Properties

Label 1617.4.a.i.1.1
Level $1617$
Weight $4$
Character 1617.1
Self dual yes
Analytic conductor $95.406$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1617,4,Mod(1,1617)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1617, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1617.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1617 = 3 \cdot 7^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1617.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(95.4060884793\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{17}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 231)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(2.56155\) of defining polynomial
Character \(\chi\) \(=\) 1617.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.56155 q^{2} -3.00000 q^{3} +4.68466 q^{4} +15.6847 q^{5} +10.6847 q^{6} +11.8078 q^{8} +9.00000 q^{9} -55.8617 q^{10} +11.0000 q^{11} -14.0540 q^{12} -52.9157 q^{13} -47.0540 q^{15} -79.5312 q^{16} +77.1231 q^{17} -32.0540 q^{18} -13.4081 q^{19} +73.4773 q^{20} -39.1771 q^{22} -59.0152 q^{23} -35.4233 q^{24} +121.009 q^{25} +188.462 q^{26} -27.0000 q^{27} -69.3305 q^{29} +167.585 q^{30} -75.9697 q^{31} +188.793 q^{32} -33.0000 q^{33} -274.678 q^{34} +42.1619 q^{36} -335.948 q^{37} +47.7538 q^{38} +158.747 q^{39} +185.201 q^{40} +318.617 q^{41} -57.2614 q^{43} +51.5312 q^{44} +141.162 q^{45} +210.186 q^{46} +577.779 q^{47} +238.594 q^{48} -430.978 q^{50} -231.369 q^{51} -247.892 q^{52} +315.555 q^{53} +96.1619 q^{54} +172.531 q^{55} +40.2244 q^{57} +246.924 q^{58} +598.717 q^{59} -220.432 q^{60} +337.879 q^{61} +270.570 q^{62} -36.1449 q^{64} -829.965 q^{65} +117.531 q^{66} -107.779 q^{67} +361.295 q^{68} +177.045 q^{69} +405.390 q^{71} +106.270 q^{72} +133.300 q^{73} +1196.50 q^{74} -363.026 q^{75} -62.8125 q^{76} -565.386 q^{78} -922.038 q^{79} -1247.42 q^{80} +81.0000 q^{81} -1134.77 q^{82} +1221.17 q^{83} +1209.65 q^{85} +203.939 q^{86} +207.991 q^{87} +129.885 q^{88} -1580.19 q^{89} -502.756 q^{90} -276.466 q^{92} +227.909 q^{93} -2057.79 q^{94} -210.302 q^{95} -566.378 q^{96} +287.097 q^{97} +99.0000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 3 q^{2} - 6 q^{3} - 3 q^{4} + 19 q^{5} + 9 q^{6} + 3 q^{8} + 18 q^{9} - 54 q^{10} + 22 q^{11} + 9 q^{12} - 11 q^{13} - 57 q^{15} - 23 q^{16} + 146 q^{17} - 27 q^{18} + 101 q^{19} + 48 q^{20} - 33 q^{22}+ \cdots + 198 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −3.56155 −1.25920 −0.629600 0.776920i \(-0.716781\pi\)
−0.629600 + 0.776920i \(0.716781\pi\)
\(3\) −3.00000 −0.577350
\(4\) 4.68466 0.585582
\(5\) 15.6847 1.40288 0.701439 0.712729i \(-0.252541\pi\)
0.701439 + 0.712729i \(0.252541\pi\)
\(6\) 10.6847 0.726999
\(7\) 0 0
\(8\) 11.8078 0.521834
\(9\) 9.00000 0.333333
\(10\) −55.8617 −1.76650
\(11\) 11.0000 0.301511
\(12\) −14.0540 −0.338086
\(13\) −52.9157 −1.12894 −0.564468 0.825455i \(-0.690919\pi\)
−0.564468 + 0.825455i \(0.690919\pi\)
\(14\) 0 0
\(15\) −47.0540 −0.809952
\(16\) −79.5312 −1.24268
\(17\) 77.1231 1.10030 0.550150 0.835066i \(-0.314571\pi\)
0.550150 + 0.835066i \(0.314571\pi\)
\(18\) −32.0540 −0.419733
\(19\) −13.4081 −0.161897 −0.0809484 0.996718i \(-0.525795\pi\)
−0.0809484 + 0.996718i \(0.525795\pi\)
\(20\) 73.4773 0.821501
\(21\) 0 0
\(22\) −39.1771 −0.379663
\(23\) −59.0152 −0.535022 −0.267511 0.963555i \(-0.586201\pi\)
−0.267511 + 0.963555i \(0.586201\pi\)
\(24\) −35.4233 −0.301281
\(25\) 121.009 0.968068
\(26\) 188.462 1.42156
\(27\) −27.0000 −0.192450
\(28\) 0 0
\(29\) −69.3305 −0.443943 −0.221972 0.975053i \(-0.571249\pi\)
−0.221972 + 0.975053i \(0.571249\pi\)
\(30\) 167.585 1.01989
\(31\) −75.9697 −0.440147 −0.220074 0.975483i \(-0.570630\pi\)
−0.220074 + 0.975483i \(0.570630\pi\)
\(32\) 188.793 1.04294
\(33\) −33.0000 −0.174078
\(34\) −274.678 −1.38550
\(35\) 0 0
\(36\) 42.1619 0.195194
\(37\) −335.948 −1.49269 −0.746344 0.665560i \(-0.768193\pi\)
−0.746344 + 0.665560i \(0.768193\pi\)
\(38\) 47.7538 0.203860
\(39\) 158.747 0.651792
\(40\) 185.201 0.732070
\(41\) 318.617 1.21365 0.606825 0.794835i \(-0.292443\pi\)
0.606825 + 0.794835i \(0.292443\pi\)
\(42\) 0 0
\(43\) −57.2614 −0.203076 −0.101538 0.994832i \(-0.532376\pi\)
−0.101538 + 0.994832i \(0.532376\pi\)
\(44\) 51.5312 0.176560
\(45\) 141.162 0.467626
\(46\) 210.186 0.673699
\(47\) 577.779 1.79314 0.896572 0.442898i \(-0.146050\pi\)
0.896572 + 0.442898i \(0.146050\pi\)
\(48\) 238.594 0.717459
\(49\) 0 0
\(50\) −430.978 −1.21899
\(51\) −231.369 −0.635259
\(52\) −247.892 −0.661085
\(53\) 315.555 0.817826 0.408913 0.912573i \(-0.365908\pi\)
0.408913 + 0.912573i \(0.365908\pi\)
\(54\) 96.1619 0.242333
\(55\) 172.531 0.422984
\(56\) 0 0
\(57\) 40.2244 0.0934711
\(58\) 246.924 0.559013
\(59\) 598.717 1.32112 0.660562 0.750772i \(-0.270318\pi\)
0.660562 + 0.750772i \(0.270318\pi\)
\(60\) −220.432 −0.474294
\(61\) 337.879 0.709196 0.354598 0.935019i \(-0.384618\pi\)
0.354598 + 0.935019i \(0.384618\pi\)
\(62\) 270.570 0.554233
\(63\) 0 0
\(64\) −36.1449 −0.0705955
\(65\) −829.965 −1.58376
\(66\) 117.531 0.219198
\(67\) −107.779 −0.196527 −0.0982637 0.995160i \(-0.531329\pi\)
−0.0982637 + 0.995160i \(0.531329\pi\)
\(68\) 361.295 0.644316
\(69\) 177.045 0.308895
\(70\) 0 0
\(71\) 405.390 0.677619 0.338810 0.940855i \(-0.389976\pi\)
0.338810 + 0.940855i \(0.389976\pi\)
\(72\) 106.270 0.173945
\(73\) 133.300 0.213721 0.106860 0.994274i \(-0.465920\pi\)
0.106860 + 0.994274i \(0.465920\pi\)
\(74\) 1196.50 1.87959
\(75\) −363.026 −0.558914
\(76\) −62.8125 −0.0948039
\(77\) 0 0
\(78\) −565.386 −0.820736
\(79\) −922.038 −1.31313 −0.656566 0.754269i \(-0.727991\pi\)
−0.656566 + 0.754269i \(0.727991\pi\)
\(80\) −1247.42 −1.74332
\(81\) 81.0000 0.111111
\(82\) −1134.77 −1.52823
\(83\) 1221.17 1.61495 0.807475 0.589902i \(-0.200833\pi\)
0.807475 + 0.589902i \(0.200833\pi\)
\(84\) 0 0
\(85\) 1209.65 1.54359
\(86\) 203.939 0.255713
\(87\) 207.991 0.256311
\(88\) 129.885 0.157339
\(89\) −1580.19 −1.88202 −0.941012 0.338373i \(-0.890123\pi\)
−0.941012 + 0.338373i \(0.890123\pi\)
\(90\) −502.756 −0.588834
\(91\) 0 0
\(92\) −276.466 −0.313300
\(93\) 227.909 0.254119
\(94\) −2057.79 −2.25793
\(95\) −210.302 −0.227121
\(96\) −566.378 −0.602143
\(97\) 287.097 0.300518 0.150259 0.988647i \(-0.451989\pi\)
0.150259 + 0.988647i \(0.451989\pi\)
\(98\) 0 0
\(99\) 99.0000 0.100504
\(100\) 566.884 0.566884
\(101\) −780.867 −0.769299 −0.384650 0.923063i \(-0.625678\pi\)
−0.384650 + 0.923063i \(0.625678\pi\)
\(102\) 824.034 0.799917
\(103\) −1218.22 −1.16538 −0.582691 0.812694i \(-0.698000\pi\)
−0.582691 + 0.812694i \(0.698000\pi\)
\(104\) −624.816 −0.589118
\(105\) 0 0
\(106\) −1123.87 −1.02981
\(107\) −873.196 −0.788926 −0.394463 0.918912i \(-0.629069\pi\)
−0.394463 + 0.918912i \(0.629069\pi\)
\(108\) −126.486 −0.112695
\(109\) 126.424 0.111094 0.0555470 0.998456i \(-0.482310\pi\)
0.0555470 + 0.998456i \(0.482310\pi\)
\(110\) −614.479 −0.532621
\(111\) 1007.84 0.861804
\(112\) 0 0
\(113\) 257.318 0.214217 0.107108 0.994247i \(-0.465841\pi\)
0.107108 + 0.994247i \(0.465841\pi\)
\(114\) −143.261 −0.117699
\(115\) −925.633 −0.750571
\(116\) −324.790 −0.259965
\(117\) −476.241 −0.376312
\(118\) −2132.36 −1.66356
\(119\) 0 0
\(120\) −555.602 −0.422661
\(121\) 121.000 0.0909091
\(122\) −1203.37 −0.893019
\(123\) −955.852 −0.700702
\(124\) −355.892 −0.257742
\(125\) −62.6052 −0.0447966
\(126\) 0 0
\(127\) 74.9450 0.0523645 0.0261822 0.999657i \(-0.491665\pi\)
0.0261822 + 0.999657i \(0.491665\pi\)
\(128\) −1381.61 −0.954048
\(129\) 171.784 0.117246
\(130\) 2955.96 1.99427
\(131\) 2636.30 1.75828 0.879141 0.476561i \(-0.158117\pi\)
0.879141 + 0.476561i \(0.158117\pi\)
\(132\) −154.594 −0.101937
\(133\) 0 0
\(134\) 383.862 0.247467
\(135\) −423.486 −0.269984
\(136\) 910.651 0.574174
\(137\) 1146.87 0.715210 0.357605 0.933873i \(-0.383593\pi\)
0.357605 + 0.933873i \(0.383593\pi\)
\(138\) −630.557 −0.388961
\(139\) 1013.00 0.618139 0.309070 0.951039i \(-0.399982\pi\)
0.309070 + 0.951039i \(0.399982\pi\)
\(140\) 0 0
\(141\) −1733.34 −1.03527
\(142\) −1443.82 −0.853257
\(143\) −582.073 −0.340387
\(144\) −715.781 −0.414225
\(145\) −1087.43 −0.622798
\(146\) −474.756 −0.269117
\(147\) 0 0
\(148\) −1573.80 −0.874092
\(149\) −2236.91 −1.22990 −0.614948 0.788568i \(-0.710823\pi\)
−0.614948 + 0.788568i \(0.710823\pi\)
\(150\) 1292.93 0.703784
\(151\) 636.657 0.343115 0.171558 0.985174i \(-0.445120\pi\)
0.171558 + 0.985174i \(0.445120\pi\)
\(152\) −158.320 −0.0844833
\(153\) 694.108 0.366767
\(154\) 0 0
\(155\) −1191.56 −0.617473
\(156\) 743.676 0.381678
\(157\) 3561.59 1.81048 0.905241 0.424899i \(-0.139690\pi\)
0.905241 + 0.424899i \(0.139690\pi\)
\(158\) 3283.89 1.65349
\(159\) −946.665 −0.472172
\(160\) 2961.15 1.46312
\(161\) 0 0
\(162\) −288.486 −0.139911
\(163\) 2540.60 1.22083 0.610414 0.792082i \(-0.291003\pi\)
0.610414 + 0.792082i \(0.291003\pi\)
\(164\) 1492.61 0.710692
\(165\) −517.594 −0.244210
\(166\) −4349.26 −2.03354
\(167\) −1737.09 −0.804913 −0.402456 0.915439i \(-0.631843\pi\)
−0.402456 + 0.915439i \(0.631843\pi\)
\(168\) 0 0
\(169\) 603.073 0.274498
\(170\) −4308.23 −1.94368
\(171\) −120.673 −0.0539656
\(172\) −268.250 −0.118918
\(173\) −4194.96 −1.84357 −0.921784 0.387704i \(-0.873268\pi\)
−0.921784 + 0.387704i \(0.873268\pi\)
\(174\) −740.773 −0.322746
\(175\) 0 0
\(176\) −874.844 −0.374681
\(177\) −1796.15 −0.762751
\(178\) 5627.94 2.36984
\(179\) 1349.85 0.563645 0.281822 0.959467i \(-0.409061\pi\)
0.281822 + 0.959467i \(0.409061\pi\)
\(180\) 661.295 0.273834
\(181\) 1198.06 0.491994 0.245997 0.969271i \(-0.420885\pi\)
0.245997 + 0.969271i \(0.420885\pi\)
\(182\) 0 0
\(183\) −1013.64 −0.409454
\(184\) −696.837 −0.279193
\(185\) −5269.23 −2.09406
\(186\) −811.710 −0.319986
\(187\) 848.354 0.331753
\(188\) 2706.70 1.05003
\(189\) 0 0
\(190\) 749.002 0.285991
\(191\) 764.873 0.289761 0.144880 0.989449i \(-0.453720\pi\)
0.144880 + 0.989449i \(0.453720\pi\)
\(192\) 108.435 0.0407583
\(193\) −2019.52 −0.753204 −0.376602 0.926375i \(-0.622907\pi\)
−0.376602 + 0.926375i \(0.622907\pi\)
\(194\) −1022.51 −0.378412
\(195\) 2489.89 0.914385
\(196\) 0 0
\(197\) 1499.94 0.542470 0.271235 0.962513i \(-0.412568\pi\)
0.271235 + 0.962513i \(0.412568\pi\)
\(198\) −352.594 −0.126554
\(199\) 4574.41 1.62950 0.814752 0.579809i \(-0.196873\pi\)
0.814752 + 0.579809i \(0.196873\pi\)
\(200\) 1428.84 0.505171
\(201\) 323.338 0.113465
\(202\) 2781.10 0.968701
\(203\) 0 0
\(204\) −1083.89 −0.371996
\(205\) 4997.40 1.70260
\(206\) 4338.74 1.46745
\(207\) −531.136 −0.178341
\(208\) 4208.45 1.40290
\(209\) −147.490 −0.0488137
\(210\) 0 0
\(211\) −4456.96 −1.45417 −0.727084 0.686548i \(-0.759125\pi\)
−0.727084 + 0.686548i \(0.759125\pi\)
\(212\) 1478.27 0.478905
\(213\) −1216.17 −0.391224
\(214\) 3109.93 0.993414
\(215\) −898.125 −0.284891
\(216\) −318.810 −0.100427
\(217\) 0 0
\(218\) −450.267 −0.139890
\(219\) −399.901 −0.123392
\(220\) 808.250 0.247692
\(221\) −4081.02 −1.24217
\(222\) −3589.49 −1.08518
\(223\) 3003.50 0.901924 0.450962 0.892543i \(-0.351081\pi\)
0.450962 + 0.892543i \(0.351081\pi\)
\(224\) 0 0
\(225\) 1089.08 0.322689
\(226\) −916.453 −0.269741
\(227\) −1252.20 −0.366130 −0.183065 0.983101i \(-0.558602\pi\)
−0.183065 + 0.983101i \(0.558602\pi\)
\(228\) 188.438 0.0547350
\(229\) −2862.80 −0.826110 −0.413055 0.910706i \(-0.635538\pi\)
−0.413055 + 0.910706i \(0.635538\pi\)
\(230\) 3296.69 0.945118
\(231\) 0 0
\(232\) −818.638 −0.231665
\(233\) 4969.92 1.39738 0.698692 0.715423i \(-0.253766\pi\)
0.698692 + 0.715423i \(0.253766\pi\)
\(234\) 1696.16 0.473852
\(235\) 9062.27 2.51556
\(236\) 2804.78 0.773627
\(237\) 2766.11 0.758137
\(238\) 0 0
\(239\) 4602.18 1.24557 0.622783 0.782395i \(-0.286002\pi\)
0.622783 + 0.782395i \(0.286002\pi\)
\(240\) 3742.26 1.00651
\(241\) 4147.29 1.10851 0.554254 0.832348i \(-0.313004\pi\)
0.554254 + 0.832348i \(0.313004\pi\)
\(242\) −430.948 −0.114473
\(243\) −243.000 −0.0641500
\(244\) 1582.85 0.415292
\(245\) 0 0
\(246\) 3404.32 0.882323
\(247\) 709.501 0.182771
\(248\) −897.032 −0.229684
\(249\) −3663.51 −0.932392
\(250\) 222.972 0.0564078
\(251\) −988.383 −0.248551 −0.124275 0.992248i \(-0.539661\pi\)
−0.124275 + 0.992248i \(0.539661\pi\)
\(252\) 0 0
\(253\) −649.167 −0.161315
\(254\) −266.920 −0.0659373
\(255\) −3628.95 −0.891191
\(256\) 5209.83 1.27193
\(257\) 2856.10 0.693224 0.346612 0.938009i \(-0.387332\pi\)
0.346612 + 0.938009i \(0.387332\pi\)
\(258\) −611.818 −0.147636
\(259\) 0 0
\(260\) −3888.10 −0.927423
\(261\) −623.974 −0.147981
\(262\) −9389.34 −2.21403
\(263\) 5772.45 1.35340 0.676701 0.736258i \(-0.263409\pi\)
0.676701 + 0.736258i \(0.263409\pi\)
\(264\) −389.656 −0.0908397
\(265\) 4949.37 1.14731
\(266\) 0 0
\(267\) 4740.58 1.08659
\(268\) −504.909 −0.115083
\(269\) 1626.04 0.368555 0.184278 0.982874i \(-0.441005\pi\)
0.184278 + 0.982874i \(0.441005\pi\)
\(270\) 1508.27 0.339964
\(271\) 1816.20 0.407109 0.203554 0.979064i \(-0.434751\pi\)
0.203554 + 0.979064i \(0.434751\pi\)
\(272\) −6133.70 −1.36732
\(273\) 0 0
\(274\) −4084.64 −0.900592
\(275\) 1331.09 0.291884
\(276\) 829.398 0.180884
\(277\) −8091.98 −1.75523 −0.877617 0.479362i \(-0.840868\pi\)
−0.877617 + 0.479362i \(0.840868\pi\)
\(278\) −3607.85 −0.778361
\(279\) −683.727 −0.146716
\(280\) 0 0
\(281\) −8041.32 −1.70713 −0.853567 0.520982i \(-0.825566\pi\)
−0.853567 + 0.520982i \(0.825566\pi\)
\(282\) 6173.37 1.30361
\(283\) −644.465 −0.135369 −0.0676846 0.997707i \(-0.521561\pi\)
−0.0676846 + 0.997707i \(0.521561\pi\)
\(284\) 1899.11 0.396802
\(285\) 630.906 0.131129
\(286\) 2073.08 0.428615
\(287\) 0 0
\(288\) 1699.13 0.347647
\(289\) 1034.97 0.210660
\(290\) 3872.92 0.784227
\(291\) −861.290 −0.173504
\(292\) 624.466 0.125151
\(293\) 6451.96 1.28644 0.643221 0.765681i \(-0.277598\pi\)
0.643221 + 0.765681i \(0.277598\pi\)
\(294\) 0 0
\(295\) 9390.67 1.85338
\(296\) −3966.79 −0.778936
\(297\) −297.000 −0.0580259
\(298\) 7966.86 1.54868
\(299\) 3122.83 0.604006
\(300\) −1700.65 −0.327290
\(301\) 0 0
\(302\) −2267.49 −0.432051
\(303\) 2342.60 0.444155
\(304\) 1066.37 0.201185
\(305\) 5299.51 0.994916
\(306\) −2472.10 −0.461832
\(307\) −4175.92 −0.776327 −0.388164 0.921590i \(-0.626890\pi\)
−0.388164 + 0.921590i \(0.626890\pi\)
\(308\) 0 0
\(309\) 3654.65 0.672834
\(310\) 4243.80 0.777521
\(311\) 8619.22 1.57155 0.785774 0.618514i \(-0.212265\pi\)
0.785774 + 0.618514i \(0.212265\pi\)
\(312\) 1874.45 0.340127
\(313\) 10300.8 1.86019 0.930093 0.367324i \(-0.119726\pi\)
0.930093 + 0.367324i \(0.119726\pi\)
\(314\) −12684.8 −2.27976
\(315\) 0 0
\(316\) −4319.43 −0.768946
\(317\) 7696.26 1.36361 0.681806 0.731533i \(-0.261195\pi\)
0.681806 + 0.731533i \(0.261195\pi\)
\(318\) 3371.60 0.594559
\(319\) −762.635 −0.133854
\(320\) −566.920 −0.0990369
\(321\) 2619.59 0.455486
\(322\) 0 0
\(323\) −1034.08 −0.178135
\(324\) 379.457 0.0650647
\(325\) −6403.25 −1.09289
\(326\) −9048.48 −1.53727
\(327\) −379.273 −0.0641402
\(328\) 3762.16 0.633325
\(329\) 0 0
\(330\) 1843.44 0.307509
\(331\) 6322.41 1.04988 0.524941 0.851138i \(-0.324087\pi\)
0.524941 + 0.851138i \(0.324087\pi\)
\(332\) 5720.77 0.945686
\(333\) −3023.53 −0.497563
\(334\) 6186.75 1.01355
\(335\) −1690.48 −0.275704
\(336\) 0 0
\(337\) 1576.06 0.254758 0.127379 0.991854i \(-0.459344\pi\)
0.127379 + 0.991854i \(0.459344\pi\)
\(338\) −2147.88 −0.345648
\(339\) −771.955 −0.123678
\(340\) 5666.80 0.903897
\(341\) −835.667 −0.132709
\(342\) 429.784 0.0679534
\(343\) 0 0
\(344\) −676.129 −0.105972
\(345\) 2776.90 0.433342
\(346\) 14940.6 2.32142
\(347\) 4989.29 0.771870 0.385935 0.922526i \(-0.373879\pi\)
0.385935 + 0.922526i \(0.373879\pi\)
\(348\) 974.369 0.150091
\(349\) −4348.98 −0.667035 −0.333518 0.942744i \(-0.608236\pi\)
−0.333518 + 0.942744i \(0.608236\pi\)
\(350\) 0 0
\(351\) 1428.72 0.217264
\(352\) 2076.72 0.314459
\(353\) 3724.71 0.561604 0.280802 0.959766i \(-0.409399\pi\)
0.280802 + 0.959766i \(0.409399\pi\)
\(354\) 6397.08 0.960455
\(355\) 6358.40 0.950617
\(356\) −7402.66 −1.10208
\(357\) 0 0
\(358\) −4807.56 −0.709741
\(359\) −5815.53 −0.854963 −0.427481 0.904024i \(-0.640599\pi\)
−0.427481 + 0.904024i \(0.640599\pi\)
\(360\) 1666.81 0.244023
\(361\) −6679.22 −0.973789
\(362\) −4266.94 −0.619518
\(363\) −363.000 −0.0524864
\(364\) 0 0
\(365\) 2090.77 0.299824
\(366\) 3610.12 0.515585
\(367\) −9298.43 −1.32255 −0.661273 0.750146i \(-0.729983\pi\)
−0.661273 + 0.750146i \(0.729983\pi\)
\(368\) 4693.55 0.664859
\(369\) 2867.56 0.404550
\(370\) 18766.6 2.63684
\(371\) 0 0
\(372\) 1067.68 0.148808
\(373\) 3697.85 0.513318 0.256659 0.966502i \(-0.417378\pi\)
0.256659 + 0.966502i \(0.417378\pi\)
\(374\) −3021.46 −0.417743
\(375\) 187.815 0.0258633
\(376\) 6822.28 0.935724
\(377\) 3668.67 0.501184
\(378\) 0 0
\(379\) 2040.70 0.276580 0.138290 0.990392i \(-0.455839\pi\)
0.138290 + 0.990392i \(0.455839\pi\)
\(380\) −985.193 −0.132998
\(381\) −224.835 −0.0302327
\(382\) −2724.14 −0.364866
\(383\) 3311.92 0.441857 0.220928 0.975290i \(-0.429091\pi\)
0.220928 + 0.975290i \(0.429091\pi\)
\(384\) 4144.83 0.550820
\(385\) 0 0
\(386\) 7192.63 0.948433
\(387\) −515.352 −0.0676921
\(388\) 1344.95 0.175978
\(389\) 13095.1 1.70680 0.853401 0.521255i \(-0.174536\pi\)
0.853401 + 0.521255i \(0.174536\pi\)
\(390\) −8867.89 −1.15139
\(391\) −4551.43 −0.588685
\(392\) 0 0
\(393\) −7908.91 −1.01514
\(394\) −5342.13 −0.683077
\(395\) −14461.8 −1.84216
\(396\) 463.781 0.0588532
\(397\) −15359.1 −1.94169 −0.970843 0.239716i \(-0.922946\pi\)
−0.970843 + 0.239716i \(0.922946\pi\)
\(398\) −16292.0 −2.05187
\(399\) 0 0
\(400\) −9623.96 −1.20299
\(401\) −11767.6 −1.46545 −0.732726 0.680524i \(-0.761752\pi\)
−0.732726 + 0.680524i \(0.761752\pi\)
\(402\) −1151.59 −0.142875
\(403\) 4019.99 0.496898
\(404\) −3658.10 −0.450488
\(405\) 1270.46 0.155875
\(406\) 0 0
\(407\) −3695.43 −0.450063
\(408\) −2731.95 −0.331500
\(409\) −5071.33 −0.613108 −0.306554 0.951853i \(-0.599176\pi\)
−0.306554 + 0.951853i \(0.599176\pi\)
\(410\) −17798.5 −2.14392
\(411\) −3440.61 −0.412927
\(412\) −5706.93 −0.682427
\(413\) 0 0
\(414\) 1891.67 0.224566
\(415\) 19153.6 2.26558
\(416\) −9990.10 −1.17742
\(417\) −3038.99 −0.356883
\(418\) 525.292 0.0614662
\(419\) −5085.27 −0.592916 −0.296458 0.955046i \(-0.595806\pi\)
−0.296458 + 0.955046i \(0.595806\pi\)
\(420\) 0 0
\(421\) 15655.8 1.81239 0.906196 0.422859i \(-0.138973\pi\)
0.906196 + 0.422859i \(0.138973\pi\)
\(422\) 15873.7 1.83109
\(423\) 5200.01 0.597715
\(424\) 3726.00 0.426770
\(425\) 9332.55 1.06517
\(426\) 4331.45 0.492628
\(427\) 0 0
\(428\) −4090.62 −0.461981
\(429\) 1746.22 0.196523
\(430\) 3198.72 0.358735
\(431\) 5775.20 0.645433 0.322717 0.946496i \(-0.395404\pi\)
0.322717 + 0.946496i \(0.395404\pi\)
\(432\) 2147.34 0.239153
\(433\) 6756.97 0.749929 0.374964 0.927039i \(-0.377655\pi\)
0.374964 + 0.927039i \(0.377655\pi\)
\(434\) 0 0
\(435\) 3262.28 0.359573
\(436\) 592.255 0.0650547
\(437\) 791.283 0.0866183
\(438\) 1424.27 0.155375
\(439\) 9068.21 0.985882 0.492941 0.870063i \(-0.335922\pi\)
0.492941 + 0.870063i \(0.335922\pi\)
\(440\) 2037.21 0.220727
\(441\) 0 0
\(442\) 14534.8 1.56414
\(443\) −7095.86 −0.761026 −0.380513 0.924776i \(-0.624252\pi\)
−0.380513 + 0.924776i \(0.624252\pi\)
\(444\) 4721.40 0.504657
\(445\) −24784.8 −2.64025
\(446\) −10697.1 −1.13570
\(447\) 6710.72 0.710081
\(448\) 0 0
\(449\) 630.680 0.0662887 0.0331443 0.999451i \(-0.489448\pi\)
0.0331443 + 0.999451i \(0.489448\pi\)
\(450\) −3878.80 −0.406330
\(451\) 3504.79 0.365929
\(452\) 1205.45 0.125441
\(453\) −1909.97 −0.198098
\(454\) 4459.78 0.461030
\(455\) 0 0
\(456\) 474.960 0.0487764
\(457\) 12432.5 1.27258 0.636290 0.771450i \(-0.280468\pi\)
0.636290 + 0.771450i \(0.280468\pi\)
\(458\) 10196.0 1.04024
\(459\) −2082.32 −0.211753
\(460\) −4336.27 −0.439521
\(461\) −13057.3 −1.31918 −0.659588 0.751627i \(-0.729269\pi\)
−0.659588 + 0.751627i \(0.729269\pi\)
\(462\) 0 0
\(463\) 8608.12 0.864046 0.432023 0.901863i \(-0.357800\pi\)
0.432023 + 0.901863i \(0.357800\pi\)
\(464\) 5513.94 0.551677
\(465\) 3574.68 0.356498
\(466\) −17700.6 −1.75958
\(467\) −14997.6 −1.48610 −0.743049 0.669237i \(-0.766621\pi\)
−0.743049 + 0.669237i \(0.766621\pi\)
\(468\) −2231.03 −0.220362
\(469\) 0 0
\(470\) −32275.8 −3.16760
\(471\) −10684.8 −1.04528
\(472\) 7069.51 0.689408
\(473\) −629.875 −0.0612298
\(474\) −9851.66 −0.954645
\(475\) −1622.50 −0.156727
\(476\) 0 0
\(477\) 2839.99 0.272609
\(478\) −16390.9 −1.56841
\(479\) 20698.8 1.97443 0.987216 0.159386i \(-0.0509515\pi\)
0.987216 + 0.159386i \(0.0509515\pi\)
\(480\) −8883.44 −0.844733
\(481\) 17776.9 1.68515
\(482\) −14770.8 −1.39583
\(483\) 0 0
\(484\) 566.844 0.0532348
\(485\) 4503.01 0.421590
\(486\) 865.457 0.0807777
\(487\) 15390.1 1.43202 0.716008 0.698092i \(-0.245968\pi\)
0.716008 + 0.698092i \(0.245968\pi\)
\(488\) 3989.59 0.370083
\(489\) −7621.80 −0.704846
\(490\) 0 0
\(491\) 10771.4 0.990030 0.495015 0.868884i \(-0.335163\pi\)
0.495015 + 0.868884i \(0.335163\pi\)
\(492\) −4477.84 −0.410318
\(493\) −5346.98 −0.488471
\(494\) −2526.93 −0.230145
\(495\) 1552.78 0.140995
\(496\) 6041.96 0.546960
\(497\) 0 0
\(498\) 13047.8 1.17407
\(499\) −5999.79 −0.538251 −0.269126 0.963105i \(-0.586735\pi\)
−0.269126 + 0.963105i \(0.586735\pi\)
\(500\) −293.284 −0.0262321
\(501\) 5211.28 0.464717
\(502\) 3520.18 0.312975
\(503\) −17610.5 −1.56106 −0.780528 0.625121i \(-0.785050\pi\)
−0.780528 + 0.625121i \(0.785050\pi\)
\(504\) 0 0
\(505\) −12247.6 −1.07923
\(506\) 2312.04 0.203128
\(507\) −1809.22 −0.158482
\(508\) 351.092 0.0306637
\(509\) 5920.42 0.515556 0.257778 0.966204i \(-0.417010\pi\)
0.257778 + 0.966204i \(0.417010\pi\)
\(510\) 12924.7 1.12219
\(511\) 0 0
\(512\) −7502.22 −0.647567
\(513\) 362.020 0.0311570
\(514\) −10172.1 −0.872907
\(515\) −19107.3 −1.63489
\(516\) 804.750 0.0686572
\(517\) 6355.57 0.540653
\(518\) 0 0
\(519\) 12584.9 1.06438
\(520\) −9800.03 −0.826461
\(521\) 15886.2 1.33587 0.667935 0.744220i \(-0.267179\pi\)
0.667935 + 0.744220i \(0.267179\pi\)
\(522\) 2222.32 0.186338
\(523\) −1728.58 −0.144523 −0.0722613 0.997386i \(-0.523022\pi\)
−0.0722613 + 0.997386i \(0.523022\pi\)
\(524\) 12350.2 1.02962
\(525\) 0 0
\(526\) −20558.9 −1.70420
\(527\) −5859.02 −0.484294
\(528\) 2624.53 0.216322
\(529\) −8684.21 −0.713751
\(530\) −17627.4 −1.44469
\(531\) 5388.45 0.440375
\(532\) 0 0
\(533\) −16859.9 −1.37013
\(534\) −16883.8 −1.36823
\(535\) −13695.8 −1.10677
\(536\) −1272.63 −0.102555
\(537\) −4049.55 −0.325420
\(538\) −5791.23 −0.464085
\(539\) 0 0
\(540\) −1983.89 −0.158098
\(541\) 1941.99 0.154331 0.0771653 0.997018i \(-0.475413\pi\)
0.0771653 + 0.997018i \(0.475413\pi\)
\(542\) −6468.51 −0.512631
\(543\) −3594.17 −0.284053
\(544\) 14560.3 1.14755
\(545\) 1982.92 0.155852
\(546\) 0 0
\(547\) −1450.56 −0.113384 −0.0566922 0.998392i \(-0.518055\pi\)
−0.0566922 + 0.998392i \(0.518055\pi\)
\(548\) 5372.70 0.418814
\(549\) 3040.91 0.236399
\(550\) −4740.76 −0.367539
\(551\) 929.593 0.0718729
\(552\) 2090.51 0.161192
\(553\) 0 0
\(554\) 28820.0 2.21019
\(555\) 15807.7 1.20901
\(556\) 4745.55 0.361972
\(557\) 20821.8 1.58393 0.791965 0.610567i \(-0.209058\pi\)
0.791965 + 0.610567i \(0.209058\pi\)
\(558\) 2435.13 0.184744
\(559\) 3030.03 0.229260
\(560\) 0 0
\(561\) −2545.06 −0.191538
\(562\) 28639.6 2.14962
\(563\) 3694.11 0.276533 0.138267 0.990395i \(-0.455847\pi\)
0.138267 + 0.990395i \(0.455847\pi\)
\(564\) −8120.10 −0.606237
\(565\) 4035.95 0.300520
\(566\) 2295.30 0.170457
\(567\) 0 0
\(568\) 4786.75 0.353605
\(569\) −16649.2 −1.22666 −0.613332 0.789825i \(-0.710171\pi\)
−0.613332 + 0.789825i \(0.710171\pi\)
\(570\) −2247.01 −0.165117
\(571\) 546.005 0.0400168 0.0200084 0.999800i \(-0.493631\pi\)
0.0200084 + 0.999800i \(0.493631\pi\)
\(572\) −2726.81 −0.199325
\(573\) −2294.62 −0.167293
\(574\) 0 0
\(575\) −7141.34 −0.517938
\(576\) −325.304 −0.0235318
\(577\) −7910.36 −0.570732 −0.285366 0.958419i \(-0.592115\pi\)
−0.285366 + 0.958419i \(0.592115\pi\)
\(578\) −3686.11 −0.265263
\(579\) 6058.56 0.434862
\(580\) −5094.22 −0.364700
\(581\) 0 0
\(582\) 3067.53 0.218476
\(583\) 3471.10 0.246584
\(584\) 1573.98 0.111527
\(585\) −7469.68 −0.527920
\(586\) −22979.0 −1.61989
\(587\) 744.718 0.0523642 0.0261821 0.999657i \(-0.491665\pi\)
0.0261821 + 0.999657i \(0.491665\pi\)
\(588\) 0 0
\(589\) 1018.61 0.0712584
\(590\) −33445.4 −2.33377
\(591\) −4499.83 −0.313195
\(592\) 26718.4 1.85493
\(593\) 8167.66 0.565608 0.282804 0.959178i \(-0.408735\pi\)
0.282804 + 0.959178i \(0.408735\pi\)
\(594\) 1057.78 0.0730661
\(595\) 0 0
\(596\) −10479.1 −0.720205
\(597\) −13723.2 −0.940795
\(598\) −11122.1 −0.760564
\(599\) 12115.4 0.826413 0.413206 0.910637i \(-0.364409\pi\)
0.413206 + 0.910637i \(0.364409\pi\)
\(600\) −4286.52 −0.291661
\(601\) −13606.0 −0.923458 −0.461729 0.887021i \(-0.652771\pi\)
−0.461729 + 0.887021i \(0.652771\pi\)
\(602\) 0 0
\(603\) −970.014 −0.0655092
\(604\) 2982.52 0.200922
\(605\) 1897.84 0.127534
\(606\) −8343.30 −0.559280
\(607\) 11404.4 0.762585 0.381293 0.924454i \(-0.375479\pi\)
0.381293 + 0.924454i \(0.375479\pi\)
\(608\) −2531.36 −0.168849
\(609\) 0 0
\(610\) −18874.5 −1.25280
\(611\) −30573.6 −2.02435
\(612\) 3251.66 0.214772
\(613\) 15266.2 1.00587 0.502934 0.864325i \(-0.332254\pi\)
0.502934 + 0.864325i \(0.332254\pi\)
\(614\) 14872.8 0.977550
\(615\) −14992.2 −0.982999
\(616\) 0 0
\(617\) 23638.9 1.54241 0.771205 0.636586i \(-0.219654\pi\)
0.771205 + 0.636586i \(0.219654\pi\)
\(618\) −13016.2 −0.847232
\(619\) −27681.1 −1.79741 −0.898706 0.438551i \(-0.855492\pi\)
−0.898706 + 0.438551i \(0.855492\pi\)
\(620\) −5582.05 −0.361581
\(621\) 1593.41 0.102965
\(622\) −30697.8 −1.97889
\(623\) 0 0
\(624\) −12625.4 −0.809966
\(625\) −16108.0 −1.03091
\(626\) −36687.0 −2.34235
\(627\) 442.469 0.0281826
\(628\) 16684.8 1.06019
\(629\) −25909.3 −1.64241
\(630\) 0 0
\(631\) 18208.7 1.14877 0.574386 0.818585i \(-0.305241\pi\)
0.574386 + 0.818585i \(0.305241\pi\)
\(632\) −10887.2 −0.685237
\(633\) 13370.9 0.839564
\(634\) −27410.6 −1.71706
\(635\) 1175.49 0.0734610
\(636\) −4434.80 −0.276496
\(637\) 0 0
\(638\) 2716.17 0.168549
\(639\) 3648.51 0.225873
\(640\) −21670.1 −1.33841
\(641\) −23373.8 −1.44026 −0.720131 0.693838i \(-0.755918\pi\)
−0.720131 + 0.693838i \(0.755918\pi\)
\(642\) −9329.80 −0.573548
\(643\) −6742.72 −0.413541 −0.206770 0.978389i \(-0.566295\pi\)
−0.206770 + 0.978389i \(0.566295\pi\)
\(644\) 0 0
\(645\) 2694.37 0.164482
\(646\) 3682.92 0.224307
\(647\) 17592.4 1.06898 0.534490 0.845175i \(-0.320504\pi\)
0.534490 + 0.845175i \(0.320504\pi\)
\(648\) 956.429 0.0579816
\(649\) 6585.89 0.398334
\(650\) 22805.5 1.37616
\(651\) 0 0
\(652\) 11901.8 0.714896
\(653\) 20074.0 1.20300 0.601498 0.798875i \(-0.294571\pi\)
0.601498 + 0.798875i \(0.294571\pi\)
\(654\) 1350.80 0.0807653
\(655\) 41349.5 2.46666
\(656\) −25340.0 −1.50817
\(657\) 1199.70 0.0712402
\(658\) 0 0
\(659\) −13778.4 −0.814460 −0.407230 0.913326i \(-0.633505\pi\)
−0.407230 + 0.913326i \(0.633505\pi\)
\(660\) −2424.75 −0.143005
\(661\) 7724.16 0.454516 0.227258 0.973835i \(-0.427024\pi\)
0.227258 + 0.973835i \(0.427024\pi\)
\(662\) −22517.6 −1.32201
\(663\) 12243.1 0.717167
\(664\) 14419.3 0.842737
\(665\) 0 0
\(666\) 10768.5 0.626531
\(667\) 4091.55 0.237519
\(668\) −8137.69 −0.471343
\(669\) −9010.49 −0.520726
\(670\) 6020.74 0.347166
\(671\) 3716.67 0.213831
\(672\) 0 0
\(673\) −18081.2 −1.03563 −0.517816 0.855492i \(-0.673255\pi\)
−0.517816 + 0.855492i \(0.673255\pi\)
\(674\) −5613.21 −0.320791
\(675\) −3267.23 −0.186305
\(676\) 2825.19 0.160741
\(677\) 23199.8 1.31705 0.658523 0.752561i \(-0.271182\pi\)
0.658523 + 0.752561i \(0.271182\pi\)
\(678\) 2749.36 0.155735
\(679\) 0 0
\(680\) 14283.3 0.805497
\(681\) 3756.60 0.211385
\(682\) 2976.27 0.167107
\(683\) 13339.6 0.747329 0.373665 0.927564i \(-0.378101\pi\)
0.373665 + 0.927564i \(0.378101\pi\)
\(684\) −565.313 −0.0316013
\(685\) 17988.3 1.00335
\(686\) 0 0
\(687\) 8588.40 0.476955
\(688\) 4554.07 0.252358
\(689\) −16697.8 −0.923274
\(690\) −9890.07 −0.545664
\(691\) 17221.4 0.948097 0.474048 0.880499i \(-0.342792\pi\)
0.474048 + 0.880499i \(0.342792\pi\)
\(692\) −19652.0 −1.07956
\(693\) 0 0
\(694\) −17769.6 −0.971938
\(695\) 15888.5 0.867175
\(696\) 2455.91 0.133752
\(697\) 24572.8 1.33538
\(698\) 15489.1 0.839930
\(699\) −14909.8 −0.806780
\(700\) 0 0
\(701\) −27196.5 −1.46533 −0.732665 0.680589i \(-0.761724\pi\)
−0.732665 + 0.680589i \(0.761724\pi\)
\(702\) −5088.48 −0.273579
\(703\) 4504.44 0.241661
\(704\) −397.594 −0.0212853
\(705\) −27186.8 −1.45236
\(706\) −13265.8 −0.707172
\(707\) 0 0
\(708\) −8414.35 −0.446654
\(709\) 22682.8 1.20151 0.600755 0.799434i \(-0.294867\pi\)
0.600755 + 0.799434i \(0.294867\pi\)
\(710\) −22645.8 −1.19702
\(711\) −8298.34 −0.437710
\(712\) −18658.5 −0.982105
\(713\) 4483.36 0.235488
\(714\) 0 0
\(715\) −9129.61 −0.477522
\(716\) 6323.58 0.330060
\(717\) −13806.5 −0.719127
\(718\) 20712.3 1.07657
\(719\) −10878.2 −0.564241 −0.282121 0.959379i \(-0.591038\pi\)
−0.282121 + 0.959379i \(0.591038\pi\)
\(720\) −11226.8 −0.581108
\(721\) 0 0
\(722\) 23788.4 1.22619
\(723\) −12441.9 −0.639997
\(724\) 5612.49 0.288103
\(725\) −8389.58 −0.429767
\(726\) 1292.84 0.0660908
\(727\) 2793.35 0.142503 0.0712514 0.997458i \(-0.477301\pi\)
0.0712514 + 0.997458i \(0.477301\pi\)
\(728\) 0 0
\(729\) 729.000 0.0370370
\(730\) −7446.38 −0.377538
\(731\) −4416.17 −0.223445
\(732\) −4748.54 −0.239769
\(733\) 7597.31 0.382828 0.191414 0.981509i \(-0.438693\pi\)
0.191414 + 0.981509i \(0.438693\pi\)
\(734\) 33116.9 1.66535
\(735\) 0 0
\(736\) −11141.6 −0.557997
\(737\) −1185.57 −0.0592553
\(738\) −10213.0 −0.509409
\(739\) −14304.7 −0.712052 −0.356026 0.934476i \(-0.615868\pi\)
−0.356026 + 0.934476i \(0.615868\pi\)
\(740\) −24684.5 −1.22625
\(741\) −2128.50 −0.105523
\(742\) 0 0
\(743\) 31212.2 1.54114 0.770569 0.637357i \(-0.219972\pi\)
0.770569 + 0.637357i \(0.219972\pi\)
\(744\) 2691.10 0.132608
\(745\) −35085.1 −1.72539
\(746\) −13170.1 −0.646369
\(747\) 10990.5 0.538317
\(748\) 3974.25 0.194269
\(749\) 0 0
\(750\) −668.915 −0.0325671
\(751\) 30743.1 1.49378 0.746891 0.664946i \(-0.231546\pi\)
0.746891 + 0.664946i \(0.231546\pi\)
\(752\) −45951.5 −2.22830
\(753\) 2965.15 0.143501
\(754\) −13066.2 −0.631090
\(755\) 9985.75 0.481349
\(756\) 0 0
\(757\) 13176.9 0.632657 0.316328 0.948650i \(-0.397550\pi\)
0.316328 + 0.948650i \(0.397550\pi\)
\(758\) −7268.07 −0.348270
\(759\) 1947.50 0.0931354
\(760\) −2483.20 −0.118520
\(761\) 10696.4 0.509520 0.254760 0.967004i \(-0.418004\pi\)
0.254760 + 0.967004i \(0.418004\pi\)
\(762\) 800.761 0.0380689
\(763\) 0 0
\(764\) 3583.17 0.169679
\(765\) 10886.8 0.514529
\(766\) −11795.6 −0.556385
\(767\) −31681.5 −1.49147
\(768\) −15629.5 −0.734350
\(769\) 7724.46 0.362225 0.181113 0.983462i \(-0.442030\pi\)
0.181113 + 0.983462i \(0.442030\pi\)
\(770\) 0 0
\(771\) −8568.30 −0.400233
\(772\) −9460.77 −0.441063
\(773\) −28801.0 −1.34010 −0.670051 0.742315i \(-0.733728\pi\)
−0.670051 + 0.742315i \(0.733728\pi\)
\(774\) 1835.45 0.0852378
\(775\) −9192.98 −0.426092
\(776\) 3389.97 0.156821
\(777\) 0 0
\(778\) −46638.7 −2.14920
\(779\) −4272.07 −0.196486
\(780\) 11664.3 0.535448
\(781\) 4459.29 0.204310
\(782\) 16210.2 0.741272
\(783\) 1871.92 0.0854369
\(784\) 0 0
\(785\) 55862.3 2.53989
\(786\) 28168.0 1.27827
\(787\) 11812.0 0.535007 0.267504 0.963557i \(-0.413801\pi\)
0.267504 + 0.963557i \(0.413801\pi\)
\(788\) 7026.72 0.317661
\(789\) −17317.4 −0.781387
\(790\) 51506.6 2.31965
\(791\) 0 0
\(792\) 1168.97 0.0524463
\(793\) −17879.1 −0.800637
\(794\) 54702.1 2.44497
\(795\) −14848.1 −0.662400
\(796\) 21429.6 0.954209
\(797\) 26884.2 1.19484 0.597420 0.801928i \(-0.296192\pi\)
0.597420 + 0.801928i \(0.296192\pi\)
\(798\) 0 0
\(799\) 44560.1 1.97300
\(800\) 22845.5 1.00964
\(801\) −14221.7 −0.627341
\(802\) 41910.9 1.84530
\(803\) 1466.30 0.0644392
\(804\) 1514.73 0.0664432
\(805\) 0 0
\(806\) −14317.4 −0.625694
\(807\) −4878.12 −0.212786
\(808\) −9220.30 −0.401447
\(809\) −18360.8 −0.797936 −0.398968 0.916965i \(-0.630632\pi\)
−0.398968 + 0.916965i \(0.630632\pi\)
\(810\) −4524.80 −0.196278
\(811\) −17033.7 −0.737528 −0.368764 0.929523i \(-0.620219\pi\)
−0.368764 + 0.929523i \(0.620219\pi\)
\(812\) 0 0
\(813\) −5448.61 −0.235044
\(814\) 13161.5 0.566718
\(815\) 39848.4 1.71267
\(816\) 18401.1 0.789420
\(817\) 767.768 0.0328774
\(818\) 18061.8 0.772026
\(819\) 0 0
\(820\) 23411.1 0.997015
\(821\) −29675.1 −1.26147 −0.630735 0.775998i \(-0.717246\pi\)
−0.630735 + 0.775998i \(0.717246\pi\)
\(822\) 12253.9 0.519957
\(823\) −24677.2 −1.04519 −0.522596 0.852581i \(-0.675036\pi\)
−0.522596 + 0.852581i \(0.675036\pi\)
\(824\) −14384.4 −0.608137
\(825\) −3993.28 −0.168519
\(826\) 0 0
\(827\) −9168.43 −0.385511 −0.192755 0.981247i \(-0.561742\pi\)
−0.192755 + 0.981247i \(0.561742\pi\)
\(828\) −2488.19 −0.104433
\(829\) −8065.03 −0.337889 −0.168945 0.985626i \(-0.554036\pi\)
−0.168945 + 0.985626i \(0.554036\pi\)
\(830\) −68216.7 −2.85281
\(831\) 24275.9 1.01338
\(832\) 1912.63 0.0796979
\(833\) 0 0
\(834\) 10823.5 0.449387
\(835\) −27245.7 −1.12919
\(836\) −690.938 −0.0285844
\(837\) 2051.18 0.0847063
\(838\) 18111.5 0.746599
\(839\) 29665.7 1.22071 0.610354 0.792129i \(-0.291027\pi\)
0.610354 + 0.792129i \(0.291027\pi\)
\(840\) 0 0
\(841\) −19582.3 −0.802915
\(842\) −55758.9 −2.28216
\(843\) 24124.0 0.985615
\(844\) −20879.3 −0.851535
\(845\) 9458.99 0.385088
\(846\) −18520.1 −0.752642
\(847\) 0 0
\(848\) −25096.5 −1.01629
\(849\) 1933.39 0.0781554
\(850\) −33238.4 −1.34126
\(851\) 19826.0 0.798622
\(852\) −5697.34 −0.229094
\(853\) 33087.0 1.32811 0.664056 0.747683i \(-0.268834\pi\)
0.664056 + 0.747683i \(0.268834\pi\)
\(854\) 0 0
\(855\) −1892.72 −0.0757071
\(856\) −10310.5 −0.411689
\(857\) 8204.78 0.327036 0.163518 0.986540i \(-0.447716\pi\)
0.163518 + 0.986540i \(0.447716\pi\)
\(858\) −6219.25 −0.247461
\(859\) −19406.0 −0.770808 −0.385404 0.922748i \(-0.625938\pi\)
−0.385404 + 0.922748i \(0.625938\pi\)
\(860\) −4207.41 −0.166827
\(861\) 0 0
\(862\) −20568.7 −0.812729
\(863\) −3352.45 −0.132235 −0.0661174 0.997812i \(-0.521061\pi\)
−0.0661174 + 0.997812i \(0.521061\pi\)
\(864\) −5097.40 −0.200714
\(865\) −65796.6 −2.58630
\(866\) −24065.3 −0.944310
\(867\) −3104.92 −0.121625
\(868\) 0 0
\(869\) −10142.4 −0.395924
\(870\) −11618.8 −0.452774
\(871\) 5703.22 0.221867
\(872\) 1492.79 0.0579727
\(873\) 2583.87 0.100173
\(874\) −2818.20 −0.109070
\(875\) 0 0
\(876\) −1873.40 −0.0722560
\(877\) −20076.9 −0.773033 −0.386516 0.922283i \(-0.626322\pi\)
−0.386516 + 0.922283i \(0.626322\pi\)
\(878\) −32296.9 −1.24142
\(879\) −19355.9 −0.742728
\(880\) −13721.6 −0.525632
\(881\) 14800.2 0.565982 0.282991 0.959123i \(-0.408673\pi\)
0.282991 + 0.959123i \(0.408673\pi\)
\(882\) 0 0
\(883\) −19955.4 −0.760534 −0.380267 0.924877i \(-0.624168\pi\)
−0.380267 + 0.924877i \(0.624168\pi\)
\(884\) −19118.2 −0.727392
\(885\) −28172.0 −1.07005
\(886\) 25272.3 0.958283
\(887\) 9205.47 0.348466 0.174233 0.984704i \(-0.444255\pi\)
0.174233 + 0.984704i \(0.444255\pi\)
\(888\) 11900.4 0.449719
\(889\) 0 0
\(890\) 88272.3 3.32460
\(891\) 891.000 0.0335013
\(892\) 14070.4 0.528151
\(893\) −7746.94 −0.290304
\(894\) −23900.6 −0.894133
\(895\) 21171.9 0.790725
\(896\) 0 0
\(897\) −9368.49 −0.348723
\(898\) −2246.20 −0.0834706
\(899\) 5267.02 0.195400
\(900\) 5101.95 0.188961
\(901\) 24336.6 0.899854
\(902\) −12482.5 −0.460778
\(903\) 0 0
\(904\) 3038.35 0.111786
\(905\) 18791.1 0.690207
\(906\) 6802.47 0.249445
\(907\) 6722.78 0.246115 0.123057 0.992400i \(-0.460730\pi\)
0.123057 + 0.992400i \(0.460730\pi\)
\(908\) −5866.13 −0.214399
\(909\) −7027.81 −0.256433
\(910\) 0 0
\(911\) 51855.3 1.88589 0.942944 0.332952i \(-0.108045\pi\)
0.942944 + 0.332952i \(0.108045\pi\)
\(912\) −3199.10 −0.116154
\(913\) 13432.9 0.486926
\(914\) −44279.1 −1.60243
\(915\) −15898.5 −0.574415
\(916\) −13411.2 −0.483755
\(917\) 0 0
\(918\) 7416.31 0.266639
\(919\) −55119.5 −1.97848 −0.989240 0.146302i \(-0.953263\pi\)
−0.989240 + 0.146302i \(0.953263\pi\)
\(920\) −10929.7 −0.391674
\(921\) 12527.8 0.448213
\(922\) 46504.4 1.66111
\(923\) −21451.5 −0.764989
\(924\) 0 0
\(925\) −40652.6 −1.44502
\(926\) −30658.3 −1.08801
\(927\) −10963.9 −0.388461
\(928\) −13089.1 −0.463007
\(929\) −31459.7 −1.11104 −0.555522 0.831502i \(-0.687482\pi\)
−0.555522 + 0.831502i \(0.687482\pi\)
\(930\) −12731.4 −0.448902
\(931\) 0 0
\(932\) 23282.4 0.818283
\(933\) −25857.7 −0.907333
\(934\) 53414.9 1.87129
\(935\) 13306.1 0.465409
\(936\) −5623.35 −0.196373
\(937\) 13745.6 0.479242 0.239621 0.970867i \(-0.422977\pi\)
0.239621 + 0.970867i \(0.422977\pi\)
\(938\) 0 0
\(939\) −30902.5 −1.07398
\(940\) 42453.6 1.47307
\(941\) 29814.2 1.03285 0.516427 0.856331i \(-0.327262\pi\)
0.516427 + 0.856331i \(0.327262\pi\)
\(942\) 38054.3 1.31622
\(943\) −18803.3 −0.649330
\(944\) −47616.7 −1.64173
\(945\) 0 0
\(946\) 2243.33 0.0771005
\(947\) 32410.4 1.11214 0.556070 0.831135i \(-0.312309\pi\)
0.556070 + 0.831135i \(0.312309\pi\)
\(948\) 12958.3 0.443951
\(949\) −7053.67 −0.241277
\(950\) 5778.61 0.197351
\(951\) −23088.8 −0.787281
\(952\) 0 0
\(953\) 8931.28 0.303581 0.151790 0.988413i \(-0.451496\pi\)
0.151790 + 0.988413i \(0.451496\pi\)
\(954\) −10114.8 −0.343269
\(955\) 11996.8 0.406499
\(956\) 21559.6 0.729381
\(957\) 2287.91 0.0772806
\(958\) −73719.9 −2.48620
\(959\) 0 0
\(960\) 1700.76 0.0571790
\(961\) −24019.6 −0.806271
\(962\) −63313.4 −2.12194
\(963\) −7858.76 −0.262975
\(964\) 19428.6 0.649122
\(965\) −31675.5 −1.05665
\(966\) 0 0
\(967\) 28665.0 0.953262 0.476631 0.879104i \(-0.341858\pi\)
0.476631 + 0.879104i \(0.341858\pi\)
\(968\) 1428.74 0.0474395
\(969\) 3102.23 0.102846
\(970\) −16037.7 −0.530866
\(971\) 40925.2 1.35258 0.676288 0.736637i \(-0.263587\pi\)
0.676288 + 0.736637i \(0.263587\pi\)
\(972\) −1138.37 −0.0375651
\(973\) 0 0
\(974\) −54812.6 −1.80319
\(975\) 19209.8 0.630979
\(976\) −26871.9 −0.881300
\(977\) −21288.8 −0.697124 −0.348562 0.937286i \(-0.613330\pi\)
−0.348562 + 0.937286i \(0.613330\pi\)
\(978\) 27145.4 0.887541
\(979\) −17382.1 −0.567452
\(980\) 0 0
\(981\) 1137.82 0.0370314
\(982\) −38362.8 −1.24664
\(983\) 53128.8 1.72385 0.861925 0.507035i \(-0.169259\pi\)
0.861925 + 0.507035i \(0.169259\pi\)
\(984\) −11286.5 −0.365650
\(985\) 23526.1 0.761019
\(986\) 19043.6 0.615082
\(987\) 0 0
\(988\) 3323.77 0.107028
\(989\) 3379.29 0.108650
\(990\) −5530.31 −0.177540
\(991\) −17978.4 −0.576290 −0.288145 0.957587i \(-0.593039\pi\)
−0.288145 + 0.957587i \(0.593039\pi\)
\(992\) −14342.5 −0.459048
\(993\) −18967.2 −0.606150
\(994\) 0 0
\(995\) 71748.1 2.28600
\(996\) −17162.3 −0.545992
\(997\) −10063.9 −0.319687 −0.159844 0.987142i \(-0.551099\pi\)
−0.159844 + 0.987142i \(0.551099\pi\)
\(998\) 21368.6 0.677766
\(999\) 9070.59 0.287268
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1617.4.a.i.1.1 2
7.6 odd 2 231.4.a.f.1.1 2
21.20 even 2 693.4.a.k.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
231.4.a.f.1.1 2 7.6 odd 2
693.4.a.k.1.2 2 21.20 even 2
1617.4.a.i.1.1 2 1.1 even 1 trivial