[N,k,chi] = [162,11,Mod(161,162)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(162, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1]))
N = Newforms(chi, 11, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("162.161");
S:= CuspForms(chi, 11);
N := Newforms(S);
Newform invariants
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/162\mathbb{Z}\right)^\times\).
\(n\)
\(83\)
\(\chi(n)\)
\(-1\)
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
\( T_{5}^{8} + 25269480 T_{5}^{6} + 186112230469650 T_{5}^{4} + \cdots + 12\!\cdots\!25 \)
T5^8 + 25269480*T5^6 + 186112230469650*T5^4 + 430003709146493217000*T5^2 + 121193620216814794671050625
acting on \(S_{11}^{\mathrm{new}}(162, [\chi])\).
$p$
$F_p(T)$
$2$
\( (T^{2} + 512)^{4} \)
(T^2 + 512)^4
$3$
\( T^{8} \)
T^8
$5$
\( T^{8} + 25269480 T^{6} + \cdots + 12\!\cdots\!25 \)
T^8 + 25269480*T^6 + 186112230469650*T^4 + 430003709146493217000*T^2 + 121193620216814794671050625
$7$
\( (T^{4} - 22556 T^{3} + \cdots + 48\!\cdots\!16)^{2} \)
(T^4 - 22556*T^3 - 357569328*T^2 + 5695451743576*T + 48787904203271716)^2
$11$
\( T^{8} + 31767096888 T^{6} + \cdots + 73\!\cdots\!96 \)
T^8 + 31767096888*T^6 + 306341667045902979864*T^4 + 990080388805722591962725931232*T^2 + 736433664296998687872513920683631943696
$13$
\( (T^{4} + 360724 T^{3} + \cdots + 53\!\cdots\!69)^{2} \)
(T^4 + 360724*T^3 - 220025784450*T^2 - 31086681368562428*T + 5304777268660514803369)^2
$17$
\( T^{8} + 6373282768344 T^{6} + \cdots + 97\!\cdots\!41 \)
T^8 + 6373282768344*T^6 + 10308798331495033069954242*T^4 + 4109337679806421154703938481527004696*T^2 + 9799008040590932862420781727710213044506883441
$19$
\( (T^{4} + 365596 T^{3} + \cdots + 17\!\cdots\!24)^{2} \)
(T^4 + 365596*T^3 - 13896168890880*T^2 + 8999119346700464968*T + 17835202987715541425454724)^2
$23$
\( T^{8} + 164231561749320 T^{6} + \cdots + 79\!\cdots\!00 \)
T^8 + 164231561749320*T^6 + 8995794285925474154766869400*T^4 + 165840875863215680167210139787459664308000*T^2 + 79930452230789277492173401711195586671838992133610000
$29$
\( T^{8} + \cdots + 11\!\cdots\!61 \)
T^8 + 1043295419241432*T^6 + 325874040517596843939493055394*T^4 + 37249150872811652947297204155237869804717208*T^2 + 1184956998947823863249962131877657931317924225938048007761
$31$
\( (T^{4} - 36251264 T^{3} + \cdots + 47\!\cdots\!96)^{2} \)
(T^4 - 36251264*T^3 - 943076317372248*T^2 + 26528878493818715144704*T + 47318541434018119088483498896)^2
$37$
\( (T^{4} + 83476120 T^{3} + \cdots - 45\!\cdots\!91)^{2} \)
(T^4 + 83476120*T^3 - 4097318088176526*T^2 - 99450252674456645753960*T - 457638570748692177486258588191)^2
$41$
\( T^{8} + \cdots + 86\!\cdots\!56 \)
T^8 + 54481141521666072*T^6 + 717845879247746857268181524048088*T^4 + 1585546050804366354306511664504200084558910006112*T^2 + 866795852494200714756404998623162277322895517495518703935530256
$43$
\( (T^{4} + 6255220 T^{3} + \cdots + 35\!\cdots\!64)^{2} \)
(T^4 + 6255220*T^3 - 26499456879538944*T^2 + 122184131302232680532440*T + 35315023403383605764840474640964)^2
$47$
\( T^{8} + \cdots + 26\!\cdots\!56 \)
T^8 + 115770789499283424*T^6 + 1538488913033925857987334357145632*T^4 + 1340965024742524619687979806897933776308618825216*T^2 + 260156067445280290863036969214160306318738344970425588529869056
$53$
\( T^{8} + \cdots + 50\!\cdots\!36 \)
T^8 + 556268999163619032*T^6 + 90562312158571891907645362898862168*T^4 + 4254357244238874625447307426040694290011567174870112*T^2 + 50665372446916394342533325076710695138768507776884345576376754507536
$59$
\( T^{8} + \cdots + 64\!\cdots\!76 \)
T^8 + 1621756049877288864*T^6 + 788484413744997593905906222987114272*T^4 + 135729199587274561324236946297509707506323883268921856*T^2 + 6435259129156476451660845515539771920712237032180462406935227340677376
$61$
\( (T^{4} + 891136624 T^{3} + \cdots + 65\!\cdots\!81)^{2} \)
(T^4 + 891136624*T^3 - 1894367751033836838*T^2 - 1137096879266757688076701904*T + 659413015639258133429001752353399081)^2
$67$
\( (T^{4} - 54371828 T^{3} + \cdots - 90\!\cdots\!04)^{2} \)
(T^4 - 54371828*T^3 - 342269457008984112*T^2 + 109151403921696852245801992*T - 9055134049063675831520211935551004)^2
$71$
\( T^{8} + \cdots + 14\!\cdots\!56 \)
T^8 + 14269932028767427848*T^6 + 46389806939471165830110138843866893848*T^4 + 50750974084275138256492354792930509927982215854220368928*T^2 + 14822765023439680115566427370500765495120807872956122465297418483646883856
$73$
\( (T^{4} - 2551117184 T^{3} + \cdots + 36\!\cdots\!61)^{2} \)
(T^4 - 2551117184*T^3 - 5146169910955900374*T^2 + 9933184286973418422684320896*T + 363857302679591793555707227959109561)^2
$79$
\( (T^{4} + 4623100876 T^{3} + \cdots + 21\!\cdots\!84)^{2} \)
(T^4 + 4623100876*T^3 - 16707214295312630880*T^2 - 58457765413099245256415381912*T + 21918570957145720516697445523899348484)^2
$83$
\( T^{8} + \cdots + 41\!\cdots\!36 \)
T^8 + 106986645740732105376*T^6 + 3457471508146946443068632692803367492992*T^4 + 34883153585937113068496133644404227824318105558582407194624*T^2 + 41779152225177466355991898718979542157460055666717686745817760502605543182336
$89$
\( T^{8} + \cdots + 12\!\cdots\!41 \)
T^8 + 80107208802805485096*T^6 + 1835158885340878454922482530381703746002*T^4 + 9920723504305153937518740540273284958977309062077267563304*T^2 + 12174598015486870606571748715323950162469888538608834898972214257856951397441
$97$
\( (T^{4} - 1123887968 T^{3} + \cdots + 26\!\cdots\!36)^{2} \)
(T^4 - 1123887968*T^3 - 83238199962039877656*T^2 - 199230869033940080957023467392*T + 261587613996578552524127891465647086736)^2
show more
show less