Properties

Label 162.12.c.i
Level $162$
Weight $12$
Character orbit 162.c
Analytic conductor $124.472$
Analytic rank $1$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [162,12,Mod(55,162)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(162, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4]))
 
N = Newforms(chi, 12, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("162.55");
 
S:= CuspForms(chi, 12);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 162 = 2 \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 12 \)
Character orbit: \([\chi]\) \(=\) 162.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(124.471595251\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{25}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 6)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - 32 \zeta_{6} + 32) q^{2} - 1024 \zeta_{6} q^{4} + 3630 \zeta_{6} q^{5} + (32936 \zeta_{6} - 32936) q^{7} - 32768 q^{8} + 116160 q^{10} + (758748 \zeta_{6} - 758748) q^{11} + 2482858 \zeta_{6} q^{13} + \cdots + 28561492704 q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 32 q^{2} - 1024 q^{4} + 3630 q^{5} - 32936 q^{7} - 65536 q^{8} + 232320 q^{10} - 758748 q^{11} + 2482858 q^{13} + 1053952 q^{14} - 1048576 q^{16} - 16580772 q^{17} - 21734600 q^{19} + 3717120 q^{20}+ \cdots + 57122985408 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/162\mathbb{Z}\right)^\times\).

\(n\) \(83\)
\(\chi(n)\) \(-\zeta_{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
55.1
0.500000 + 0.866025i
0.500000 0.866025i
16.0000 27.7128i 0 −512.000 886.810i 1815.00 + 3143.67i 0 −16468.0 + 28523.4i −32768.0 0 116160.
109.1 16.0000 + 27.7128i 0 −512.000 + 886.810i 1815.00 3143.67i 0 −16468.0 28523.4i −32768.0 0 116160.
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
9.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 162.12.c.i 2
3.b odd 2 1 162.12.c.b 2
9.c even 3 1 18.12.a.a 1
9.c even 3 1 inner 162.12.c.i 2
9.d odd 6 1 6.12.a.c 1
9.d odd 6 1 162.12.c.b 2
36.f odd 6 1 144.12.a.e 1
36.h even 6 1 48.12.a.d 1
45.h odd 6 1 150.12.a.a 1
45.l even 12 2 150.12.c.e 2
72.j odd 6 1 192.12.a.c 1
72.l even 6 1 192.12.a.m 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
6.12.a.c 1 9.d odd 6 1
18.12.a.a 1 9.c even 3 1
48.12.a.d 1 36.h even 6 1
144.12.a.e 1 36.f odd 6 1
150.12.a.a 1 45.h odd 6 1
150.12.c.e 2 45.l even 12 2
162.12.c.b 2 3.b odd 2 1
162.12.c.b 2 9.d odd 6 1
162.12.c.i 2 1.a even 1 1 trivial
162.12.c.i 2 9.c even 3 1 inner
192.12.a.c 1 72.j odd 6 1
192.12.a.m 1 72.l even 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{2} - 3630T_{5} + 13176900 \) acting on \(S_{12}^{\mathrm{new}}(162, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} - 32T + 1024 \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} - 3630 T + 13176900 \) Copy content Toggle raw display
$7$ \( T^{2} + \cdots + 1084780096 \) Copy content Toggle raw display
$11$ \( T^{2} + \cdots + 575698527504 \) Copy content Toggle raw display
$13$ \( T^{2} + \cdots + 6164583848164 \) Copy content Toggle raw display
$17$ \( (T + 8290386)^{2} \) Copy content Toggle raw display
$19$ \( (T + 10867300)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} + \cdots + 421861694289984 \) Copy content Toggle raw display
$29$ \( T^{2} + \cdots + 830278291702500 \) Copy content Toggle raw display
$31$ \( T^{2} + \cdots + 22\!\cdots\!64 \) Copy content Toggle raw display
$37$ \( (T + 319891714)^{2} \) Copy content Toggle raw display
$41$ \( T^{2} + \cdots + 13\!\cdots\!04 \) Copy content Toggle raw display
$43$ \( T^{2} + \cdots + 38\!\cdots\!84 \) Copy content Toggle raw display
$47$ \( T^{2} + \cdots + 76\!\cdots\!36 \) Copy content Toggle raw display
$53$ \( (T - 268284258)^{2} \) Copy content Toggle raw display
$59$ \( T^{2} + \cdots + 27\!\cdots\!00 \) Copy content Toggle raw display
$61$ \( T^{2} + \cdots + 60\!\cdots\!04 \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots + 34\!\cdots\!36 \) Copy content Toggle raw display
$71$ \( (T - 8346990888)^{2} \) Copy content Toggle raw display
$73$ \( (T - 19641746522)^{2} \) Copy content Toggle raw display
$79$ \( T^{2} + \cdots + 34\!\cdots\!00 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots + 72\!\cdots\!84 \) Copy content Toggle raw display
$89$ \( (T + 75527864010)^{2} \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots + 67\!\cdots\!36 \) Copy content Toggle raw display
show more
show less