16 5.08594e16i 0.521995 0.904122i −0.477677 0.878535i \(-0.658521\pi\)
0.999673 0.0255868i \(-0.00814543\pi\)
\(620\) 1.39106e16i 0.244903i
\(621\) 0 0
\(622\) −3.57270e16 −0.616956
\(623\) 7.74669e16 + 4.47255e16i 1.32491 + 0.764939i
\(624\) 0 0
\(625\) 2.49436e16 + 4.32035e16i 0.418484 + 0.724835i
\(626\) −4.51983e16 + 2.60952e16i −0.751062 + 0.433626i
\(627\) 0 0
\(628\) −1.89008e16 + 3.27371e16i −0.308121 + 0.533682i
\(629\) 1.30364e17i 2.10500i
\(630\) 0 0
\(631\) −7.07787e16 −1.12131 −0.560656 0.828049i \(-0.689451\pi\)
−0.560656 + 0.828049i \(0.689451\pi\)
\(632\) −1.50243e16 8.67429e15i −0.235772 0.136123i
\(633\) 0 0
\(634\) −2.55151e16 4.41935e16i −0.392882 0.680492i
\(635\) −4.13350e16 + 2.38648e16i −0.630486 + 0.364011i
\(636\) 0 0
\(637\) −1.32076e16 + 2.28762e16i −0.197691 + 0.342411i
\(638\) 3.04193e16i 0.451050i
\(639\) 0 0
\(640\) 5.62403e15 0.0818403
\(641\) 7.18335e15 + 4.14731e15i 0.103557 + 0.0597886i 0.550884 0.834582i \(-0.314291\pi\)
−0.447327 + 0.894370i \(0.647624\pi\)
\(642\) 0 0
\(643\) −4.02701e16 6.97498e16i −0.569792 0.986909i −0.996586 0.0825600i \(-0.973690\pi\)
0.426794 0.904349i \(-0.359643\pi\)
\(644\) −1.68602e16 + 9.73424e15i −0.236346 + 0.136454i
\(645\) 0 0
\(646\) −3.05525e16 + 5.29185e16i −0.420390 + 0.728136i
\(647\) 7.39646e16i 1.00832i 0.863610 + 0.504160i \(0.168198\pi\)
−0.863610 + 0.504160i \(0.831802\pi\)
\(648\) 0 0
\(649\) −9.01414e16 −1.20630
\(650\) 8.22073e15 + 4.74624e15i 0.109001 + 0.0629317i
\(651\) 0 0
\(652\) −1.80560e16 3.12738e16i −0.235036 0.407095i
\(653\) 9.93720e16 5.73725e16i 1.28170 0.739988i 0.304538 0.952500i \(-0.401498\pi\)
0.977158 + 0.212513i \(0.0681647\pi\)
\(654\) 0 0
\(655\) 5.04550e16 8.73907e16i 0.638935 1.10667i
\(656\) 2.38613e16i 0.299414i
\(657\) 0 0
\(658\) 1.68744e16 0.207908
\(659\) 1.51010e16 + 8.71858e15i 0.184371 + 0.106447i 0.589345 0.807882i \(-0.299386\pi\)
−0.404973 + 0.914328i \(0.632719\pi\)
\(660\) 0 0
\(661\) −1.73419e16 3.00371e16i −0.207916 0.360121i 0.743142 0.669134i \(-0.233335\pi\)
−0.951058 + 0.309013i \(0.900001\pi\)
\(662\) −5.41752e16 + 3.12780e16i −0.643654 + 0.371614i
\(663\) 0 0
\(664\) −3.58184e15 + 6.20392e15i −0.0417924 + 0.0723866i
\(665\) 6.40340e16i 0.740424i
\(666\) 0 0
\(667\) 4.71621e16 0.535597
\(668\) −7.23089e16 4.17475e16i −0.813828 0.469864i
\(669\) 0 0
\(670\) 1.90160e16 + 3.29366e16i 0.210218 + 0.364108i
\(671\) 3.89140e16 2.24670e16i 0.426354 0.246156i
\(672\) 0 0
\(673\) 1.33393e16 2.31043e16i 0.143563 0.248658i −0.785273 0.619149i \(-0.787478\pi\)
0.928836 + 0.370492i \(0.120811\pi\)
\(674\) 2.23073e16i 0.237951i
\(675\) 0 0
\(676\) −2.65490e16 −0.278207
\(677\) 3.99632e16 + 2.30728e16i 0.415076 + 0.239645i 0.692969 0.720968i \(-0.256302\pi\)
−0.277892 + 0.960612i \(0.589636\pi\)
\(678\) 0 0
\(679\) 6.97130e16 + 1.20747e17i 0.711370 + 1.23213i
\(680\) 3.44457e16 1.98872e16i 0.348403 0.201150i
\(681\) 0 0
\(682\) 1.48022e16 2.56382e16i 0.147103 0.254789i
\(683\) 1.03018e17i 1.01482i −0.861706 0.507408i \(-0.830604\pi\)
0.861706 0.507408i \(-0.169396\pi\)
\(684\) 0 0
\(685\) 3.93795e16 0.381177
\(686\) 6.94633e16 + 4.01047e16i 0.666516 + 0.384813i
\(687\) 0 0
\(688\) −9.03092e15 1.56420e16i −0.0851532 0.147490i
\(689\) 1.31871e17 7.61360e16i 1.23264 0.711664i
\(690\) 0 0
\(691\) 7.44211e16 1.28901e17i 0.683640 1.18410i −0.290221 0.956959i \(-0.593729\pi\)
0.973862 0.227141i \(-0.0729377\pi\)
\(692\) 6.27580e16i 0.571522i
\(693\) 0 0
\(694\) −1.14792e17 −1.02743
\(695\) 1.25926e17 + 7.27035e16i 1.11740 + 0.645129i
\(696\) 0 0
\(697\) −8.43765e16 1.46144e17i −0.735911 1.27463i
\(698\) 9.17076e16 5.29474e16i 0.792999 0.457838i
\(699\) 0 0
\(700\) 3.46828e15 6.00724e15i 0.0294799 0.0510607i
\(701\) 9.48887e15i 0.0799662i 0.999200 + 0.0399831i \(0.0127304\pi\)
−0.999200 + 0.0399831i \(0.987270\pi\)
\(702\) 0 0
\(703\) 2.00048e17 1.65730
\(704\) −1.03655e16 5.98452e15i −0.0851440 0.0491579i
\(705\) 0 0
\(706\) 2.37023e16 + 4.10537e16i 0.191409 + 0.331531i
\(707\) 7.97815e16 4.60619e16i 0.638830 0.368829i
\(708\) 0 0
\(709\) 8.47181e16 1.46736e17i 0.666959 1.15521i −0.311791 0.950151i \(-0.600929\pi\)
0.978750 0.205056i \(-0.0657377\pi\)
\(710\) 2.60705e16i 0.203516i
\(711\) 0 0
\(712\) −8.52623e16 −0.654451
\(713\) 3.97495e16 + 2.29494e16i 0.302548 + 0.174676i
\(714\) 0 0
\(715\) 6.06953e16 + 1.05127e17i 0.454275 + 0.786827i
\(716\) 3.63617e16 2.09934e16i 0.269877 0.155814i
\(717\) 0 0
\(718\) −4.07311e16 + 7.05483e16i −0.297289 + 0.514920i
\(719\) 1.16432e16i 0.0842754i 0.999112 + 0.0421377i \(0.0134168\pi\)
−0.999112 + 0.0421377i \(0.986583\pi\)
\(720\) 0 0
\(721\) 1.80252e17 1.28312
\(722\) 5.53835e15 + 3.19757e15i 0.0390983 + 0.0225734i
\(723\) 0 0
\(724\) −5.02587e16 8.70507e16i −0.348964 0.604423i
\(725\) −1.45525e16 + 8.40187e15i −0.100209 + 0.0578560i
\(726\) 0 0
\(727\) −2.28530e16 + 3.95826e16i −0.154788 + 0.268101i −0.932982 0.359923i \(-0.882803\pi\)
0.778194 + 0.628024i \(0.216136\pi\)
\(728\) 5.42676e16i 0.364546i
\(729\) 0 0
\(730\) −1.07018e17 −0.707160
\(731\) −1.10624e17 6.38688e16i −0.725012 0.418586i
\(732\) 0 0
\(733\) 1.04080e16 + 1.80272e16i 0.0671032 + 0.116226i 0.897625 0.440760i \(-0.145291\pi\)
−0.830522 + 0.556986i \(0.811958\pi\)
\(734\) 1.28451e17 7.41612e16i 0.821412 0.474242i
\(735\) 0 0
\(736\) 9.27842e15 1.60707e16i 0.0583723 0.101104i
\(737\) 8.09396e16i 0.505075i
\(738\) 0 0
\(739\) 2.08350e17 1.27917 0.639584 0.768721i \(-0.279107\pi\)
0.639584 + 0.768721i \(0.279107\pi\)
\(740\) −1.12770e17 6.51076e16i −0.686755 0.396498i
\(741\) 0 0
\(742\) −5.56359e16 9.63642e16i −0.333374 0.577421i
\(743\) 2.70067e17 1.55923e17i 1.60523 0.926783i 0.614818 0.788669i \(-0.289229\pi\)
0.990416 0.138114i \(-0.0441040\pi\)
\(744\) 0 0
\(745\) −1.17597e17 + 2.03685e17i −0.687797 + 1.19130i
\(746\) 6.68863e16i 0.388065i
\(747\) 0 0
\(748\) −8.46480e16 −0.483289
\(749\) −1.91425e17 1.10519e17i −1.08420 0.625961i
\(750\) 0 0
\(751\) −1.30877e17 2.26686e17i −0.729499 1.26353i −0.957095 0.289774i \(-0.906420\pi\)
0.227596 0.973756i \(-0.426914\pi\)
\(752\) −1.39293e16 + 8.04209e15i −0.0770234 + 0.0444695i
\(753\) 0 0
\(754\) 6.57313e16 1.13850e17i 0.357721 0.619590i
\(755\) 1.36929e17i 0.739289i
\(756\) 0 0
\(757\) 1.02581e17 0.545119 0.272559 0.962139i \(-0.412130\pi\)
0.272559 + 0.962139i \(0.412130\pi\)
\(758\) 2.29616e17 + 1.32569e17i 1.21056 + 0.698919i
\(759\) 0 0
\(760\) 3.05177e16 + 5.28583e16i 0.158369 + 0.274304i
\(761\) −1.48043e16 + 8.54727e15i −0.0762220 + 0.0440068i −0.537627 0.843183i \(-0.680679\pi\)
0.461405 + 0.887190i \(0.347346\pi\)
\(762\) 0 0
\(763\) 9.94243e15 1.72208e16i 0.0503901 0.0872782i
\(764\) 9.11173e16i 0.458185i