Properties

Label 1617.4.a.i.1.2
Level $1617$
Weight $4$
Character 1617.1
Self dual yes
Analytic conductor $95.406$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1617,4,Mod(1,1617)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1617, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1617.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1617 = 3 \cdot 7^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1617.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(95.4060884793\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{17}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 231)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-1.56155\) of defining polynomial
Character \(\chi\) \(=\) 1617.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.561553 q^{2} -3.00000 q^{3} -7.68466 q^{4} +3.31534 q^{5} -1.68466 q^{6} -8.80776 q^{8} +9.00000 q^{9} +1.86174 q^{10} +11.0000 q^{11} +23.0540 q^{12} +41.9157 q^{13} -9.94602 q^{15} +56.5312 q^{16} +68.8769 q^{17} +5.05398 q^{18} +114.408 q^{19} -25.4773 q^{20} +6.17708 q^{22} -124.985 q^{23} +26.4233 q^{24} -114.009 q^{25} +23.5379 q^{26} -27.0000 q^{27} -147.670 q^{29} -5.58522 q^{30} +55.9697 q^{31} +102.207 q^{32} -33.0000 q^{33} +38.6780 q^{34} -69.1619 q^{36} +162.948 q^{37} +64.2462 q^{38} -125.747 q^{39} -29.2007 q^{40} -258.617 q^{41} -106.739 q^{43} -84.5312 q^{44} +29.8381 q^{45} -70.1856 q^{46} -110.779 q^{47} -169.594 q^{48} -64.0218 q^{50} -206.631 q^{51} -322.108 q^{52} +10.4451 q^{53} -15.1619 q^{54} +36.4688 q^{55} -343.224 q^{57} -82.9242 q^{58} +182.283 q^{59} +76.4318 q^{60} -189.879 q^{61} +31.4299 q^{62} -394.855 q^{64} +138.965 q^{65} -18.5312 q^{66} +580.779 q^{67} -529.295 q^{68} +374.955 q^{69} -1161.39 q^{71} -79.2699 q^{72} +79.6998 q^{73} +91.5038 q^{74} +342.026 q^{75} -879.187 q^{76} -70.6137 q^{78} +1090.04 q^{79} +187.420 q^{80} +81.0000 q^{81} -145.227 q^{82} +874.830 q^{83} +228.350 q^{85} -59.9394 q^{86} +443.009 q^{87} -96.8854 q^{88} +844.193 q^{89} +16.7557 q^{90} +960.466 q^{92} -167.909 q^{93} -62.2084 q^{94} +379.302 q^{95} -306.622 q^{96} -925.097 q^{97} +99.0000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 3 q^{2} - 6 q^{3} - 3 q^{4} + 19 q^{5} + 9 q^{6} + 3 q^{8} + 18 q^{9} - 54 q^{10} + 22 q^{11} + 9 q^{12} - 11 q^{13} - 57 q^{15} - 23 q^{16} + 146 q^{17} - 27 q^{18} + 101 q^{19} + 48 q^{20} - 33 q^{22}+ \cdots + 198 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.561553 0.198539 0.0992695 0.995061i \(-0.468349\pi\)
0.0992695 + 0.995061i \(0.468349\pi\)
\(3\) −3.00000 −0.577350
\(4\) −7.68466 −0.960582
\(5\) 3.31534 0.296533 0.148267 0.988947i \(-0.452631\pi\)
0.148267 + 0.988947i \(0.452631\pi\)
\(6\) −1.68466 −0.114626
\(7\) 0 0
\(8\) −8.80776 −0.389252
\(9\) 9.00000 0.333333
\(10\) 1.86174 0.0588734
\(11\) 11.0000 0.301511
\(12\) 23.0540 0.554592
\(13\) 41.9157 0.894256 0.447128 0.894470i \(-0.352447\pi\)
0.447128 + 0.894470i \(0.352447\pi\)
\(14\) 0 0
\(15\) −9.94602 −0.171204
\(16\) 56.5312 0.883301
\(17\) 68.8769 0.982653 0.491326 0.870975i \(-0.336512\pi\)
0.491326 + 0.870975i \(0.336512\pi\)
\(18\) 5.05398 0.0661796
\(19\) 114.408 1.38142 0.690711 0.723131i \(-0.257298\pi\)
0.690711 + 0.723131i \(0.257298\pi\)
\(20\) −25.4773 −0.284845
\(21\) 0 0
\(22\) 6.17708 0.0598617
\(23\) −124.985 −1.13309 −0.566547 0.824030i \(-0.691721\pi\)
−0.566547 + 0.824030i \(0.691721\pi\)
\(24\) 26.4233 0.224735
\(25\) −114.009 −0.912068
\(26\) 23.5379 0.177545
\(27\) −27.0000 −0.192450
\(28\) 0 0
\(29\) −147.670 −0.945570 −0.472785 0.881178i \(-0.656751\pi\)
−0.472785 + 0.881178i \(0.656751\pi\)
\(30\) −5.58522 −0.0339906
\(31\) 55.9697 0.324273 0.162136 0.986768i \(-0.448162\pi\)
0.162136 + 0.986768i \(0.448162\pi\)
\(32\) 102.207 0.564621
\(33\) −33.0000 −0.174078
\(34\) 38.6780 0.195095
\(35\) 0 0
\(36\) −69.1619 −0.320194
\(37\) 162.948 0.724013 0.362006 0.932176i \(-0.382092\pi\)
0.362006 + 0.932176i \(0.382092\pi\)
\(38\) 64.2462 0.274266
\(39\) −125.747 −0.516299
\(40\) −29.2007 −0.115426
\(41\) −258.617 −0.985104 −0.492552 0.870283i \(-0.663936\pi\)
−0.492552 + 0.870283i \(0.663936\pi\)
\(42\) 0 0
\(43\) −106.739 −0.378546 −0.189273 0.981924i \(-0.560613\pi\)
−0.189273 + 0.981924i \(0.560613\pi\)
\(44\) −84.5312 −0.289626
\(45\) 29.8381 0.0988444
\(46\) −70.1856 −0.224963
\(47\) −110.779 −0.343805 −0.171902 0.985114i \(-0.554991\pi\)
−0.171902 + 0.985114i \(0.554991\pi\)
\(48\) −169.594 −0.509974
\(49\) 0 0
\(50\) −64.0218 −0.181081
\(51\) −206.631 −0.567335
\(52\) −322.108 −0.859006
\(53\) 10.4451 0.0270706 0.0135353 0.999908i \(-0.495691\pi\)
0.0135353 + 0.999908i \(0.495691\pi\)
\(54\) −15.1619 −0.0382088
\(55\) 36.4688 0.0894081
\(56\) 0 0
\(57\) −343.224 −0.797565
\(58\) −82.9242 −0.187732
\(59\) 182.283 0.402225 0.201112 0.979568i \(-0.435544\pi\)
0.201112 + 0.979568i \(0.435544\pi\)
\(60\) 76.4318 0.164455
\(61\) −189.879 −0.398549 −0.199274 0.979944i \(-0.563859\pi\)
−0.199274 + 0.979944i \(0.563859\pi\)
\(62\) 31.4299 0.0643807
\(63\) 0 0
\(64\) −394.855 −0.771201
\(65\) 138.965 0.265177
\(66\) −18.5312 −0.0345612
\(67\) 580.779 1.05901 0.529504 0.848308i \(-0.322378\pi\)
0.529504 + 0.848308i \(0.322378\pi\)
\(68\) −529.295 −0.943919
\(69\) 374.955 0.654192
\(70\) 0 0
\(71\) −1161.39 −1.94129 −0.970645 0.240515i \(-0.922684\pi\)
−0.970645 + 0.240515i \(0.922684\pi\)
\(72\) −79.2699 −0.129751
\(73\) 79.6998 0.127783 0.0638915 0.997957i \(-0.479649\pi\)
0.0638915 + 0.997957i \(0.479649\pi\)
\(74\) 91.5038 0.143745
\(75\) 342.026 0.526583
\(76\) −879.187 −1.32697
\(77\) 0 0
\(78\) −70.6137 −0.102505
\(79\) 1090.04 1.55239 0.776195 0.630493i \(-0.217147\pi\)
0.776195 + 0.630493i \(0.217147\pi\)
\(80\) 187.420 0.261928
\(81\) 81.0000 0.111111
\(82\) −145.227 −0.195581
\(83\) 874.830 1.15693 0.578464 0.815708i \(-0.303652\pi\)
0.578464 + 0.815708i \(0.303652\pi\)
\(84\) 0 0
\(85\) 228.350 0.291389
\(86\) −59.9394 −0.0751562
\(87\) 443.009 0.545925
\(88\) −96.8854 −0.117364
\(89\) 844.193 1.00544 0.502721 0.864449i \(-0.332332\pi\)
0.502721 + 0.864449i \(0.332332\pi\)
\(90\) 16.7557 0.0196245
\(91\) 0 0
\(92\) 960.466 1.08843
\(93\) −167.909 −0.187219
\(94\) −62.2084 −0.0682586
\(95\) 379.302 0.409638
\(96\) −306.622 −0.325984
\(97\) −925.097 −0.968344 −0.484172 0.874973i \(-0.660879\pi\)
−0.484172 + 0.874973i \(0.660879\pi\)
\(98\) 0 0
\(99\) 99.0000 0.100504
\(100\) 876.116 0.876116
\(101\) 884.867 0.871758 0.435879 0.900005i \(-0.356438\pi\)
0.435879 + 0.900005i \(0.356438\pi\)
\(102\) −116.034 −0.112638
\(103\) −1069.78 −1.02339 −0.511694 0.859168i \(-0.670982\pi\)
−0.511694 + 0.859168i \(0.670982\pi\)
\(104\) −369.184 −0.348091
\(105\) 0 0
\(106\) 5.86547 0.00537457
\(107\) 178.196 0.160999 0.0804993 0.996755i \(-0.474349\pi\)
0.0804993 + 0.996755i \(0.474349\pi\)
\(108\) 207.486 0.184864
\(109\) 1973.58 1.73426 0.867130 0.498082i \(-0.165962\pi\)
0.867130 + 0.498082i \(0.165962\pi\)
\(110\) 20.4791 0.0177510
\(111\) −488.844 −0.418009
\(112\) 0 0
\(113\) 1642.68 1.36753 0.683763 0.729704i \(-0.260342\pi\)
0.683763 + 0.729704i \(0.260342\pi\)
\(114\) −192.739 −0.158348
\(115\) −414.367 −0.336000
\(116\) 1134.79 0.908298
\(117\) 377.241 0.298085
\(118\) 102.362 0.0798572
\(119\) 0 0
\(120\) 87.6022 0.0666413
\(121\) 121.000 0.0909091
\(122\) −106.627 −0.0791275
\(123\) 775.852 0.568750
\(124\) −430.108 −0.311491
\(125\) −792.395 −0.566992
\(126\) 0 0
\(127\) −1796.94 −1.25554 −0.627768 0.778400i \(-0.716031\pi\)
−0.627768 + 0.778400i \(0.716031\pi\)
\(128\) −1039.39 −0.717735
\(129\) 320.216 0.218554
\(130\) 78.0361 0.0526479
\(131\) −934.305 −0.623134 −0.311567 0.950224i \(-0.600854\pi\)
−0.311567 + 0.950224i \(0.600854\pi\)
\(132\) 253.594 0.167216
\(133\) 0 0
\(134\) 326.138 0.210254
\(135\) −89.5142 −0.0570678
\(136\) −606.651 −0.382499
\(137\) −1590.87 −0.992097 −0.496048 0.868295i \(-0.665216\pi\)
−0.496048 + 0.868295i \(0.665216\pi\)
\(138\) 210.557 0.129882
\(139\) 1549.00 0.945213 0.472607 0.881274i \(-0.343313\pi\)
0.472607 + 0.881274i \(0.343313\pi\)
\(140\) 0 0
\(141\) 332.338 0.198496
\(142\) −652.182 −0.385422
\(143\) 461.073 0.269628
\(144\) 508.781 0.294434
\(145\) −489.575 −0.280393
\(146\) 44.7557 0.0253699
\(147\) 0 0
\(148\) −1252.20 −0.695474
\(149\) −468.094 −0.257367 −0.128684 0.991686i \(-0.541075\pi\)
−0.128684 + 0.991686i \(0.541075\pi\)
\(150\) 192.065 0.104547
\(151\) 1865.34 1.00529 0.502647 0.864492i \(-0.332360\pi\)
0.502647 + 0.864492i \(0.332360\pi\)
\(152\) −1007.68 −0.537721
\(153\) 619.892 0.327551
\(154\) 0 0
\(155\) 185.559 0.0961576
\(156\) 966.324 0.495948
\(157\) −1501.59 −0.763310 −0.381655 0.924305i \(-0.624646\pi\)
−0.381655 + 0.924305i \(0.624646\pi\)
\(158\) 612.114 0.308210
\(159\) −31.3353 −0.0156292
\(160\) 338.852 0.167429
\(161\) 0 0
\(162\) 45.4858 0.0220599
\(163\) 524.401 0.251989 0.125995 0.992031i \(-0.459788\pi\)
0.125995 + 0.992031i \(0.459788\pi\)
\(164\) 1987.39 0.946273
\(165\) −109.406 −0.0516198
\(166\) 491.263 0.229695
\(167\) 3293.09 1.52591 0.762956 0.646450i \(-0.223747\pi\)
0.762956 + 0.646450i \(0.223747\pi\)
\(168\) 0 0
\(169\) −440.073 −0.200306
\(170\) 128.231 0.0578521
\(171\) 1029.67 0.460474
\(172\) 820.250 0.363625
\(173\) 3036.96 1.33466 0.667330 0.744762i \(-0.267437\pi\)
0.667330 + 0.744762i \(0.267437\pi\)
\(174\) 248.773 0.108387
\(175\) 0 0
\(176\) 621.844 0.266325
\(177\) −546.849 −0.232224
\(178\) 474.059 0.199619
\(179\) 690.152 0.288181 0.144090 0.989565i \(-0.453974\pi\)
0.144090 + 0.989565i \(0.453974\pi\)
\(180\) −229.295 −0.0949482
\(181\) 2533.94 1.04059 0.520294 0.853987i \(-0.325822\pi\)
0.520294 + 0.853987i \(0.325822\pi\)
\(182\) 0 0
\(183\) 569.636 0.230102
\(184\) 1100.84 0.441059
\(185\) 540.228 0.214694
\(186\) −94.2898 −0.0371702
\(187\) 757.646 0.296281
\(188\) 851.301 0.330253
\(189\) 0 0
\(190\) 212.998 0.0813290
\(191\) 1845.13 0.698998 0.349499 0.936937i \(-0.386352\pi\)
0.349499 + 0.936937i \(0.386352\pi\)
\(192\) 1184.57 0.445253
\(193\) −2654.48 −0.990019 −0.495009 0.868888i \(-0.664835\pi\)
−0.495009 + 0.868888i \(0.664835\pi\)
\(194\) −519.491 −0.192254
\(195\) −416.895 −0.153100
\(196\) 0 0
\(197\) 164.057 0.0593328 0.0296664 0.999560i \(-0.490555\pi\)
0.0296664 + 0.999560i \(0.490555\pi\)
\(198\) 55.5937 0.0199539
\(199\) −2888.41 −1.02891 −0.514457 0.857516i \(-0.672007\pi\)
−0.514457 + 0.857516i \(0.672007\pi\)
\(200\) 1004.16 0.355024
\(201\) −1742.34 −0.611418
\(202\) 496.900 0.173078
\(203\) 0 0
\(204\) 1587.89 0.544972
\(205\) −857.405 −0.292116
\(206\) −600.740 −0.203182
\(207\) −1124.86 −0.377698
\(208\) 2369.55 0.789897
\(209\) 1258.49 0.416515
\(210\) 0 0
\(211\) 630.956 0.205862 0.102931 0.994689i \(-0.467178\pi\)
0.102931 + 0.994689i \(0.467178\pi\)
\(212\) −80.2670 −0.0260036
\(213\) 3484.17 1.12080
\(214\) 100.066 0.0319645
\(215\) −353.875 −0.112252
\(216\) 237.810 0.0749116
\(217\) 0 0
\(218\) 1108.27 0.344318
\(219\) −239.099 −0.0737755
\(220\) −280.250 −0.0858839
\(221\) 2887.02 0.878743
\(222\) −274.512 −0.0829910
\(223\) 6252.50 1.87757 0.938786 0.344501i \(-0.111952\pi\)
0.938786 + 0.344501i \(0.111952\pi\)
\(224\) 0 0
\(225\) −1026.08 −0.304023
\(226\) 922.453 0.271507
\(227\) 3316.20 0.969621 0.484810 0.874619i \(-0.338889\pi\)
0.484810 + 0.874619i \(0.338889\pi\)
\(228\) 2637.56 0.766126
\(229\) −3077.20 −0.887979 −0.443989 0.896032i \(-0.646437\pi\)
−0.443989 + 0.896032i \(0.646437\pi\)
\(230\) −232.689 −0.0667090
\(231\) 0 0
\(232\) 1300.64 0.368065
\(233\) 1358.08 0.381849 0.190924 0.981605i \(-0.438851\pi\)
0.190924 + 0.981605i \(0.438851\pi\)
\(234\) 211.841 0.0591815
\(235\) −367.271 −0.101950
\(236\) −1400.78 −0.386370
\(237\) −3270.11 −0.896273
\(238\) 0 0
\(239\) −4151.18 −1.12350 −0.561752 0.827306i \(-0.689872\pi\)
−0.561752 + 0.827306i \(0.689872\pi\)
\(240\) −562.261 −0.151224
\(241\) 3491.71 0.933282 0.466641 0.884447i \(-0.345464\pi\)
0.466641 + 0.884447i \(0.345464\pi\)
\(242\) 67.9479 0.0180490
\(243\) −243.000 −0.0641500
\(244\) 1459.15 0.382839
\(245\) 0 0
\(246\) 435.682 0.112919
\(247\) 4795.50 1.23535
\(248\) −492.968 −0.126224
\(249\) −2624.49 −0.667953
\(250\) −444.972 −0.112570
\(251\) 879.383 0.221140 0.110570 0.993868i \(-0.464732\pi\)
0.110570 + 0.993868i \(0.464732\pi\)
\(252\) 0 0
\(253\) −1374.83 −0.341640
\(254\) −1009.08 −0.249273
\(255\) −685.051 −0.168234
\(256\) 2575.17 0.628703
\(257\) −5691.10 −1.38133 −0.690663 0.723176i \(-0.742681\pi\)
−0.690663 + 0.723176i \(0.742681\pi\)
\(258\) 179.818 0.0433914
\(259\) 0 0
\(260\) −1067.90 −0.254724
\(261\) −1329.03 −0.315190
\(262\) −524.661 −0.123716
\(263\) 2024.55 0.474673 0.237337 0.971427i \(-0.423726\pi\)
0.237337 + 0.971427i \(0.423726\pi\)
\(264\) 290.656 0.0677601
\(265\) 34.6290 0.00802734
\(266\) 0 0
\(267\) −2532.58 −0.580492
\(268\) −4463.09 −1.01726
\(269\) 3431.96 0.777882 0.388941 0.921263i \(-0.372841\pi\)
0.388941 + 0.921263i \(0.372841\pi\)
\(270\) −50.2670 −0.0113302
\(271\) 2974.80 0.666812 0.333406 0.942783i \(-0.391802\pi\)
0.333406 + 0.942783i \(0.391802\pi\)
\(272\) 3893.70 0.867978
\(273\) 0 0
\(274\) −893.358 −0.196970
\(275\) −1254.09 −0.274999
\(276\) −2881.40 −0.628405
\(277\) 7781.98 1.68799 0.843996 0.536350i \(-0.180197\pi\)
0.843996 + 0.536350i \(0.180197\pi\)
\(278\) 869.846 0.187662
\(279\) 503.727 0.108091
\(280\) 0 0
\(281\) −2627.68 −0.557845 −0.278922 0.960314i \(-0.589977\pi\)
−0.278922 + 0.960314i \(0.589977\pi\)
\(282\) 186.625 0.0394091
\(283\) 2501.46 0.525430 0.262715 0.964873i \(-0.415382\pi\)
0.262715 + 0.964873i \(0.415382\pi\)
\(284\) 8924.89 1.86477
\(285\) −1137.91 −0.236504
\(286\) 258.917 0.0535317
\(287\) 0 0
\(288\) 919.867 0.188207
\(289\) −168.973 −0.0343931
\(290\) −274.922 −0.0556689
\(291\) 2775.29 0.559073
\(292\) −612.466 −0.122746
\(293\) 4646.04 0.926364 0.463182 0.886263i \(-0.346708\pi\)
0.463182 + 0.886263i \(0.346708\pi\)
\(294\) 0 0
\(295\) 604.331 0.119273
\(296\) −1435.21 −0.281823
\(297\) −297.000 −0.0580259
\(298\) −262.859 −0.0510974
\(299\) −5238.83 −1.01328
\(300\) −2628.35 −0.505826
\(301\) 0 0
\(302\) 1047.49 0.199590
\(303\) −2654.60 −0.503310
\(304\) 6467.63 1.22021
\(305\) −629.513 −0.118183
\(306\) 348.102 0.0650316
\(307\) 4325.92 0.804213 0.402107 0.915593i \(-0.368278\pi\)
0.402107 + 0.915593i \(0.368278\pi\)
\(308\) 0 0
\(309\) 3209.35 0.590853
\(310\) 104.201 0.0190910
\(311\) −1845.22 −0.336440 −0.168220 0.985749i \(-0.553802\pi\)
−0.168220 + 0.985749i \(0.553802\pi\)
\(312\) 1107.55 0.200970
\(313\) 5287.15 0.954784 0.477392 0.878690i \(-0.341582\pi\)
0.477392 + 0.878690i \(0.341582\pi\)
\(314\) −843.220 −0.151547
\(315\) 0 0
\(316\) −8376.57 −1.49120
\(317\) 9353.74 1.65728 0.828641 0.559780i \(-0.189114\pi\)
0.828641 + 0.559780i \(0.189114\pi\)
\(318\) −17.5964 −0.00310301
\(319\) −1624.36 −0.285100
\(320\) −1309.08 −0.228687
\(321\) −534.588 −0.0929526
\(322\) 0 0
\(323\) 7880.08 1.35746
\(324\) −622.457 −0.106731
\(325\) −4778.75 −0.815622
\(326\) 294.479 0.0500296
\(327\) −5920.73 −1.00128
\(328\) 2277.84 0.383453
\(329\) 0 0
\(330\) −61.4374 −0.0102485
\(331\) 11385.6 1.89066 0.945330 0.326115i \(-0.105740\pi\)
0.945330 + 0.326115i \(0.105740\pi\)
\(332\) −6722.77 −1.11132
\(333\) 1466.53 0.241338
\(334\) 1849.25 0.302953
\(335\) 1925.48 0.314031
\(336\) 0 0
\(337\) −10686.1 −1.72732 −0.863660 0.504075i \(-0.831833\pi\)
−0.863660 + 0.504075i \(0.831833\pi\)
\(338\) −247.124 −0.0397686
\(339\) −4928.05 −0.789542
\(340\) −1754.80 −0.279903
\(341\) 615.667 0.0977719
\(342\) 578.216 0.0914220
\(343\) 0 0
\(344\) 940.129 0.147350
\(345\) 1243.10 0.193990
\(346\) 1705.42 0.264982
\(347\) 6242.71 0.965782 0.482891 0.875680i \(-0.339587\pi\)
0.482891 + 0.875680i \(0.339587\pi\)
\(348\) −3404.37 −0.524406
\(349\) −4518.02 −0.692964 −0.346482 0.938057i \(-0.612624\pi\)
−0.346482 + 0.938057i \(0.612624\pi\)
\(350\) 0 0
\(351\) −1131.72 −0.172100
\(352\) 1124.28 0.170240
\(353\) 9270.29 1.39776 0.698878 0.715241i \(-0.253683\pi\)
0.698878 + 0.715241i \(0.253683\pi\)
\(354\) −307.085 −0.0461056
\(355\) −3850.40 −0.575657
\(356\) −6487.34 −0.965809
\(357\) 0 0
\(358\) 387.557 0.0572151
\(359\) 8219.53 1.20838 0.604192 0.796839i \(-0.293496\pi\)
0.604192 + 0.796839i \(0.293496\pi\)
\(360\) −262.807 −0.0384754
\(361\) 6230.22 0.908328
\(362\) 1422.94 0.206597
\(363\) −363.000 −0.0524864
\(364\) 0 0
\(365\) 264.232 0.0378919
\(366\) 319.881 0.0456843
\(367\) −9001.57 −1.28032 −0.640161 0.768241i \(-0.721132\pi\)
−0.640161 + 0.768241i \(0.721132\pi\)
\(368\) −7065.55 −1.00086
\(369\) −2327.56 −0.328368
\(370\) 303.367 0.0426251
\(371\) 0 0
\(372\) 1290.32 0.179839
\(373\) 1966.15 0.272931 0.136466 0.990645i \(-0.456426\pi\)
0.136466 + 0.990645i \(0.456426\pi\)
\(374\) 425.458 0.0588233
\(375\) 2377.18 0.327353
\(376\) 975.718 0.133827
\(377\) −6189.67 −0.845582
\(378\) 0 0
\(379\) 1022.30 0.138554 0.0692768 0.997597i \(-0.477931\pi\)
0.0692768 + 0.997597i \(0.477931\pi\)
\(380\) −2914.81 −0.393491
\(381\) 5390.83 0.724884
\(382\) 1036.14 0.138778
\(383\) −12825.9 −1.71116 −0.855579 0.517672i \(-0.826799\pi\)
−0.855579 + 0.517672i \(0.826799\pi\)
\(384\) 3118.17 0.414384
\(385\) 0 0
\(386\) −1490.63 −0.196557
\(387\) −960.648 −0.126182
\(388\) 7109.05 0.930174
\(389\) −12229.1 −1.59393 −0.796964 0.604027i \(-0.793562\pi\)
−0.796964 + 0.604027i \(0.793562\pi\)
\(390\) −234.108 −0.0303963
\(391\) −8608.57 −1.11344
\(392\) 0 0
\(393\) 2802.91 0.359767
\(394\) 92.1266 0.0117799
\(395\) 3613.85 0.460335
\(396\) −760.781 −0.0965422
\(397\) 3401.07 0.429961 0.214981 0.976618i \(-0.431031\pi\)
0.214981 + 0.976618i \(0.431031\pi\)
\(398\) −1622.00 −0.204280
\(399\) 0 0
\(400\) −6445.04 −0.805630
\(401\) −6234.40 −0.776386 −0.388193 0.921578i \(-0.626901\pi\)
−0.388193 + 0.921578i \(0.626901\pi\)
\(402\) −978.415 −0.121390
\(403\) 2346.01 0.289983
\(404\) −6799.90 −0.837396
\(405\) 268.543 0.0329481
\(406\) 0 0
\(407\) 1792.43 0.218298
\(408\) 1819.95 0.220836
\(409\) 11429.3 1.38177 0.690885 0.722964i \(-0.257221\pi\)
0.690885 + 0.722964i \(0.257221\pi\)
\(410\) −481.478 −0.0579964
\(411\) 4772.61 0.572787
\(412\) 8220.93 0.983048
\(413\) 0 0
\(414\) −631.670 −0.0749877
\(415\) 2900.36 0.343068
\(416\) 4284.10 0.504916
\(417\) −4647.01 −0.545719
\(418\) 706.708 0.0826943
\(419\) −3827.73 −0.446293 −0.223146 0.974785i \(-0.571633\pi\)
−0.223146 + 0.974785i \(0.571633\pi\)
\(420\) 0 0
\(421\) −11626.8 −1.34597 −0.672987 0.739654i \(-0.734989\pi\)
−0.672987 + 0.739654i \(0.734989\pi\)
\(422\) 354.315 0.0408716
\(423\) −997.014 −0.114602
\(424\) −91.9979 −0.0105373
\(425\) −7852.55 −0.896246
\(426\) 1956.55 0.222523
\(427\) 0 0
\(428\) −1369.38 −0.154652
\(429\) −1383.22 −0.155670
\(430\) −198.720 −0.0222863
\(431\) 7469.80 0.834820 0.417410 0.908718i \(-0.362938\pi\)
0.417410 + 0.908718i \(0.362938\pi\)
\(432\) −1526.34 −0.169991
\(433\) −1546.97 −0.171692 −0.0858459 0.996308i \(-0.527359\pi\)
−0.0858459 + 0.996308i \(0.527359\pi\)
\(434\) 0 0
\(435\) 1468.72 0.161885
\(436\) −15166.3 −1.66590
\(437\) −14299.3 −1.56528
\(438\) −134.267 −0.0146473
\(439\) 8082.79 0.878748 0.439374 0.898304i \(-0.355200\pi\)
0.439374 + 0.898304i \(0.355200\pi\)
\(440\) −321.208 −0.0348023
\(441\) 0 0
\(442\) 1621.22 0.174465
\(443\) −13000.1 −1.39426 −0.697128 0.716947i \(-0.745539\pi\)
−0.697128 + 0.716947i \(0.745539\pi\)
\(444\) 3756.60 0.401532
\(445\) 2798.79 0.298147
\(446\) 3511.11 0.372771
\(447\) 1404.28 0.148591
\(448\) 0 0
\(449\) −4572.68 −0.480619 −0.240310 0.970696i \(-0.577249\pi\)
−0.240310 + 0.970696i \(0.577249\pi\)
\(450\) −576.196 −0.0603603
\(451\) −2844.79 −0.297020
\(452\) −12623.4 −1.31362
\(453\) −5596.03 −0.580407
\(454\) 1862.22 0.192507
\(455\) 0 0
\(456\) 3023.04 0.310454
\(457\) −10846.5 −1.11024 −0.555119 0.831771i \(-0.687327\pi\)
−0.555119 + 0.831771i \(0.687327\pi\)
\(458\) −1728.01 −0.176298
\(459\) −1859.68 −0.189112
\(460\) 3184.27 0.322755
\(461\) 1299.33 0.131270 0.0656352 0.997844i \(-0.479093\pi\)
0.0656352 + 0.997844i \(0.479093\pi\)
\(462\) 0 0
\(463\) 12116.9 1.21624 0.608120 0.793845i \(-0.291924\pi\)
0.608120 + 0.793845i \(0.291924\pi\)
\(464\) −8347.94 −0.835223
\(465\) −556.676 −0.0555166
\(466\) 762.633 0.0758118
\(467\) 13546.6 1.34232 0.671160 0.741313i \(-0.265796\pi\)
0.671160 + 0.741313i \(0.265796\pi\)
\(468\) −2898.97 −0.286335
\(469\) 0 0
\(470\) −206.242 −0.0202409
\(471\) 4504.76 0.440697
\(472\) −1605.51 −0.156567
\(473\) −1174.12 −0.114136
\(474\) −1836.34 −0.177945
\(475\) −13043.5 −1.25995
\(476\) 0 0
\(477\) 94.0058 0.00902355
\(478\) −2331.10 −0.223059
\(479\) 10663.2 1.01715 0.508573 0.861019i \(-0.330173\pi\)
0.508573 + 0.861019i \(0.330173\pi\)
\(480\) −1016.56 −0.0966652
\(481\) 6830.08 0.647453
\(482\) 1960.78 0.185293
\(483\) 0 0
\(484\) −929.844 −0.0873257
\(485\) −3067.01 −0.287146
\(486\) −136.457 −0.0127363
\(487\) 8149.91 0.758332 0.379166 0.925329i \(-0.376211\pi\)
0.379166 + 0.925329i \(0.376211\pi\)
\(488\) 1672.41 0.155136
\(489\) −1573.20 −0.145486
\(490\) 0 0
\(491\) −15142.4 −1.39178 −0.695891 0.718147i \(-0.744990\pi\)
−0.695891 + 0.718147i \(0.744990\pi\)
\(492\) −5962.16 −0.546331
\(493\) −10171.0 −0.929167
\(494\) 2692.93 0.245264
\(495\) 328.219 0.0298027
\(496\) 3164.04 0.286430
\(497\) 0 0
\(498\) −1473.79 −0.132615
\(499\) 10430.8 0.935764 0.467882 0.883791i \(-0.345017\pi\)
0.467882 + 0.883791i \(0.345017\pi\)
\(500\) 6089.28 0.544642
\(501\) −9879.28 −0.880986
\(502\) 493.820 0.0439049
\(503\) −2173.55 −0.192671 −0.0963356 0.995349i \(-0.530712\pi\)
−0.0963356 + 0.995349i \(0.530712\pi\)
\(504\) 0 0
\(505\) 2933.64 0.258505
\(506\) −772.042 −0.0678289
\(507\) 1320.22 0.115647
\(508\) 13808.9 1.20605
\(509\) 13729.6 1.19559 0.597793 0.801651i \(-0.296045\pi\)
0.597793 + 0.801651i \(0.296045\pi\)
\(510\) −384.692 −0.0334009
\(511\) 0 0
\(512\) 9761.22 0.842557
\(513\) −3089.02 −0.265855
\(514\) −3195.85 −0.274247
\(515\) −3546.70 −0.303468
\(516\) −2460.75 −0.209939
\(517\) −1218.57 −0.103661
\(518\) 0 0
\(519\) −9110.89 −0.770566
\(520\) −1223.97 −0.103220
\(521\) −18257.2 −1.53525 −0.767623 0.640902i \(-0.778561\pi\)
−0.767623 + 0.640902i \(0.778561\pi\)
\(522\) −746.318 −0.0625775
\(523\) 19979.6 1.67045 0.835225 0.549908i \(-0.185337\pi\)
0.835225 + 0.549908i \(0.185337\pi\)
\(524\) 7179.81 0.598572
\(525\) 0 0
\(526\) 1136.89 0.0942411
\(527\) 3855.02 0.318648
\(528\) −1865.53 −0.153763
\(529\) 3454.21 0.283900
\(530\) 19.4460 0.00159374
\(531\) 1640.55 0.134075
\(532\) 0 0
\(533\) −10840.1 −0.880935
\(534\) −1422.18 −0.115250
\(535\) 590.780 0.0477414
\(536\) −5115.37 −0.412221
\(537\) −2070.45 −0.166381
\(538\) 1927.23 0.154440
\(539\) 0 0
\(540\) 687.886 0.0548184
\(541\) 7904.01 0.628133 0.314066 0.949401i \(-0.398309\pi\)
0.314066 + 0.949401i \(0.398309\pi\)
\(542\) 1670.51 0.132388
\(543\) −7601.83 −0.600784
\(544\) 7039.73 0.554827
\(545\) 6543.08 0.514265
\(546\) 0 0
\(547\) 16806.6 1.31370 0.656852 0.754019i \(-0.271887\pi\)
0.656852 + 0.754019i \(0.271887\pi\)
\(548\) 12225.3 0.952991
\(549\) −1708.91 −0.132850
\(550\) −704.240 −0.0545980
\(551\) −16894.6 −1.30623
\(552\) −3302.51 −0.254645
\(553\) 0 0
\(554\) 4369.99 0.335132
\(555\) −1620.68 −0.123954
\(556\) −11903.6 −0.907955
\(557\) −8002.82 −0.608780 −0.304390 0.952548i \(-0.598453\pi\)
−0.304390 + 0.952548i \(0.598453\pi\)
\(558\) 282.869 0.0214602
\(559\) −4474.03 −0.338517
\(560\) 0 0
\(561\) −2272.94 −0.171058
\(562\) −1475.58 −0.110754
\(563\) 12327.9 0.922840 0.461420 0.887182i \(-0.347340\pi\)
0.461420 + 0.887182i \(0.347340\pi\)
\(564\) −2553.90 −0.190672
\(565\) 5446.05 0.405517
\(566\) 1404.70 0.104318
\(567\) 0 0
\(568\) 10229.2 0.755651
\(569\) −6786.77 −0.500028 −0.250014 0.968242i \(-0.580435\pi\)
−0.250014 + 0.968242i \(0.580435\pi\)
\(570\) −638.994 −0.0469553
\(571\) 16890.0 1.23787 0.618935 0.785442i \(-0.287564\pi\)
0.618935 + 0.785442i \(0.287564\pi\)
\(572\) −3543.19 −0.259000
\(573\) −5535.38 −0.403567
\(574\) 0 0
\(575\) 14249.3 1.03346
\(576\) −3553.70 −0.257067
\(577\) −1857.64 −0.134029 −0.0670144 0.997752i \(-0.521347\pi\)
−0.0670144 + 0.997752i \(0.521347\pi\)
\(578\) −94.8875 −0.00682837
\(579\) 7963.44 0.571588
\(580\) 3762.22 0.269341
\(581\) 0 0
\(582\) 1558.47 0.110998
\(583\) 114.896 0.00816210
\(584\) −701.977 −0.0497398
\(585\) 1250.68 0.0883922
\(586\) 2609.00 0.183919
\(587\) −21977.7 −1.54534 −0.772672 0.634805i \(-0.781080\pi\)
−0.772672 + 0.634805i \(0.781080\pi\)
\(588\) 0 0
\(589\) 6403.39 0.447958
\(590\) 339.364 0.0236803
\(591\) −492.171 −0.0342558
\(592\) 9211.65 0.639521
\(593\) −17263.7 −1.19550 −0.597752 0.801681i \(-0.703939\pi\)
−0.597752 + 0.801681i \(0.703939\pi\)
\(594\) −166.781 −0.0115204
\(595\) 0 0
\(596\) 3597.14 0.247223
\(597\) 8665.23 0.594044
\(598\) −2941.88 −0.201175
\(599\) −23211.4 −1.58329 −0.791646 0.610981i \(-0.790775\pi\)
−0.791646 + 0.610981i \(0.790775\pi\)
\(600\) −3012.48 −0.204973
\(601\) 20051.0 1.36089 0.680446 0.732799i \(-0.261786\pi\)
0.680446 + 0.732799i \(0.261786\pi\)
\(602\) 0 0
\(603\) 5227.01 0.353002
\(604\) −14334.5 −0.965668
\(605\) 401.156 0.0269576
\(606\) −1490.70 −0.0999266
\(607\) 7862.63 0.525756 0.262878 0.964829i \(-0.415328\pi\)
0.262878 + 0.964829i \(0.415328\pi\)
\(608\) 11693.4 0.779981
\(609\) 0 0
\(610\) −353.505 −0.0234639
\(611\) −4643.39 −0.307449
\(612\) −4763.66 −0.314640
\(613\) −16366.2 −1.07835 −0.539173 0.842195i \(-0.681263\pi\)
−0.539173 + 0.842195i \(0.681263\pi\)
\(614\) 2429.23 0.159668
\(615\) 2572.21 0.168653
\(616\) 0 0
\(617\) 3749.07 0.244622 0.122311 0.992492i \(-0.460969\pi\)
0.122311 + 0.992492i \(0.460969\pi\)
\(618\) 1802.22 0.117307
\(619\) −20036.9 −1.30105 −0.650525 0.759485i \(-0.725451\pi\)
−0.650525 + 0.759485i \(0.725451\pi\)
\(620\) −1425.95 −0.0923673
\(621\) 3374.59 0.218064
\(622\) −1036.19 −0.0667965
\(623\) 0 0
\(624\) −7108.64 −0.456047
\(625\) 11624.0 0.743936
\(626\) 2969.01 0.189562
\(627\) −3775.47 −0.240475
\(628\) 11539.2 0.733222
\(629\) 11223.3 0.711453
\(630\) 0 0
\(631\) 5839.34 0.368400 0.184200 0.982889i \(-0.441031\pi\)
0.184200 + 0.982889i \(0.441031\pi\)
\(632\) −9600.80 −0.604271
\(633\) −1892.87 −0.118854
\(634\) 5252.62 0.329035
\(635\) −5957.49 −0.372308
\(636\) 240.801 0.0150132
\(637\) 0 0
\(638\) −912.166 −0.0566035
\(639\) −10452.5 −0.647097
\(640\) −3445.94 −0.212832
\(641\) −14682.2 −0.904702 −0.452351 0.891840i \(-0.649415\pi\)
−0.452351 + 0.891840i \(0.649415\pi\)
\(642\) −300.199 −0.0184547
\(643\) −30541.3 −1.87314 −0.936571 0.350477i \(-0.886019\pi\)
−0.936571 + 0.350477i \(0.886019\pi\)
\(644\) 0 0
\(645\) 1061.63 0.0648084
\(646\) 4425.08 0.269508
\(647\) −7991.44 −0.485588 −0.242794 0.970078i \(-0.578064\pi\)
−0.242794 + 0.970078i \(0.578064\pi\)
\(648\) −713.429 −0.0432502
\(649\) 2005.11 0.121275
\(650\) −2683.52 −0.161933
\(651\) 0 0
\(652\) −4029.84 −0.242056
\(653\) 18400.0 1.10268 0.551338 0.834282i \(-0.314117\pi\)
0.551338 + 0.834282i \(0.314117\pi\)
\(654\) −3324.80 −0.198792
\(655\) −3097.54 −0.184780
\(656\) −14620.0 −0.870143
\(657\) 717.298 0.0425943
\(658\) 0 0
\(659\) 15887.4 0.939126 0.469563 0.882899i \(-0.344411\pi\)
0.469563 + 0.882899i \(0.344411\pi\)
\(660\) 840.750 0.0495851
\(661\) 14947.8 0.879582 0.439791 0.898100i \(-0.355053\pi\)
0.439791 + 0.898100i \(0.355053\pi\)
\(662\) 6393.61 0.375370
\(663\) −8661.07 −0.507343
\(664\) −7705.29 −0.450336
\(665\) 0 0
\(666\) 823.535 0.0479149
\(667\) 18456.4 1.07142
\(668\) −25306.3 −1.46576
\(669\) −18757.5 −1.08402
\(670\) 1081.26 0.0623473
\(671\) −2088.67 −0.120167
\(672\) 0 0
\(673\) 1091.22 0.0625014 0.0312507 0.999512i \(-0.490051\pi\)
0.0312507 + 0.999512i \(0.490051\pi\)
\(674\) −6000.79 −0.342940
\(675\) 3078.23 0.175528
\(676\) 3381.81 0.192411
\(677\) 26564.2 1.50804 0.754022 0.656849i \(-0.228111\pi\)
0.754022 + 0.656849i \(0.228111\pi\)
\(678\) −2767.36 −0.156755
\(679\) 0 0
\(680\) −2011.26 −0.113424
\(681\) −9948.60 −0.559811
\(682\) 345.729 0.0194115
\(683\) −20461.6 −1.14633 −0.573164 0.819441i \(-0.694284\pi\)
−0.573164 + 0.819441i \(0.694284\pi\)
\(684\) −7912.69 −0.442323
\(685\) −5274.28 −0.294190
\(686\) 0 0
\(687\) 9231.60 0.512675
\(688\) −6034.07 −0.334370
\(689\) 437.813 0.0242081
\(690\) 698.068 0.0385145
\(691\) 12100.6 0.666175 0.333087 0.942896i \(-0.391910\pi\)
0.333087 + 0.942896i \(0.391910\pi\)
\(692\) −23338.0 −1.28205
\(693\) 0 0
\(694\) 3505.61 0.191745
\(695\) 5135.47 0.280287
\(696\) −3901.91 −0.212502
\(697\) −17812.8 −0.968015
\(698\) −2537.11 −0.137580
\(699\) −4074.24 −0.220460
\(700\) 0 0
\(701\) 27360.5 1.47417 0.737083 0.675802i \(-0.236203\pi\)
0.737083 + 0.675802i \(0.236203\pi\)
\(702\) −635.523 −0.0341685
\(703\) 18642.6 1.00017
\(704\) −4343.41 −0.232526
\(705\) 1101.81 0.0588606
\(706\) 5205.76 0.277509
\(707\) 0 0
\(708\) 4202.35 0.223071
\(709\) 19314.2 1.02308 0.511538 0.859261i \(-0.329076\pi\)
0.511538 + 0.859261i \(0.329076\pi\)
\(710\) −2162.21 −0.114290
\(711\) 9810.34 0.517463
\(712\) −7435.45 −0.391370
\(713\) −6995.36 −0.367431
\(714\) 0 0
\(715\) 1528.61 0.0799537
\(716\) −5303.58 −0.276821
\(717\) 12453.5 0.648655
\(718\) 4615.70 0.239911
\(719\) 11811.2 0.612635 0.306317 0.951929i \(-0.400903\pi\)
0.306317 + 0.951929i \(0.400903\pi\)
\(720\) 1686.78 0.0873093
\(721\) 0 0
\(722\) 3498.60 0.180338
\(723\) −10475.1 −0.538831
\(724\) −19472.5 −0.999571
\(725\) 16835.6 0.862424
\(726\) −203.844 −0.0104206
\(727\) −17995.3 −0.918034 −0.459017 0.888428i \(-0.651798\pi\)
−0.459017 + 0.888428i \(0.651798\pi\)
\(728\) 0 0
\(729\) 729.000 0.0370370
\(730\) 148.380 0.00752301
\(731\) −7351.83 −0.371980
\(732\) −4377.46 −0.221032
\(733\) 28542.7 1.43827 0.719133 0.694873i \(-0.244539\pi\)
0.719133 + 0.694873i \(0.244539\pi\)
\(734\) −5054.86 −0.254194
\(735\) 0 0
\(736\) −12774.4 −0.639769
\(737\) 6388.57 0.319303
\(738\) −1307.05 −0.0651938
\(739\) −5283.32 −0.262991 −0.131495 0.991317i \(-0.541978\pi\)
−0.131495 + 0.991317i \(0.541978\pi\)
\(740\) −4151.47 −0.206231
\(741\) −14386.5 −0.713227
\(742\) 0 0
\(743\) −8423.21 −0.415905 −0.207953 0.978139i \(-0.566680\pi\)
−0.207953 + 0.978139i \(0.566680\pi\)
\(744\) 1478.90 0.0728753
\(745\) −1551.89 −0.0763180
\(746\) 1104.10 0.0541874
\(747\) 7873.47 0.385643
\(748\) −5822.25 −0.284602
\(749\) 0 0
\(750\) 1334.91 0.0649923
\(751\) 26417.9 1.28363 0.641814 0.766861i \(-0.278182\pi\)
0.641814 + 0.766861i \(0.278182\pi\)
\(752\) −6262.49 −0.303683
\(753\) −2638.15 −0.127675
\(754\) −3475.83 −0.167881
\(755\) 6184.25 0.298103
\(756\) 0 0
\(757\) −24157.9 −1.15988 −0.579942 0.814658i \(-0.696925\pi\)
−0.579942 + 0.814658i \(0.696925\pi\)
\(758\) 574.073 0.0275083
\(759\) 4124.50 0.197246
\(760\) −3340.80 −0.159452
\(761\) 9195.59 0.438029 0.219014 0.975722i \(-0.429716\pi\)
0.219014 + 0.975722i \(0.429716\pi\)
\(762\) 3027.24 0.143918
\(763\) 0 0
\(764\) −14179.2 −0.671445
\(765\) 2055.15 0.0971297
\(766\) −7202.43 −0.339732
\(767\) 7640.53 0.359692
\(768\) −7725.50 −0.362982
\(769\) 15430.5 0.723589 0.361794 0.932258i \(-0.382164\pi\)
0.361794 + 0.932258i \(0.382164\pi\)
\(770\) 0 0
\(771\) 17073.3 0.797509
\(772\) 20398.8 0.950994
\(773\) 14100.0 0.656068 0.328034 0.944666i \(-0.393614\pi\)
0.328034 + 0.944666i \(0.393614\pi\)
\(774\) −539.454 −0.0250521
\(775\) −6381.02 −0.295759
\(776\) 8148.03 0.376930
\(777\) 0 0
\(778\) −6867.26 −0.316457
\(779\) −29587.9 −1.36084
\(780\) 3203.69 0.147065
\(781\) −12775.3 −0.585321
\(782\) −4834.17 −0.221061
\(783\) 3987.08 0.181975
\(784\) 0 0
\(785\) −4978.27 −0.226347
\(786\) 1573.98 0.0714277
\(787\) −4428.96 −0.200604 −0.100302 0.994957i \(-0.531981\pi\)
−0.100302 + 0.994957i \(0.531981\pi\)
\(788\) −1260.72 −0.0569941
\(789\) −6073.65 −0.274053
\(790\) 2029.37 0.0913944
\(791\) 0 0
\(792\) −871.969 −0.0391213
\(793\) −7958.90 −0.356405
\(794\) 1909.88 0.0853640
\(795\) −103.887 −0.00463459
\(796\) 22196.4 0.988357
\(797\) −32311.2 −1.43604 −0.718019 0.696024i \(-0.754951\pi\)
−0.718019 + 0.696024i \(0.754951\pi\)
\(798\) 0 0
\(799\) −7630.14 −0.337841
\(800\) −11652.5 −0.514973
\(801\) 7597.74 0.335147
\(802\) −3500.94 −0.154143
\(803\) 876.698 0.0385280
\(804\) 13389.3 0.587317
\(805\) 0 0
\(806\) 1317.41 0.0575729
\(807\) −10295.9 −0.449110
\(808\) −7793.70 −0.339334
\(809\) −45404.2 −1.97321 −0.986605 0.163125i \(-0.947843\pi\)
−0.986605 + 0.163125i \(0.947843\pi\)
\(810\) 150.801 0.00654149
\(811\) 36636.7 1.58630 0.793150 0.609026i \(-0.208440\pi\)
0.793150 + 0.609026i \(0.208440\pi\)
\(812\) 0 0
\(813\) −8924.39 −0.384984
\(814\) 1006.54 0.0433407
\(815\) 1738.57 0.0747231
\(816\) −11681.1 −0.501127
\(817\) −12211.8 −0.522932
\(818\) 6418.17 0.274335
\(819\) 0 0
\(820\) 6588.86 0.280601
\(821\) −14967.9 −0.636279 −0.318139 0.948044i \(-0.603058\pi\)
−0.318139 + 0.948044i \(0.603058\pi\)
\(822\) 2680.07 0.113721
\(823\) −8353.81 −0.353822 −0.176911 0.984227i \(-0.556610\pi\)
−0.176911 + 0.984227i \(0.556610\pi\)
\(824\) 9422.41 0.398356
\(825\) 3762.28 0.158771
\(826\) 0 0
\(827\) 26797.4 1.12677 0.563384 0.826195i \(-0.309499\pi\)
0.563384 + 0.826195i \(0.309499\pi\)
\(828\) 8644.19 0.362810
\(829\) 14645.0 0.613562 0.306781 0.951780i \(-0.400748\pi\)
0.306781 + 0.951780i \(0.400748\pi\)
\(830\) 1628.70 0.0681122
\(831\) −23345.9 −0.974563
\(832\) −16550.6 −0.689651
\(833\) 0 0
\(834\) −2609.54 −0.108346
\(835\) 10917.7 0.452484
\(836\) −9671.06 −0.400097
\(837\) −1511.18 −0.0624063
\(838\) −2149.47 −0.0886065
\(839\) 10093.3 0.415327 0.207664 0.978200i \(-0.433414\pi\)
0.207664 + 0.978200i \(0.433414\pi\)
\(840\) 0 0
\(841\) −2582.72 −0.105897
\(842\) −6529.06 −0.267228
\(843\) 7883.04 0.322072
\(844\) −4848.68 −0.197747
\(845\) −1458.99 −0.0593975
\(846\) −559.876 −0.0227529
\(847\) 0 0
\(848\) 590.474 0.0239115
\(849\) −7504.39 −0.303357
\(850\) −4409.62 −0.177940
\(851\) −20366.0 −0.820374
\(852\) −26774.7 −1.07663
\(853\) −28743.0 −1.15374 −0.576872 0.816835i \(-0.695727\pi\)
−0.576872 + 0.816835i \(0.695727\pi\)
\(854\) 0 0
\(855\) 3413.72 0.136546
\(856\) −1569.51 −0.0626690
\(857\) 19741.2 0.786870 0.393435 0.919352i \(-0.371287\pi\)
0.393435 + 0.919352i \(0.371287\pi\)
\(858\) −776.750 −0.0309065
\(859\) 41550.0 1.65037 0.825185 0.564863i \(-0.191071\pi\)
0.825185 + 0.564863i \(0.191071\pi\)
\(860\) 2719.41 0.107827
\(861\) 0 0
\(862\) 4194.69 0.165744
\(863\) 45844.4 1.80830 0.904150 0.427215i \(-0.140505\pi\)
0.904150 + 0.427215i \(0.140505\pi\)
\(864\) −2759.60 −0.108661
\(865\) 10068.6 0.395771
\(866\) −868.704 −0.0340875
\(867\) 506.920 0.0198569
\(868\) 0 0
\(869\) 11990.4 0.468063
\(870\) 824.766 0.0321405
\(871\) 24343.8 0.947024
\(872\) −17382.8 −0.675064
\(873\) −8325.87 −0.322781
\(874\) −8029.80 −0.310769
\(875\) 0 0
\(876\) 1837.40 0.0708675
\(877\) 2558.92 0.0985277 0.0492638 0.998786i \(-0.484312\pi\)
0.0492638 + 0.998786i \(0.484312\pi\)
\(878\) 4538.91 0.174466
\(879\) −13938.1 −0.534836
\(880\) 2061.62 0.0789742
\(881\) −1119.16 −0.0427983 −0.0213992 0.999771i \(-0.506812\pi\)
−0.0213992 + 0.999771i \(0.506812\pi\)
\(882\) 0 0
\(883\) −1677.64 −0.0639377 −0.0319688 0.999489i \(-0.510178\pi\)
−0.0319688 + 0.999489i \(0.510178\pi\)
\(884\) −22185.8 −0.844105
\(885\) −1812.99 −0.0688622
\(886\) −7300.27 −0.276814
\(887\) −12127.5 −0.459076 −0.229538 0.973300i \(-0.573722\pi\)
−0.229538 + 0.973300i \(0.573722\pi\)
\(888\) 4305.62 0.162711
\(889\) 0 0
\(890\) 1571.67 0.0591937
\(891\) 891.000 0.0335013
\(892\) −48048.4 −1.80356
\(893\) −12674.1 −0.474940
\(894\) 788.578 0.0295011
\(895\) 2288.09 0.0854551
\(896\) 0 0
\(897\) 15716.5 0.585015
\(898\) −2567.80 −0.0954216
\(899\) −8265.02 −0.306623
\(900\) 7885.05 0.292039
\(901\) 719.425 0.0266010
\(902\) −1597.50 −0.0589700
\(903\) 0 0
\(904\) −14468.4 −0.532312
\(905\) 8400.89 0.308569
\(906\) −3142.47 −0.115233
\(907\) −13826.8 −0.506186 −0.253093 0.967442i \(-0.581448\pi\)
−0.253093 + 0.967442i \(0.581448\pi\)
\(908\) −25483.9 −0.931401
\(909\) 7963.81 0.290586
\(910\) 0 0
\(911\) −41945.3 −1.52548 −0.762739 0.646706i \(-0.776146\pi\)
−0.762739 + 0.646706i \(0.776146\pi\)
\(912\) −19402.9 −0.704489
\(913\) 9623.13 0.348827
\(914\) −6090.90 −0.220426
\(915\) 1888.54 0.0682330
\(916\) 23647.2 0.852977
\(917\) 0 0
\(918\) −1044.31 −0.0375460
\(919\) −8132.54 −0.291913 −0.145956 0.989291i \(-0.546626\pi\)
−0.145956 + 0.989291i \(0.546626\pi\)
\(920\) 3649.65 0.130789
\(921\) −12977.8 −0.464313
\(922\) 729.641 0.0260623
\(923\) −48680.5 −1.73601
\(924\) 0 0
\(925\) −18577.4 −0.660349
\(926\) 6804.27 0.241471
\(927\) −9628.06 −0.341129
\(928\) −15092.9 −0.533889
\(929\) 48334.7 1.70701 0.853504 0.521086i \(-0.174473\pi\)
0.853504 + 0.521086i \(0.174473\pi\)
\(930\) −312.603 −0.0110222
\(931\) 0 0
\(932\) −10436.4 −0.366797
\(933\) 5535.66 0.194244
\(934\) 7607.15 0.266503
\(935\) 2511.85 0.0878571
\(936\) −3322.65 −0.116030
\(937\) 6068.39 0.211575 0.105787 0.994389i \(-0.466264\pi\)
0.105787 + 0.994389i \(0.466264\pi\)
\(938\) 0 0
\(939\) −15861.5 −0.551245
\(940\) 2822.35 0.0979309
\(941\) −15416.2 −0.534065 −0.267032 0.963688i \(-0.586043\pi\)
−0.267032 + 0.963688i \(0.586043\pi\)
\(942\) 2529.66 0.0874955
\(943\) 32323.3 1.11621
\(944\) 10304.7 0.355285
\(945\) 0 0
\(946\) −659.333 −0.0226604
\(947\) −45788.4 −1.57120 −0.785598 0.618737i \(-0.787645\pi\)
−0.785598 + 0.618737i \(0.787645\pi\)
\(948\) 25129.7 0.860944
\(949\) 3340.67 0.114271
\(950\) −7324.61 −0.250149
\(951\) −28061.2 −0.956833
\(952\) 0 0
\(953\) 36543.7 1.24215 0.621074 0.783752i \(-0.286697\pi\)
0.621074 + 0.783752i \(0.286697\pi\)
\(954\) 52.7892 0.00179152
\(955\) 6117.23 0.207276
\(956\) 31900.4 1.07922
\(957\) 4873.09 0.164603
\(958\) 5987.94 0.201943
\(959\) 0 0
\(960\) 3927.24 0.132032
\(961\) −26658.4 −0.894847
\(962\) 3835.45 0.128545
\(963\) 1603.76 0.0536662
\(964\) −26832.6 −0.896494
\(965\) −8800.50 −0.293573
\(966\) 0 0
\(967\) 3077.00 0.102327 0.0511633 0.998690i \(-0.483707\pi\)
0.0511633 + 0.998690i \(0.483707\pi\)
\(968\) −1065.74 −0.0353865
\(969\) −23640.2 −0.783729
\(970\) −1722.29 −0.0570096
\(971\) −41714.2 −1.37865 −0.689327 0.724451i \(-0.742094\pi\)
−0.689327 + 0.724451i \(0.742094\pi\)
\(972\) 1867.37 0.0616214
\(973\) 0 0
\(974\) 4576.61 0.150558
\(975\) 14336.2 0.470900
\(976\) −10734.1 −0.352039
\(977\) −22237.2 −0.728178 −0.364089 0.931364i \(-0.618620\pi\)
−0.364089 + 0.931364i \(0.618620\pi\)
\(978\) −883.436 −0.0288846
\(979\) 9286.12 0.303152
\(980\) 0 0
\(981\) 17762.2 0.578086
\(982\) −8503.23 −0.276323
\(983\) 26617.2 0.863639 0.431820 0.901960i \(-0.357872\pi\)
0.431820 + 0.901960i \(0.357872\pi\)
\(984\) −6833.52 −0.221387
\(985\) 543.905 0.0175942
\(986\) −5711.56 −0.184476
\(987\) 0 0
\(988\) −36851.8 −1.18665
\(989\) 13340.7 0.428928
\(990\) 184.312 0.00591700
\(991\) 28839.4 0.924435 0.462217 0.886767i \(-0.347054\pi\)
0.462217 + 0.886767i \(0.347054\pi\)
\(992\) 5720.52 0.183091
\(993\) −34156.8 −1.09157
\(994\) 0 0
\(995\) −9576.07 −0.305107
\(996\) 20168.3 0.641624
\(997\) −35924.1 −1.14115 −0.570575 0.821246i \(-0.693280\pi\)
−0.570575 + 0.821246i \(0.693280\pi\)
\(998\) 5857.44 0.185786
\(999\) −4399.59 −0.139336
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1617.4.a.i.1.2 2
7.6 odd 2 231.4.a.f.1.2 2
21.20 even 2 693.4.a.k.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
231.4.a.f.1.2 2 7.6 odd 2
693.4.a.k.1.1 2 21.20 even 2
1617.4.a.i.1.2 2 1.1 even 1 trivial