Properties

Label 162.12.c.g
Level $162$
Weight $12$
Character orbit 162.c
Analytic conductor $124.472$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [162,12,Mod(55,162)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("162.55"); S:= CuspForms(chi, 12); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(162, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4])) N = Newforms(chi, 12, names="a")
 
Level: \( N \) \(=\) \( 162 = 2 \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 12 \)
Character orbit: \([\chi]\) \(=\) 162.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,32,0,-1024,-5766] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(124.471595251\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{25}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 6)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - 32 \zeta_{6} + 32) q^{2} - 1024 \zeta_{6} q^{4} - 5766 \zeta_{6} q^{5} + (72464 \zeta_{6} - 72464) q^{7} - 32768 q^{8} - 184512 q^{10} + ( - 408948 \zeta_{6} + 408948) q^{11} - 1367558 \zeta_{6} q^{13} + \cdots - 104758545696 q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 32 q^{2} - 1024 q^{4} - 5766 q^{5} - 72464 q^{7} - 65536 q^{8} - 369024 q^{10} + 408948 q^{11} - 1367558 q^{13} + 2318848 q^{14} - 1048576 q^{16} + 10845828 q^{17} + 30332200 q^{19} - 5904384 q^{20}+ \cdots - 209517091392 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/162\mathbb{Z}\right)^\times\).

\(n\) \(83\)
\(\chi(n)\) \(-\zeta_{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
55.1
0.500000 + 0.866025i
0.500000 0.866025i
16.0000 27.7128i 0 −512.000 886.810i −2883.00 4993.50i 0 −36232.0 + 62755.7i −32768.0 0 −184512.
109.1 16.0000 + 27.7128i 0 −512.000 + 886.810i −2883.00 + 4993.50i 0 −36232.0 62755.7i −32768.0 0 −184512.
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
9.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 162.12.c.g 2
3.b odd 2 1 162.12.c.d 2
9.c even 3 1 6.12.a.a 1
9.c even 3 1 inner 162.12.c.g 2
9.d odd 6 1 18.12.a.c 1
9.d odd 6 1 162.12.c.d 2
36.f odd 6 1 48.12.a.h 1
36.h even 6 1 144.12.a.b 1
45.j even 6 1 150.12.a.g 1
45.k odd 12 2 150.12.c.f 2
72.n even 6 1 192.12.a.l 1
72.p odd 6 1 192.12.a.b 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
6.12.a.a 1 9.c even 3 1
18.12.a.c 1 9.d odd 6 1
48.12.a.h 1 36.f odd 6 1
144.12.a.b 1 36.h even 6 1
150.12.a.g 1 45.j even 6 1
150.12.c.f 2 45.k odd 12 2
162.12.c.d 2 3.b odd 2 1
162.12.c.d 2 9.d odd 6 1
162.12.c.g 2 1.a even 1 1 trivial
162.12.c.g 2 9.c even 3 1 inner
192.12.a.b 1 72.p odd 6 1
192.12.a.l 1 72.n even 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{2} + 5766T_{5} + 33246756 \) acting on \(S_{12}^{\mathrm{new}}(162, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} - 32T + 1024 \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + 5766 T + 33246756 \) Copy content Toggle raw display
$7$ \( T^{2} + \cdots + 5251031296 \) Copy content Toggle raw display
$11$ \( T^{2} + \cdots + 167238466704 \) Copy content Toggle raw display
$13$ \( T^{2} + \cdots + 1870214883364 \) Copy content Toggle raw display
$17$ \( (T - 5422914)^{2} \) Copy content Toggle raw display
$19$ \( (T - 15166100)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} + \cdots + 27\!\cdots\!84 \) Copy content Toggle raw display
$29$ \( T^{2} + \cdots + 14\!\cdots\!00 \) Copy content Toggle raw display
$31$ \( T^{2} + \cdots + 33\!\cdots\!64 \) Copy content Toggle raw display
$37$ \( (T + 375985186)^{2} \) Copy content Toggle raw display
$41$ \( T^{2} + \cdots + 73\!\cdots\!04 \) Copy content Toggle raw display
$43$ \( T^{2} + \cdots + 15\!\cdots\!84 \) Copy content Toggle raw display
$47$ \( T^{2} + \cdots + 17\!\cdots\!36 \) Copy content Toggle raw display
$53$ \( (T - 409556358)^{2} \) Copy content Toggle raw display
$59$ \( T^{2} + \cdots + 83\!\cdots\!00 \) Copy content Toggle raw display
$61$ \( T^{2} + \cdots + 32\!\cdots\!04 \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots + 15\!\cdots\!36 \) Copy content Toggle raw display
$71$ \( (T + 9075890088)^{2} \) Copy content Toggle raw display
$73$ \( (T + 15571822822)^{2} \) Copy content Toggle raw display
$79$ \( T^{2} + \cdots + 91\!\cdots\!00 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots + 53\!\cdots\!84 \) Copy content Toggle raw display
$89$ \( (T + 25614819990)^{2} \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots + 38\!\cdots\!36 \) Copy content Toggle raw display
show more
show less