Properties

Label 1617.4.a.h.1.2
Level $1617$
Weight $4$
Character 1617.1
Self dual yes
Analytic conductor $95.406$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1617,4,Mod(1,1617)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1617, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1617.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1617 = 3 \cdot 7^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1617.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(95.4060884793\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{17}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 231)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-1.56155\) of defining polynomial
Character \(\chi\) \(=\) 1617.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.561553 q^{2} -3.00000 q^{3} -7.68466 q^{4} -18.6847 q^{5} -1.68466 q^{6} -8.80776 q^{8} +9.00000 q^{9} -10.4924 q^{10} -11.0000 q^{11} +23.0540 q^{12} -36.4384 q^{13} +56.0540 q^{15} +56.5312 q^{16} -41.1231 q^{17} +5.05398 q^{18} +23.6998 q^{19} +143.585 q^{20} -6.17708 q^{22} -140.047 q^{23} +26.4233 q^{24} +224.116 q^{25} -20.4621 q^{26} -27.0000 q^{27} +278.455 q^{29} +31.4773 q^{30} -191.447 q^{31} +102.207 q^{32} +33.0000 q^{33} -23.0928 q^{34} -69.1619 q^{36} +196.115 q^{37} +13.3087 q^{38} +109.315 q^{39} +164.570 q^{40} +322.695 q^{41} -3.67615 q^{43} +84.5312 q^{44} -168.162 q^{45} -78.6440 q^{46} +397.596 q^{47} -169.594 q^{48} +125.853 q^{50} +123.369 q^{51} +280.017 q^{52} +597.508 q^{53} -15.1619 q^{54} +205.531 q^{55} -71.0994 q^{57} +156.367 q^{58} -668.779 q^{59} -430.756 q^{60} +667.788 q^{61} -107.508 q^{62} -394.855 q^{64} +680.840 q^{65} +18.5312 q^{66} -730.762 q^{67} +316.017 q^{68} +420.142 q^{69} -31.2651 q^{71} -79.2699 q^{72} +434.408 q^{73} +110.129 q^{74} -672.349 q^{75} -182.125 q^{76} +61.3863 q^{78} -782.004 q^{79} -1056.27 q^{80} +81.0000 q^{81} +181.210 q^{82} +426.705 q^{83} +768.371 q^{85} -2.06435 q^{86} -835.366 q^{87} +96.8854 q^{88} +899.693 q^{89} -94.4318 q^{90} +1076.22 q^{92} +574.341 q^{93} +223.271 q^{94} -442.823 q^{95} -306.622 q^{96} +942.716 q^{97} -99.0000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 3 q^{2} - 6 q^{3} - 3 q^{4} - 25 q^{5} + 9 q^{6} + 3 q^{8} + 18 q^{9} + 12 q^{10} - 22 q^{11} + 9 q^{12} - 77 q^{13} + 75 q^{15} - 23 q^{16} - 74 q^{17} - 27 q^{18} + 101 q^{19} + 114 q^{20} + 33 q^{22}+ \cdots - 198 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.561553 0.198539 0.0992695 0.995061i \(-0.468349\pi\)
0.0992695 + 0.995061i \(0.468349\pi\)
\(3\) −3.00000 −0.577350
\(4\) −7.68466 −0.960582
\(5\) −18.6847 −1.67121 −0.835603 0.549333i \(-0.814882\pi\)
−0.835603 + 0.549333i \(0.814882\pi\)
\(6\) −1.68466 −0.114626
\(7\) 0 0
\(8\) −8.80776 −0.389252
\(9\) 9.00000 0.333333
\(10\) −10.4924 −0.331800
\(11\) −11.0000 −0.301511
\(12\) 23.0540 0.554592
\(13\) −36.4384 −0.777401 −0.388700 0.921364i \(-0.627076\pi\)
−0.388700 + 0.921364i \(0.627076\pi\)
\(14\) 0 0
\(15\) 56.0540 0.964872
\(16\) 56.5312 0.883301
\(17\) −41.1231 −0.586695 −0.293348 0.956006i \(-0.594769\pi\)
−0.293348 + 0.956006i \(0.594769\pi\)
\(18\) 5.05398 0.0661796
\(19\) 23.6998 0.286164 0.143082 0.989711i \(-0.454299\pi\)
0.143082 + 0.989711i \(0.454299\pi\)
\(20\) 143.585 1.60533
\(21\) 0 0
\(22\) −6.17708 −0.0598617
\(23\) −140.047 −1.26965 −0.634824 0.772657i \(-0.718927\pi\)
−0.634824 + 0.772657i \(0.718927\pi\)
\(24\) 26.4233 0.224735
\(25\) 224.116 1.79293
\(26\) −20.4621 −0.154344
\(27\) −27.0000 −0.192450
\(28\) 0 0
\(29\) 278.455 1.78303 0.891515 0.452991i \(-0.149643\pi\)
0.891515 + 0.452991i \(0.149643\pi\)
\(30\) 31.4773 0.191565
\(31\) −191.447 −1.10919 −0.554595 0.832120i \(-0.687127\pi\)
−0.554595 + 0.832120i \(0.687127\pi\)
\(32\) 102.207 0.564621
\(33\) 33.0000 0.174078
\(34\) −23.0928 −0.116482
\(35\) 0 0
\(36\) −69.1619 −0.320194
\(37\) 196.115 0.871379 0.435690 0.900097i \(-0.356504\pi\)
0.435690 + 0.900097i \(0.356504\pi\)
\(38\) 13.3087 0.0568146
\(39\) 109.315 0.448832
\(40\) 164.570 0.650520
\(41\) 322.695 1.22918 0.614591 0.788846i \(-0.289321\pi\)
0.614591 + 0.788846i \(0.289321\pi\)
\(42\) 0 0
\(43\) −3.67615 −0.0130374 −0.00651869 0.999979i \(-0.502075\pi\)
−0.00651869 + 0.999979i \(0.502075\pi\)
\(44\) 84.5312 0.289626
\(45\) −168.162 −0.557069
\(46\) −78.6440 −0.252074
\(47\) 397.596 1.23394 0.616971 0.786986i \(-0.288360\pi\)
0.616971 + 0.786986i \(0.288360\pi\)
\(48\) −169.594 −0.509974
\(49\) 0 0
\(50\) 125.853 0.355967
\(51\) 123.369 0.338729
\(52\) 280.017 0.746757
\(53\) 597.508 1.54857 0.774283 0.632840i \(-0.218111\pi\)
0.774283 + 0.632840i \(0.218111\pi\)
\(54\) −15.1619 −0.0382088
\(55\) 205.531 0.503888
\(56\) 0 0
\(57\) −71.0994 −0.165217
\(58\) 156.367 0.354001
\(59\) −668.779 −1.47572 −0.737861 0.674952i \(-0.764164\pi\)
−0.737861 + 0.674952i \(0.764164\pi\)
\(60\) −430.756 −0.926839
\(61\) 667.788 1.40166 0.700832 0.713327i \(-0.252812\pi\)
0.700832 + 0.713327i \(0.252812\pi\)
\(62\) −107.508 −0.220217
\(63\) 0 0
\(64\) −394.855 −0.771201
\(65\) 680.840 1.29920
\(66\) 18.5312 0.0345612
\(67\) −730.762 −1.33249 −0.666245 0.745733i \(-0.732099\pi\)
−0.666245 + 0.745733i \(0.732099\pi\)
\(68\) 316.017 0.563569
\(69\) 420.142 0.733031
\(70\) 0 0
\(71\) −31.2651 −0.0522603 −0.0261302 0.999659i \(-0.508318\pi\)
−0.0261302 + 0.999659i \(0.508318\pi\)
\(72\) −79.2699 −0.129751
\(73\) 434.408 0.696488 0.348244 0.937404i \(-0.386778\pi\)
0.348244 + 0.937404i \(0.386778\pi\)
\(74\) 110.129 0.173003
\(75\) −672.349 −1.03515
\(76\) −182.125 −0.274884
\(77\) 0 0
\(78\) 61.3863 0.0891107
\(79\) −782.004 −1.11370 −0.556850 0.830613i \(-0.687990\pi\)
−0.556850 + 0.830613i \(0.687990\pi\)
\(80\) −1056.27 −1.47618
\(81\) 81.0000 0.111111
\(82\) 181.210 0.244041
\(83\) 426.705 0.564300 0.282150 0.959370i \(-0.408952\pi\)
0.282150 + 0.959370i \(0.408952\pi\)
\(84\) 0 0
\(85\) 768.371 0.980489
\(86\) −2.06435 −0.00258843
\(87\) −835.366 −1.02943
\(88\) 96.8854 0.117364
\(89\) 899.693 1.07154 0.535771 0.844363i \(-0.320021\pi\)
0.535771 + 0.844363i \(0.320021\pi\)
\(90\) −94.4318 −0.110600
\(91\) 0 0
\(92\) 1076.22 1.21960
\(93\) 574.341 0.640391
\(94\) 223.271 0.244986
\(95\) −442.823 −0.478239
\(96\) −306.622 −0.325984
\(97\) 942.716 0.986786 0.493393 0.869806i \(-0.335756\pi\)
0.493393 + 0.869806i \(0.335756\pi\)
\(98\) 0 0
\(99\) −99.0000 −0.100504
\(100\) −1722.26 −1.72226
\(101\) −366.945 −0.361509 −0.180754 0.983528i \(-0.557854\pi\)
−0.180754 + 0.983528i \(0.557854\pi\)
\(102\) 69.2784 0.0672508
\(103\) −1007.35 −0.963658 −0.481829 0.876265i \(-0.660027\pi\)
−0.481829 + 0.876265i \(0.660027\pi\)
\(104\) 320.941 0.302605
\(105\) 0 0
\(106\) 335.532 0.307451
\(107\) −1690.80 −1.52763 −0.763814 0.645437i \(-0.776675\pi\)
−0.763814 + 0.645437i \(0.776675\pi\)
\(108\) 207.486 0.184864
\(109\) −1808.57 −1.58926 −0.794631 0.607093i \(-0.792336\pi\)
−0.794631 + 0.607093i \(0.792336\pi\)
\(110\) 115.417 0.100041
\(111\) −588.344 −0.503091
\(112\) 0 0
\(113\) 952.557 0.793000 0.396500 0.918035i \(-0.370225\pi\)
0.396500 + 0.918035i \(0.370225\pi\)
\(114\) −39.9261 −0.0328019
\(115\) 2616.74 2.12184
\(116\) −2139.84 −1.71275
\(117\) −327.946 −0.259134
\(118\) −375.555 −0.292988
\(119\) 0 0
\(120\) −493.710 −0.375578
\(121\) 121.000 0.0909091
\(122\) 374.998 0.278285
\(123\) −968.085 −0.709669
\(124\) 1471.20 1.06547
\(125\) −1851.96 −1.32515
\(126\) 0 0
\(127\) 252.951 0.176738 0.0883691 0.996088i \(-0.471834\pi\)
0.0883691 + 0.996088i \(0.471834\pi\)
\(128\) −1039.39 −0.717735
\(129\) 11.0284 0.00752713
\(130\) 382.328 0.257941
\(131\) 1497.38 0.998679 0.499339 0.866406i \(-0.333576\pi\)
0.499339 + 0.866406i \(0.333576\pi\)
\(132\) −253.594 −0.167216
\(133\) 0 0
\(134\) −410.362 −0.264551
\(135\) 504.486 0.321624
\(136\) 362.203 0.228372
\(137\) −1207.56 −0.753056 −0.376528 0.926405i \(-0.622882\pi\)
−0.376528 + 0.926405i \(0.622882\pi\)
\(138\) 235.932 0.145535
\(139\) −212.519 −0.129681 −0.0648404 0.997896i \(-0.520654\pi\)
−0.0648404 + 0.997896i \(0.520654\pi\)
\(140\) 0 0
\(141\) −1192.79 −0.712417
\(142\) −17.5570 −0.0103757
\(143\) 400.823 0.234395
\(144\) 508.781 0.294434
\(145\) −5202.85 −2.97981
\(146\) 243.943 0.138280
\(147\) 0 0
\(148\) −1507.07 −0.837032
\(149\) 879.656 0.483653 0.241826 0.970320i \(-0.422254\pi\)
0.241826 + 0.970320i \(0.422254\pi\)
\(150\) −377.560 −0.205517
\(151\) −1215.18 −0.654899 −0.327450 0.944869i \(-0.606189\pi\)
−0.327450 + 0.944869i \(0.606189\pi\)
\(152\) −208.742 −0.111390
\(153\) −370.108 −0.195565
\(154\) 0 0
\(155\) 3577.12 1.85369
\(156\) −840.051 −0.431140
\(157\) −1226.57 −0.623507 −0.311754 0.950163i \(-0.600916\pi\)
−0.311754 + 0.950163i \(0.600916\pi\)
\(158\) −439.136 −0.221113
\(159\) −1792.52 −0.894065
\(160\) −1909.71 −0.943599
\(161\) 0 0
\(162\) 45.4858 0.0220599
\(163\) −441.224 −0.212021 −0.106010 0.994365i \(-0.533808\pi\)
−0.106010 + 0.994365i \(0.533808\pi\)
\(164\) −2479.80 −1.18073
\(165\) −616.594 −0.290920
\(166\) 239.617 0.112036
\(167\) 1793.53 0.831064 0.415532 0.909579i \(-0.363595\pi\)
0.415532 + 0.909579i \(0.363595\pi\)
\(168\) 0 0
\(169\) −869.240 −0.395648
\(170\) 431.481 0.194665
\(171\) 213.298 0.0953879
\(172\) 28.2499 0.0125235
\(173\) −3825.04 −1.68099 −0.840497 0.541816i \(-0.817737\pi\)
−0.840497 + 0.541816i \(0.817737\pi\)
\(174\) −469.102 −0.204383
\(175\) 0 0
\(176\) −621.844 −0.266325
\(177\) 2006.34 0.852009
\(178\) 505.225 0.212743
\(179\) 1315.65 0.549365 0.274683 0.961535i \(-0.411427\pi\)
0.274683 + 0.961535i \(0.411427\pi\)
\(180\) 1292.27 0.535111
\(181\) −674.682 −0.277065 −0.138532 0.990358i \(-0.544238\pi\)
−0.138532 + 0.990358i \(0.544238\pi\)
\(182\) 0 0
\(183\) −2003.36 −0.809251
\(184\) 1233.50 0.494213
\(185\) −3664.33 −1.45626
\(186\) 322.523 0.127143
\(187\) 452.354 0.176895
\(188\) −3055.39 −1.18530
\(189\) 0 0
\(190\) −248.668 −0.0949490
\(191\) 1915.69 0.725730 0.362865 0.931842i \(-0.381799\pi\)
0.362865 + 0.931842i \(0.381799\pi\)
\(192\) 1184.57 0.445253
\(193\) −2394.71 −0.893134 −0.446567 0.894750i \(-0.647354\pi\)
−0.446567 + 0.894750i \(0.647354\pi\)
\(194\) 529.385 0.195915
\(195\) −2042.52 −0.750092
\(196\) 0 0
\(197\) 1356.81 0.490703 0.245351 0.969434i \(-0.421097\pi\)
0.245351 + 0.969434i \(0.421097\pi\)
\(198\) −55.5937 −0.0199539
\(199\) −2121.45 −0.755707 −0.377854 0.925865i \(-0.623338\pi\)
−0.377854 + 0.925865i \(0.623338\pi\)
\(200\) −1973.96 −0.697902
\(201\) 2192.29 0.769313
\(202\) −206.059 −0.0717736
\(203\) 0 0
\(204\) −948.051 −0.325377
\(205\) −6029.45 −2.05422
\(206\) −565.678 −0.191324
\(207\) −1260.43 −0.423216
\(208\) −2059.91 −0.686678
\(209\) −260.698 −0.0862816
\(210\) 0 0
\(211\) 4492.12 1.46564 0.732821 0.680421i \(-0.238203\pi\)
0.732821 + 0.680421i \(0.238203\pi\)
\(212\) −4591.64 −1.48752
\(213\) 93.7953 0.0301725
\(214\) −949.476 −0.303294
\(215\) 68.6876 0.0217882
\(216\) 237.810 0.0749116
\(217\) 0 0
\(218\) −1015.61 −0.315530
\(219\) −1303.22 −0.402118
\(220\) −1579.44 −0.484026
\(221\) 1498.46 0.456097
\(222\) −330.386 −0.0998832
\(223\) −5142.35 −1.54420 −0.772101 0.635499i \(-0.780794\pi\)
−0.772101 + 0.635499i \(0.780794\pi\)
\(224\) 0 0
\(225\) 2017.05 0.597644
\(226\) 534.911 0.157441
\(227\) −2987.86 −0.873618 −0.436809 0.899554i \(-0.643891\pi\)
−0.436809 + 0.899554i \(0.643891\pi\)
\(228\) 546.375 0.158704
\(229\) 5121.38 1.47786 0.738931 0.673781i \(-0.235331\pi\)
0.738931 + 0.673781i \(0.235331\pi\)
\(230\) 1469.44 0.421268
\(231\) 0 0
\(232\) −2452.57 −0.694048
\(233\) 1103.58 0.310291 0.155146 0.987892i \(-0.450415\pi\)
0.155146 + 0.987892i \(0.450415\pi\)
\(234\) −184.159 −0.0514481
\(235\) −7428.94 −2.06217
\(236\) 5139.34 1.41755
\(237\) 2346.01 0.642995
\(238\) 0 0
\(239\) −1798.18 −0.486671 −0.243336 0.969942i \(-0.578242\pi\)
−0.243336 + 0.969942i \(0.578242\pi\)
\(240\) 3168.80 0.852272
\(241\) 7342.09 1.96243 0.981215 0.192919i \(-0.0617956\pi\)
0.981215 + 0.192919i \(0.0617956\pi\)
\(242\) 67.9479 0.0180490
\(243\) −243.000 −0.0641500
\(244\) −5131.72 −1.34641
\(245\) 0 0
\(246\) −543.631 −0.140897
\(247\) −863.584 −0.222464
\(248\) 1686.22 0.431754
\(249\) −1280.11 −0.325799
\(250\) −1039.97 −0.263094
\(251\) −1799.05 −0.452411 −0.226206 0.974080i \(-0.572632\pi\)
−0.226206 + 0.974080i \(0.572632\pi\)
\(252\) 0 0
\(253\) 1540.52 0.382813
\(254\) 142.045 0.0350894
\(255\) −2305.11 −0.566086
\(256\) 2575.17 0.628703
\(257\) 5282.71 1.28220 0.641102 0.767455i \(-0.278477\pi\)
0.641102 + 0.767455i \(0.278477\pi\)
\(258\) 6.19305 0.00149443
\(259\) 0 0
\(260\) −5232.02 −1.24799
\(261\) 2506.10 0.594343
\(262\) 840.859 0.198277
\(263\) 3275.55 0.767981 0.383990 0.923337i \(-0.374550\pi\)
0.383990 + 0.923337i \(0.374550\pi\)
\(264\) −290.656 −0.0677601
\(265\) −11164.2 −2.58797
\(266\) 0 0
\(267\) −2699.08 −0.618655
\(268\) 5615.66 1.27997
\(269\) −3682.35 −0.834636 −0.417318 0.908761i \(-0.637030\pi\)
−0.417318 + 0.908761i \(0.637030\pi\)
\(270\) 283.295 0.0638548
\(271\) 7301.19 1.63659 0.818295 0.574799i \(-0.194920\pi\)
0.818295 + 0.574799i \(0.194920\pi\)
\(272\) −2324.74 −0.518228
\(273\) 0 0
\(274\) −678.108 −0.149511
\(275\) −2465.28 −0.540589
\(276\) −3228.65 −0.704137
\(277\) 9035.64 1.95993 0.979963 0.199182i \(-0.0638283\pi\)
0.979963 + 0.199182i \(0.0638283\pi\)
\(278\) −119.341 −0.0257467
\(279\) −1723.02 −0.369730
\(280\) 0 0
\(281\) 1651.82 0.350674 0.175337 0.984509i \(-0.443899\pi\)
0.175337 + 0.984509i \(0.443899\pi\)
\(282\) −669.813 −0.141442
\(283\) −3091.62 −0.649391 −0.324695 0.945819i \(-0.605262\pi\)
−0.324695 + 0.945819i \(0.605262\pi\)
\(284\) 240.262 0.0502004
\(285\) 1328.47 0.276111
\(286\) 225.083 0.0465365
\(287\) 0 0
\(288\) 919.867 0.188207
\(289\) −3221.89 −0.655789
\(290\) −2921.67 −0.591609
\(291\) −2828.15 −0.569721
\(292\) −3338.28 −0.669034
\(293\) −2231.84 −0.445001 −0.222500 0.974933i \(-0.571422\pi\)
−0.222500 + 0.974933i \(0.571422\pi\)
\(294\) 0 0
\(295\) 12495.9 2.46624
\(296\) −1727.33 −0.339186
\(297\) 297.000 0.0580259
\(298\) 493.973 0.0960239
\(299\) 5103.11 0.987024
\(300\) 5166.78 0.994346
\(301\) 0 0
\(302\) −682.387 −0.130023
\(303\) 1100.83 0.208717
\(304\) 1339.78 0.252769
\(305\) −12477.4 −2.34247
\(306\) −207.835 −0.0388273
\(307\) 9667.03 1.79715 0.898577 0.438816i \(-0.144602\pi\)
0.898577 + 0.438816i \(0.144602\pi\)
\(308\) 0 0
\(309\) 3022.04 0.556368
\(310\) 2008.74 0.368029
\(311\) 7170.97 1.30749 0.653743 0.756717i \(-0.273198\pi\)
0.653743 + 0.756717i \(0.273198\pi\)
\(312\) −962.824 −0.174709
\(313\) −295.578 −0.0533771 −0.0266886 0.999644i \(-0.508496\pi\)
−0.0266886 + 0.999644i \(0.508496\pi\)
\(314\) −688.782 −0.123790
\(315\) 0 0
\(316\) 6009.43 1.06980
\(317\) 7189.81 1.27388 0.636940 0.770914i \(-0.280200\pi\)
0.636940 + 0.770914i \(0.280200\pi\)
\(318\) −1006.60 −0.177507
\(319\) −3063.01 −0.537604
\(320\) 7377.73 1.28884
\(321\) 5072.41 0.881976
\(322\) 0 0
\(323\) −974.610 −0.167891
\(324\) −622.457 −0.106731
\(325\) −8166.46 −1.39383
\(326\) −247.771 −0.0420943
\(327\) 5425.71 0.917561
\(328\) −2842.22 −0.478462
\(329\) 0 0
\(330\) −346.250 −0.0577589
\(331\) −2878.87 −0.478058 −0.239029 0.971012i \(-0.576829\pi\)
−0.239029 + 0.971012i \(0.576829\pi\)
\(332\) −3279.08 −0.542057
\(333\) 1765.03 0.290460
\(334\) 1007.16 0.164999
\(335\) 13654.0 2.22687
\(336\) 0 0
\(337\) −11639.7 −1.88146 −0.940731 0.339153i \(-0.889860\pi\)
−0.940731 + 0.339153i \(0.889860\pi\)
\(338\) −488.124 −0.0785516
\(339\) −2857.67 −0.457839
\(340\) −5904.67 −0.941840
\(341\) 2105.92 0.334433
\(342\) 119.778 0.0189382
\(343\) 0 0
\(344\) 32.3786 0.00507482
\(345\) −7850.21 −1.22505
\(346\) −2147.96 −0.333743
\(347\) −4752.91 −0.735302 −0.367651 0.929964i \(-0.619838\pi\)
−0.367651 + 0.929964i \(0.619838\pi\)
\(348\) 6419.51 0.988855
\(349\) 7420.08 1.13807 0.569037 0.822312i \(-0.307316\pi\)
0.569037 + 0.822312i \(0.307316\pi\)
\(350\) 0 0
\(351\) 983.838 0.149611
\(352\) −1124.28 −0.170240
\(353\) 517.851 0.0780805 0.0390403 0.999238i \(-0.487570\pi\)
0.0390403 + 0.999238i \(0.487570\pi\)
\(354\) 1126.66 0.169157
\(355\) 584.178 0.0873378
\(356\) −6913.83 −1.02930
\(357\) 0 0
\(358\) 738.808 0.109070
\(359\) −9874.35 −1.45167 −0.725833 0.687871i \(-0.758546\pi\)
−0.725833 + 0.687871i \(0.758546\pi\)
\(360\) 1481.13 0.216840
\(361\) −6297.32 −0.918110
\(362\) −378.869 −0.0550081
\(363\) −363.000 −0.0524864
\(364\) 0 0
\(365\) −8116.77 −1.16398
\(366\) −1124.99 −0.160668
\(367\) −2098.51 −0.298477 −0.149239 0.988801i \(-0.547682\pi\)
−0.149239 + 0.988801i \(0.547682\pi\)
\(368\) −7917.05 −1.12148
\(369\) 2904.26 0.409728
\(370\) −2057.72 −0.289123
\(371\) 0 0
\(372\) −4413.61 −0.615148
\(373\) −19.4150 −0.00269510 −0.00134755 0.999999i \(-0.500429\pi\)
−0.00134755 + 0.999999i \(0.500429\pi\)
\(374\) 254.021 0.0351206
\(375\) 5555.87 0.765077
\(376\) −3501.93 −0.480314
\(377\) −10146.5 −1.38613
\(378\) 0 0
\(379\) 12541.3 1.69974 0.849869 0.526994i \(-0.176681\pi\)
0.849869 + 0.526994i \(0.176681\pi\)
\(380\) 3402.94 0.459388
\(381\) −758.852 −0.102040
\(382\) 1075.76 0.144086
\(383\) −9131.73 −1.21830 −0.609151 0.793054i \(-0.708490\pi\)
−0.609151 + 0.793054i \(0.708490\pi\)
\(384\) 3118.17 0.414384
\(385\) 0 0
\(386\) −1344.76 −0.177322
\(387\) −33.0853 −0.00434579
\(388\) −7244.45 −0.947890
\(389\) 9542.57 1.24377 0.621886 0.783108i \(-0.286367\pi\)
0.621886 + 0.783108i \(0.286367\pi\)
\(390\) −1146.98 −0.148922
\(391\) 5759.18 0.744896
\(392\) 0 0
\(393\) −4492.15 −0.576587
\(394\) 761.919 0.0974236
\(395\) 14611.5 1.86122
\(396\) 760.781 0.0965422
\(397\) −5322.85 −0.672912 −0.336456 0.941699i \(-0.609228\pi\)
−0.336456 + 0.941699i \(0.609228\pi\)
\(398\) −1191.31 −0.150037
\(399\) 0 0
\(400\) 12669.6 1.58370
\(401\) 5875.92 0.731744 0.365872 0.930665i \(-0.380771\pi\)
0.365872 + 0.930665i \(0.380771\pi\)
\(402\) 1231.08 0.152739
\(403\) 6976.03 0.862285
\(404\) 2819.85 0.347259
\(405\) −1513.46 −0.185690
\(406\) 0 0
\(407\) −2157.26 −0.262731
\(408\) −1086.61 −0.131851
\(409\) 6658.52 0.804994 0.402497 0.915421i \(-0.368142\pi\)
0.402497 + 0.915421i \(0.368142\pi\)
\(410\) −3385.85 −0.407842
\(411\) 3622.68 0.434777
\(412\) 7741.11 0.925673
\(413\) 0 0
\(414\) −707.796 −0.0840248
\(415\) −7972.83 −0.943062
\(416\) −3724.28 −0.438937
\(417\) 637.557 0.0748712
\(418\) −146.396 −0.0171303
\(419\) −10913.7 −1.27248 −0.636238 0.771493i \(-0.719510\pi\)
−0.636238 + 0.771493i \(0.719510\pi\)
\(420\) 0 0
\(421\) 3936.75 0.455737 0.227868 0.973692i \(-0.426824\pi\)
0.227868 + 0.973692i \(0.426824\pi\)
\(422\) 2522.56 0.290987
\(423\) 3578.36 0.411314
\(424\) −5262.71 −0.602782
\(425\) −9216.36 −1.05190
\(426\) 52.6710 0.00599042
\(427\) 0 0
\(428\) 12993.2 1.46741
\(429\) −1202.47 −0.135328
\(430\) 38.5717 0.00432580
\(431\) 13769.3 1.53885 0.769424 0.638738i \(-0.220543\pi\)
0.769424 + 0.638738i \(0.220543\pi\)
\(432\) −1526.34 −0.169991
\(433\) −2858.51 −0.317254 −0.158627 0.987339i \(-0.550707\pi\)
−0.158627 + 0.987339i \(0.550707\pi\)
\(434\) 0 0
\(435\) 15608.5 1.72040
\(436\) 13898.2 1.52662
\(437\) −3319.10 −0.363327
\(438\) −731.829 −0.0798360
\(439\) −8408.98 −0.914211 −0.457106 0.889412i \(-0.651114\pi\)
−0.457106 + 0.889412i \(0.651114\pi\)
\(440\) −1810.27 −0.196139
\(441\) 0 0
\(442\) 841.466 0.0905530
\(443\) −3537.39 −0.379383 −0.189692 0.981844i \(-0.560749\pi\)
−0.189692 + 0.981844i \(0.560749\pi\)
\(444\) 4521.22 0.483260
\(445\) −16810.5 −1.79077
\(446\) −2887.70 −0.306584
\(447\) −2638.97 −0.279237
\(448\) 0 0
\(449\) 473.820 0.0498016 0.0249008 0.999690i \(-0.492073\pi\)
0.0249008 + 0.999690i \(0.492073\pi\)
\(450\) 1132.68 0.118656
\(451\) −3549.65 −0.370613
\(452\) −7320.07 −0.761742
\(453\) 3645.53 0.378106
\(454\) −1677.84 −0.173447
\(455\) 0 0
\(456\) 626.227 0.0643109
\(457\) 535.534 0.0548167 0.0274083 0.999624i \(-0.491275\pi\)
0.0274083 + 0.999624i \(0.491275\pi\)
\(458\) 2875.93 0.293413
\(459\) 1110.32 0.112910
\(460\) −20108.7 −2.03820
\(461\) −1075.05 −0.108612 −0.0543058 0.998524i \(-0.517295\pi\)
−0.0543058 + 0.998524i \(0.517295\pi\)
\(462\) 0 0
\(463\) −11373.8 −1.14165 −0.570826 0.821071i \(-0.693377\pi\)
−0.570826 + 0.821071i \(0.693377\pi\)
\(464\) 15741.4 1.57495
\(465\) −10731.4 −1.07023
\(466\) 619.718 0.0616049
\(467\) 15171.1 1.50328 0.751642 0.659572i \(-0.229262\pi\)
0.751642 + 0.659572i \(0.229262\pi\)
\(468\) 2520.15 0.248919
\(469\) 0 0
\(470\) −4171.74 −0.409421
\(471\) 3679.70 0.359982
\(472\) 5890.45 0.574428
\(473\) 40.4376 0.00393092
\(474\) 1317.41 0.127660
\(475\) 5311.52 0.513072
\(476\) 0 0
\(477\) 5377.57 0.516189
\(478\) −1009.77 −0.0966231
\(479\) 3045.24 0.290482 0.145241 0.989396i \(-0.453604\pi\)
0.145241 + 0.989396i \(0.453604\pi\)
\(480\) 5729.13 0.544787
\(481\) −7146.11 −0.677411
\(482\) 4122.97 0.389619
\(483\) 0 0
\(484\) −929.844 −0.0873257
\(485\) −17614.3 −1.64912
\(486\) −136.457 −0.0127363
\(487\) −16956.1 −1.57773 −0.788866 0.614565i \(-0.789331\pi\)
−0.788866 + 0.614565i \(0.789331\pi\)
\(488\) −5881.72 −0.545600
\(489\) 1323.67 0.122410
\(490\) 0 0
\(491\) −13667.0 −1.25618 −0.628088 0.778142i \(-0.716162\pi\)
−0.628088 + 0.778142i \(0.716162\pi\)
\(492\) 7439.40 0.681696
\(493\) −11451.0 −1.04610
\(494\) −484.948 −0.0441677
\(495\) 1849.78 0.167963
\(496\) −10822.7 −0.979748
\(497\) 0 0
\(498\) −718.851 −0.0646837
\(499\) −10939.4 −0.981394 −0.490697 0.871330i \(-0.663258\pi\)
−0.490697 + 0.871330i \(0.663258\pi\)
\(500\) 14231.7 1.27292
\(501\) −5380.60 −0.479815
\(502\) −1010.26 −0.0898213
\(503\) 6194.02 0.549061 0.274530 0.961578i \(-0.411478\pi\)
0.274530 + 0.961578i \(0.411478\pi\)
\(504\) 0 0
\(505\) 6856.24 0.604156
\(506\) 865.084 0.0760033
\(507\) 2607.72 0.228428
\(508\) −1943.84 −0.169772
\(509\) −16742.7 −1.45797 −0.728987 0.684528i \(-0.760008\pi\)
−0.728987 + 0.684528i \(0.760008\pi\)
\(510\) −1294.44 −0.112390
\(511\) 0 0
\(512\) 9761.22 0.842557
\(513\) −639.895 −0.0550722
\(514\) 2966.52 0.254567
\(515\) 18821.9 1.61047
\(516\) −84.7498 −0.00723043
\(517\) −4373.55 −0.372048
\(518\) 0 0
\(519\) 11475.1 0.970523
\(520\) −5996.68 −0.505715
\(521\) −21184.3 −1.78138 −0.890691 0.454609i \(-0.849779\pi\)
−0.890691 + 0.454609i \(0.849779\pi\)
\(522\) 1407.31 0.118000
\(523\) −7737.42 −0.646910 −0.323455 0.946244i \(-0.604844\pi\)
−0.323455 + 0.946244i \(0.604844\pi\)
\(524\) −11506.9 −0.959313
\(525\) 0 0
\(526\) 1839.39 0.152474
\(527\) 7872.89 0.650756
\(528\) 1865.53 0.153763
\(529\) 7446.25 0.612004
\(530\) −6269.30 −0.513813
\(531\) −6019.01 −0.491908
\(532\) 0 0
\(533\) −11758.5 −0.955567
\(534\) −1515.68 −0.122827
\(535\) 31592.1 2.55298
\(536\) 6436.38 0.518674
\(537\) −3946.95 −0.317176
\(538\) −2067.84 −0.165708
\(539\) 0 0
\(540\) −3876.80 −0.308946
\(541\) −12732.7 −1.01187 −0.505937 0.862571i \(-0.668853\pi\)
−0.505937 + 0.862571i \(0.668853\pi\)
\(542\) 4100.00 0.324927
\(543\) 2024.05 0.159963
\(544\) −4203.09 −0.331261
\(545\) 33792.5 2.65599
\(546\) 0 0
\(547\) 4429.06 0.346202 0.173101 0.984904i \(-0.444621\pi\)
0.173101 + 0.984904i \(0.444621\pi\)
\(548\) 9279.68 0.723372
\(549\) 6010.09 0.467221
\(550\) −1384.39 −0.107328
\(551\) 6599.34 0.510239
\(552\) −3700.51 −0.285334
\(553\) 0 0
\(554\) 5073.99 0.389121
\(555\) 10993.0 0.840769
\(556\) 1633.14 0.124569
\(557\) 6080.68 0.462562 0.231281 0.972887i \(-0.425708\pi\)
0.231281 + 0.972887i \(0.425708\pi\)
\(558\) −967.568 −0.0734058
\(559\) 133.953 0.0101353
\(560\) 0 0
\(561\) −1357.06 −0.102131
\(562\) 927.584 0.0696223
\(563\) 12141.8 0.908907 0.454453 0.890771i \(-0.349835\pi\)
0.454453 + 0.890771i \(0.349835\pi\)
\(564\) 9166.16 0.684335
\(565\) −17798.2 −1.32527
\(566\) −1736.11 −0.128929
\(567\) 0 0
\(568\) 275.376 0.0203424
\(569\) 22369.0 1.64808 0.824039 0.566533i \(-0.191716\pi\)
0.824039 + 0.566533i \(0.191716\pi\)
\(570\) 746.005 0.0548188
\(571\) −14445.2 −1.05869 −0.529346 0.848406i \(-0.677563\pi\)
−0.529346 + 0.848406i \(0.677563\pi\)
\(572\) −3080.19 −0.225156
\(573\) −5747.07 −0.419000
\(574\) 0 0
\(575\) −31386.9 −2.27639
\(576\) −3553.70 −0.257067
\(577\) −1782.41 −0.128601 −0.0643004 0.997931i \(-0.520482\pi\)
−0.0643004 + 0.997931i \(0.520482\pi\)
\(578\) −1809.26 −0.130200
\(579\) 7184.12 0.515651
\(580\) 39982.1 2.86235
\(581\) 0 0
\(582\) −1588.15 −0.113112
\(583\) −6572.58 −0.466910
\(584\) −3826.16 −0.271109
\(585\) 6127.56 0.433066
\(586\) −1253.29 −0.0883499
\(587\) −23646.2 −1.66266 −0.831330 0.555779i \(-0.812420\pi\)
−0.831330 + 0.555779i \(0.812420\pi\)
\(588\) 0 0
\(589\) −4537.26 −0.317410
\(590\) 7017.12 0.489644
\(591\) −4070.42 −0.283307
\(592\) 11086.6 0.769690
\(593\) 2871.03 0.198818 0.0994089 0.995047i \(-0.468305\pi\)
0.0994089 + 0.995047i \(0.468305\pi\)
\(594\) 166.781 0.0115204
\(595\) 0 0
\(596\) −6759.86 −0.464588
\(597\) 6364.36 0.436308
\(598\) 2865.66 0.195963
\(599\) 6685.11 0.456004 0.228002 0.973661i \(-0.426781\pi\)
0.228002 + 0.973661i \(0.426781\pi\)
\(600\) 5921.89 0.402934
\(601\) −8875.42 −0.602389 −0.301195 0.953563i \(-0.597385\pi\)
−0.301195 + 0.953563i \(0.597385\pi\)
\(602\) 0 0
\(603\) −6576.86 −0.444163
\(604\) 9338.23 0.629085
\(605\) −2260.84 −0.151928
\(606\) 618.177 0.0414385
\(607\) −379.477 −0.0253748 −0.0126874 0.999920i \(-0.504039\pi\)
−0.0126874 + 0.999920i \(0.504039\pi\)
\(608\) 2422.30 0.161574
\(609\) 0 0
\(610\) −7006.71 −0.465071
\(611\) −14487.8 −0.959267
\(612\) 2844.15 0.187856
\(613\) 17480.5 1.15177 0.575883 0.817532i \(-0.304658\pi\)
0.575883 + 0.817532i \(0.304658\pi\)
\(614\) 5428.55 0.356805
\(615\) 18088.3 1.18600
\(616\) 0 0
\(617\) −9901.31 −0.646048 −0.323024 0.946391i \(-0.604699\pi\)
−0.323024 + 0.946391i \(0.604699\pi\)
\(618\) 1697.03 0.110461
\(619\) 152.433 0.00989788 0.00494894 0.999988i \(-0.498425\pi\)
0.00494894 + 0.999988i \(0.498425\pi\)
\(620\) −27489.0 −1.78062
\(621\) 3781.28 0.244344
\(622\) 4026.88 0.259587
\(623\) 0 0
\(624\) 6179.73 0.396454
\(625\) 6588.63 0.421672
\(626\) −165.983 −0.0105974
\(627\) 782.094 0.0498147
\(628\) 9425.74 0.598930
\(629\) −8064.84 −0.511234
\(630\) 0 0
\(631\) −23661.7 −1.49280 −0.746399 0.665499i \(-0.768219\pi\)
−0.746399 + 0.665499i \(0.768219\pi\)
\(632\) 6887.70 0.433510
\(633\) −13476.4 −0.846189
\(634\) 4037.46 0.252915
\(635\) −4726.30 −0.295366
\(636\) 13774.9 0.858823
\(637\) 0 0
\(638\) −1720.04 −0.106735
\(639\) −281.386 −0.0174201
\(640\) 19420.7 1.19948
\(641\) 25340.3 1.56144 0.780719 0.624882i \(-0.214853\pi\)
0.780719 + 0.624882i \(0.214853\pi\)
\(642\) 2848.43 0.175107
\(643\) 1774.90 0.108858 0.0544288 0.998518i \(-0.482666\pi\)
0.0544288 + 0.998518i \(0.482666\pi\)
\(644\) 0 0
\(645\) −206.063 −0.0125794
\(646\) −547.295 −0.0333329
\(647\) 23685.1 1.43919 0.719595 0.694394i \(-0.244328\pi\)
0.719595 + 0.694394i \(0.244328\pi\)
\(648\) −713.429 −0.0432502
\(649\) 7356.57 0.444947
\(650\) −4585.90 −0.276729
\(651\) 0 0
\(652\) 3390.66 0.203663
\(653\) −1969.99 −0.118058 −0.0590288 0.998256i \(-0.518800\pi\)
−0.0590288 + 0.998256i \(0.518800\pi\)
\(654\) 3046.82 0.182172
\(655\) −27978.1 −1.66900
\(656\) 18242.4 1.08574
\(657\) 3909.67 0.232163
\(658\) 0 0
\(659\) 15314.6 0.905270 0.452635 0.891696i \(-0.350484\pi\)
0.452635 + 0.891696i \(0.350484\pi\)
\(660\) 4738.31 0.279452
\(661\) −31443.3 −1.85023 −0.925115 0.379687i \(-0.876032\pi\)
−0.925115 + 0.379687i \(0.876032\pi\)
\(662\) −1616.64 −0.0949130
\(663\) −4495.39 −0.263328
\(664\) −3758.31 −0.219655
\(665\) 0 0
\(666\) 991.158 0.0576676
\(667\) −38996.9 −2.26382
\(668\) −13782.7 −0.798305
\(669\) 15427.0 0.891546
\(670\) 7667.47 0.442120
\(671\) −7345.67 −0.422617
\(672\) 0 0
\(673\) −8079.34 −0.462757 −0.231379 0.972864i \(-0.574324\pi\)
−0.231379 + 0.972864i \(0.574324\pi\)
\(674\) −6536.29 −0.373543
\(675\) −6051.14 −0.345050
\(676\) 6679.81 0.380053
\(677\) 15701.7 0.891383 0.445692 0.895187i \(-0.352958\pi\)
0.445692 + 0.895187i \(0.352958\pi\)
\(678\) −1604.73 −0.0908988
\(679\) 0 0
\(680\) −6767.63 −0.381657
\(681\) 8963.58 0.504384
\(682\) 1182.58 0.0663980
\(683\) 29752.9 1.66686 0.833430 0.552626i \(-0.186374\pi\)
0.833430 + 0.552626i \(0.186374\pi\)
\(684\) −1639.12 −0.0916279
\(685\) 22562.8 1.25851
\(686\) 0 0
\(687\) −15364.1 −0.853244
\(688\) −207.817 −0.0115159
\(689\) −21772.2 −1.20386
\(690\) −4408.31 −0.243219
\(691\) −3082.57 −0.169706 −0.0848528 0.996393i \(-0.527042\pi\)
−0.0848528 + 0.996393i \(0.527042\pi\)
\(692\) 29394.1 1.61473
\(693\) 0 0
\(694\) −2669.01 −0.145986
\(695\) 3970.84 0.216723
\(696\) 7357.71 0.400709
\(697\) −13270.2 −0.721156
\(698\) 4166.77 0.225952
\(699\) −3310.74 −0.179147
\(700\) 0 0
\(701\) 19301.0 1.03993 0.519963 0.854189i \(-0.325946\pi\)
0.519963 + 0.854189i \(0.325946\pi\)
\(702\) 552.477 0.0297036
\(703\) 4647.88 0.249357
\(704\) 4343.41 0.232526
\(705\) 22286.8 1.19060
\(706\) 290.801 0.0155020
\(707\) 0 0
\(708\) −15418.0 −0.818425
\(709\) 28531.3 1.51130 0.755652 0.654973i \(-0.227320\pi\)
0.755652 + 0.654973i \(0.227320\pi\)
\(710\) 328.047 0.0173400
\(711\) −7038.03 −0.371233
\(712\) −7924.29 −0.417100
\(713\) 26811.6 1.40828
\(714\) 0 0
\(715\) −7489.24 −0.391723
\(716\) −10110.3 −0.527711
\(717\) 5394.53 0.280980
\(718\) −5544.97 −0.288212
\(719\) −3884.65 −0.201492 −0.100746 0.994912i \(-0.532123\pi\)
−0.100746 + 0.994912i \(0.532123\pi\)
\(720\) −9506.40 −0.492059
\(721\) 0 0
\(722\) −3536.28 −0.182281
\(723\) −22026.3 −1.13301
\(724\) 5184.70 0.266143
\(725\) 62406.5 3.19685
\(726\) −203.844 −0.0104206
\(727\) −23489.8 −1.19833 −0.599167 0.800624i \(-0.704501\pi\)
−0.599167 + 0.800624i \(0.704501\pi\)
\(728\) 0 0
\(729\) 729.000 0.0370370
\(730\) −4557.99 −0.231094
\(731\) 151.175 0.00764897
\(732\) 15395.2 0.777352
\(733\) −30288.1 −1.52622 −0.763109 0.646270i \(-0.776328\pi\)
−0.763109 + 0.646270i \(0.776328\pi\)
\(734\) −1178.42 −0.0592593
\(735\) 0 0
\(736\) −14313.9 −0.716870
\(737\) 8038.39 0.401761
\(738\) 1630.89 0.0813469
\(739\) 29765.0 1.48163 0.740815 0.671709i \(-0.234440\pi\)
0.740815 + 0.671709i \(0.234440\pi\)
\(740\) 28159.2 1.39885
\(741\) 2590.75 0.128440
\(742\) 0 0
\(743\) −1200.21 −0.0592617 −0.0296309 0.999561i \(-0.509433\pi\)
−0.0296309 + 0.999561i \(0.509433\pi\)
\(744\) −5058.66 −0.249273
\(745\) −16436.1 −0.808284
\(746\) −10.9026 −0.000535082 0
\(747\) 3840.34 0.188100
\(748\) −3476.19 −0.169922
\(749\) 0 0
\(750\) 3119.92 0.151898
\(751\) 441.096 0.0214325 0.0107163 0.999943i \(-0.496589\pi\)
0.0107163 + 0.999943i \(0.496589\pi\)
\(752\) 22476.6 1.08994
\(753\) 5397.16 0.261200
\(754\) −5697.79 −0.275200
\(755\) 22705.2 1.09447
\(756\) 0 0
\(757\) −37080.3 −1.78032 −0.890162 0.455644i \(-0.849409\pi\)
−0.890162 + 0.455644i \(0.849409\pi\)
\(758\) 7042.58 0.337464
\(759\) −4621.56 −0.221017
\(760\) 3900.28 0.186155
\(761\) 3056.78 0.145609 0.0728044 0.997346i \(-0.476805\pi\)
0.0728044 + 0.997346i \(0.476805\pi\)
\(762\) −426.136 −0.0202589
\(763\) 0 0
\(764\) −14721.4 −0.697123
\(765\) 6915.34 0.326830
\(766\) −5127.95 −0.241880
\(767\) 24369.3 1.14723
\(768\) −7725.50 −0.362982
\(769\) −31834.7 −1.49283 −0.746417 0.665479i \(-0.768227\pi\)
−0.746417 + 0.665479i \(0.768227\pi\)
\(770\) 0 0
\(771\) −15848.1 −0.740281
\(772\) 18402.5 0.857929
\(773\) 2351.46 0.109413 0.0547064 0.998502i \(-0.482578\pi\)
0.0547064 + 0.998502i \(0.482578\pi\)
\(774\) −18.5792 −0.000862809 0
\(775\) −42906.4 −1.98870
\(776\) −8303.22 −0.384108
\(777\) 0 0
\(778\) 5358.65 0.246937
\(779\) 7647.81 0.351748
\(780\) 15696.1 0.720525
\(781\) 343.916 0.0157571
\(782\) 3234.08 0.147891
\(783\) −7518.30 −0.343144
\(784\) 0 0
\(785\) 22918.0 1.04201
\(786\) −2522.58 −0.114475
\(787\) 41575.3 1.88310 0.941550 0.336874i \(-0.109370\pi\)
0.941550 + 0.336874i \(0.109370\pi\)
\(788\) −10426.6 −0.471361
\(789\) −9826.64 −0.443394
\(790\) 8205.11 0.369525
\(791\) 0 0
\(792\) 871.969 0.0391213
\(793\) −24333.2 −1.08965
\(794\) −2989.06 −0.133599
\(795\) 33492.7 1.49417
\(796\) 16302.6 0.725919
\(797\) 26199.7 1.16442 0.582208 0.813040i \(-0.302189\pi\)
0.582208 + 0.813040i \(0.302189\pi\)
\(798\) 0 0
\(799\) −16350.4 −0.723948
\(800\) 22906.4 1.01233
\(801\) 8097.24 0.357181
\(802\) 3299.64 0.145280
\(803\) −4778.49 −0.209999
\(804\) −16847.0 −0.738989
\(805\) 0 0
\(806\) 3917.41 0.171197
\(807\) 11047.1 0.481877
\(808\) 3231.96 0.140718
\(809\) −2338.60 −0.101633 −0.0508164 0.998708i \(-0.516182\pi\)
−0.0508164 + 0.998708i \(0.516182\pi\)
\(810\) −849.886 −0.0368666
\(811\) 3032.48 0.131301 0.0656504 0.997843i \(-0.479088\pi\)
0.0656504 + 0.997843i \(0.479088\pi\)
\(812\) 0 0
\(813\) −21903.6 −0.944886
\(814\) −1211.42 −0.0521623
\(815\) 8244.13 0.354330
\(816\) 6974.22 0.299199
\(817\) −87.1240 −0.00373082
\(818\) 3739.11 0.159823
\(819\) 0 0
\(820\) 46334.2 1.97325
\(821\) −28900.3 −1.22854 −0.614268 0.789098i \(-0.710549\pi\)
−0.614268 + 0.789098i \(0.710549\pi\)
\(822\) 2034.32 0.0863202
\(823\) −19810.2 −0.839054 −0.419527 0.907743i \(-0.637804\pi\)
−0.419527 + 0.907743i \(0.637804\pi\)
\(824\) 8872.47 0.375106
\(825\) 7395.84 0.312109
\(826\) 0 0
\(827\) 12280.7 0.516374 0.258187 0.966095i \(-0.416875\pi\)
0.258187 + 0.966095i \(0.416875\pi\)
\(828\) 9685.94 0.406534
\(829\) 3499.72 0.146623 0.0733114 0.997309i \(-0.476643\pi\)
0.0733114 + 0.997309i \(0.476643\pi\)
\(830\) −4477.16 −0.187235
\(831\) −27106.9 −1.13156
\(832\) 14387.9 0.599532
\(833\) 0 0
\(834\) 358.022 0.0148649
\(835\) −33511.5 −1.38888
\(836\) 2003.37 0.0828806
\(837\) 5169.07 0.213464
\(838\) −6128.60 −0.252636
\(839\) 11751.6 0.483562 0.241781 0.970331i \(-0.422268\pi\)
0.241781 + 0.970331i \(0.422268\pi\)
\(840\) 0 0
\(841\) 53148.4 2.17920
\(842\) 2210.69 0.0904815
\(843\) −4955.46 −0.202461
\(844\) −34520.4 −1.40787
\(845\) 16241.4 0.661210
\(846\) 2009.44 0.0816618
\(847\) 0 0
\(848\) 33777.8 1.36785
\(849\) 9274.86 0.374926
\(850\) −5175.48 −0.208844
\(851\) −27465.3 −1.10634
\(852\) −720.785 −0.0289832
\(853\) −1403.01 −0.0563166 −0.0281583 0.999603i \(-0.508964\pi\)
−0.0281583 + 0.999603i \(0.508964\pi\)
\(854\) 0 0
\(855\) −3985.41 −0.159413
\(856\) 14892.2 0.594632
\(857\) −15111.0 −0.602311 −0.301156 0.953575i \(-0.597372\pi\)
−0.301156 + 0.953575i \(0.597372\pi\)
\(858\) −675.250 −0.0268679
\(859\) −18620.9 −0.739623 −0.369811 0.929107i \(-0.620578\pi\)
−0.369811 + 0.929107i \(0.620578\pi\)
\(860\) −527.841 −0.0209293
\(861\) 0 0
\(862\) 7732.19 0.305521
\(863\) −33659.0 −1.32765 −0.663827 0.747886i \(-0.731069\pi\)
−0.663827 + 0.747886i \(0.731069\pi\)
\(864\) −2759.60 −0.108661
\(865\) 71469.5 2.80929
\(866\) −1605.20 −0.0629873
\(867\) 9665.67 0.378620
\(868\) 0 0
\(869\) 8602.04 0.335793
\(870\) 8765.02 0.341565
\(871\) 26627.8 1.03588
\(872\) 15929.5 0.618623
\(873\) 8484.44 0.328929
\(874\) −1863.85 −0.0721345
\(875\) 0 0
\(876\) 10014.8 0.386267
\(877\) −2730.45 −0.105132 −0.0525659 0.998617i \(-0.516740\pi\)
−0.0525659 + 0.998617i \(0.516740\pi\)
\(878\) −4722.09 −0.181507
\(879\) 6695.51 0.256921
\(880\) 11618.9 0.445084
\(881\) 16625.5 0.635787 0.317894 0.948126i \(-0.397025\pi\)
0.317894 + 0.948126i \(0.397025\pi\)
\(882\) 0 0
\(883\) 10063.4 0.383536 0.191768 0.981440i \(-0.438578\pi\)
0.191768 + 0.981440i \(0.438578\pi\)
\(884\) −11515.2 −0.438119
\(885\) −37487.7 −1.42388
\(886\) −1986.43 −0.0753223
\(887\) −29939.9 −1.13335 −0.566676 0.823940i \(-0.691771\pi\)
−0.566676 + 0.823940i \(0.691771\pi\)
\(888\) 5181.99 0.195829
\(889\) 0 0
\(890\) −9439.96 −0.355537
\(891\) −891.000 −0.0335013
\(892\) 39517.2 1.48333
\(893\) 9422.94 0.353109
\(894\) −1481.92 −0.0554394
\(895\) −24582.5 −0.918103
\(896\) 0 0
\(897\) −15309.3 −0.569859
\(898\) 266.075 0.00988756
\(899\) −53309.5 −1.97772
\(900\) −15500.3 −0.574086
\(901\) −24571.4 −0.908536
\(902\) −1993.31 −0.0735810
\(903\) 0 0
\(904\) −8389.90 −0.308677
\(905\) 12606.2 0.463032
\(906\) 2047.16 0.0750688
\(907\) 296.554 0.0108566 0.00542829 0.999985i \(-0.498272\pi\)
0.00542829 + 0.999985i \(0.498272\pi\)
\(908\) 22960.7 0.839182
\(909\) −3302.50 −0.120503
\(910\) 0 0
\(911\) −3552.96 −0.129215 −0.0646074 0.997911i \(-0.520580\pi\)
−0.0646074 + 0.997911i \(0.520580\pi\)
\(912\) −4019.34 −0.145936
\(913\) −4693.75 −0.170143
\(914\) 300.730 0.0108832
\(915\) 37432.2 1.35243
\(916\) −39356.1 −1.41961
\(917\) 0 0
\(918\) 623.505 0.0224169
\(919\) −32047.3 −1.15032 −0.575159 0.818042i \(-0.695060\pi\)
−0.575159 + 0.818042i \(0.695060\pi\)
\(920\) −23047.6 −0.825931
\(921\) −29001.1 −1.03759
\(922\) −603.696 −0.0215636
\(923\) 1139.25 0.0406272
\(924\) 0 0
\(925\) 43952.5 1.56232
\(926\) −6386.98 −0.226662
\(927\) −9066.12 −0.321219
\(928\) 28460.2 1.00674
\(929\) −5628.82 −0.198790 −0.0993949 0.995048i \(-0.531691\pi\)
−0.0993949 + 0.995048i \(0.531691\pi\)
\(930\) −6026.23 −0.212481
\(931\) 0 0
\(932\) −8480.63 −0.298060
\(933\) −21512.9 −0.754877
\(934\) 8519.36 0.298460
\(935\) −8452.08 −0.295629
\(936\) 2888.47 0.100868
\(937\) 41269.1 1.43885 0.719425 0.694570i \(-0.244405\pi\)
0.719425 + 0.694570i \(0.244405\pi\)
\(938\) 0 0
\(939\) 886.733 0.0308173
\(940\) 57088.9 1.98089
\(941\) −2086.74 −0.0722909 −0.0361454 0.999347i \(-0.511508\pi\)
−0.0361454 + 0.999347i \(0.511508\pi\)
\(942\) 2066.35 0.0714705
\(943\) −45192.6 −1.56063
\(944\) −37806.9 −1.30351
\(945\) 0 0
\(946\) 22.7079 0.000780440 0
\(947\) −21040.7 −0.721995 −0.360998 0.932567i \(-0.617564\pi\)
−0.360998 + 0.932567i \(0.617564\pi\)
\(948\) −18028.3 −0.617650
\(949\) −15829.2 −0.541450
\(950\) 2982.70 0.101865
\(951\) −21569.4 −0.735475
\(952\) 0 0
\(953\) 25644.0 0.871658 0.435829 0.900030i \(-0.356455\pi\)
0.435829 + 0.900030i \(0.356455\pi\)
\(954\) 3019.79 0.102484
\(955\) −35794.0 −1.21284
\(956\) 13818.4 0.467488
\(957\) 9189.03 0.310386
\(958\) 1710.06 0.0576719
\(959\) 0 0
\(960\) −22133.2 −0.744110
\(961\) 6860.94 0.230302
\(962\) −4012.92 −0.134492
\(963\) −15217.2 −0.509209
\(964\) −56421.4 −1.88507
\(965\) 44744.3 1.49261
\(966\) 0 0
\(967\) 28262.5 0.939878 0.469939 0.882699i \(-0.344276\pi\)
0.469939 + 0.882699i \(0.344276\pi\)
\(968\) −1065.74 −0.0353865
\(969\) 2923.83 0.0969318
\(970\) −9891.37 −0.327415
\(971\) −19180.0 −0.633899 −0.316950 0.948442i \(-0.602659\pi\)
−0.316950 + 0.948442i \(0.602659\pi\)
\(972\) 1867.37 0.0616214
\(973\) 0 0
\(974\) −9521.76 −0.313241
\(975\) 24499.4 0.804726
\(976\) 37750.9 1.23809
\(977\) −35269.8 −1.15495 −0.577473 0.816410i \(-0.695961\pi\)
−0.577473 + 0.816410i \(0.695961\pi\)
\(978\) 743.312 0.0243032
\(979\) −9896.62 −0.323082
\(980\) 0 0
\(981\) −16277.1 −0.529754
\(982\) −7674.73 −0.249400
\(983\) −40100.1 −1.30111 −0.650557 0.759458i \(-0.725464\pi\)
−0.650557 + 0.759458i \(0.725464\pi\)
\(984\) 8526.67 0.276240
\(985\) −25351.5 −0.820066
\(986\) −6430.32 −0.207691
\(987\) 0 0
\(988\) 6636.35 0.213695
\(989\) 514.835 0.0165529
\(990\) 1038.75 0.0333471
\(991\) 3191.81 0.102312 0.0511560 0.998691i \(-0.483709\pi\)
0.0511560 + 0.998691i \(0.483709\pi\)
\(992\) −19567.3 −0.626272
\(993\) 8636.61 0.276007
\(994\) 0 0
\(995\) 39638.6 1.26294
\(996\) 9837.24 0.312957
\(997\) −8275.27 −0.262869 −0.131435 0.991325i \(-0.541958\pi\)
−0.131435 + 0.991325i \(0.541958\pi\)
\(998\) −6143.06 −0.194845
\(999\) −5295.09 −0.167697
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1617.4.a.h.1.2 2
7.6 odd 2 231.4.a.g.1.2 2
21.20 even 2 693.4.a.j.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
231.4.a.g.1.2 2 7.6 odd 2
693.4.a.j.1.1 2 21.20 even 2
1617.4.a.h.1.2 2 1.1 even 1 trivial