Properties

Label 1617.4.a.d.1.1
Level $1617$
Weight $4$
Character 1617.1
Self dual yes
Analytic conductor $95.406$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1617,4,Mod(1,1617)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1617, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1617.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1617 = 3 \cdot 7^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1617.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(95.4060884793\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 33)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 1617.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +3.00000 q^{3} -7.00000 q^{4} +4.00000 q^{5} -3.00000 q^{6} +15.0000 q^{8} +9.00000 q^{9} +O(q^{10})\) \(q-1.00000 q^{2} +3.00000 q^{3} -7.00000 q^{4} +4.00000 q^{5} -3.00000 q^{6} +15.0000 q^{8} +9.00000 q^{9} -4.00000 q^{10} +11.0000 q^{11} -21.0000 q^{12} +32.0000 q^{13} +12.0000 q^{15} +41.0000 q^{16} -74.0000 q^{17} -9.00000 q^{18} +60.0000 q^{19} -28.0000 q^{20} -11.0000 q^{22} -182.000 q^{23} +45.0000 q^{24} -109.000 q^{25} -32.0000 q^{26} +27.0000 q^{27} -90.0000 q^{29} -12.0000 q^{30} +8.00000 q^{31} -161.000 q^{32} +33.0000 q^{33} +74.0000 q^{34} -63.0000 q^{36} -66.0000 q^{37} -60.0000 q^{38} +96.0000 q^{39} +60.0000 q^{40} -422.000 q^{41} +408.000 q^{43} -77.0000 q^{44} +36.0000 q^{45} +182.000 q^{46} +506.000 q^{47} +123.000 q^{48} +109.000 q^{50} -222.000 q^{51} -224.000 q^{52} +348.000 q^{53} -27.0000 q^{54} +44.0000 q^{55} +180.000 q^{57} +90.0000 q^{58} +200.000 q^{59} -84.0000 q^{60} -132.000 q^{61} -8.00000 q^{62} -167.000 q^{64} +128.000 q^{65} -33.0000 q^{66} -1036.00 q^{67} +518.000 q^{68} -546.000 q^{69} +762.000 q^{71} +135.000 q^{72} +542.000 q^{73} +66.0000 q^{74} -327.000 q^{75} -420.000 q^{76} -96.0000 q^{78} -550.000 q^{79} +164.000 q^{80} +81.0000 q^{81} +422.000 q^{82} +132.000 q^{83} -296.000 q^{85} -408.000 q^{86} -270.000 q^{87} +165.000 q^{88} -570.000 q^{89} -36.0000 q^{90} +1274.00 q^{92} +24.0000 q^{93} -506.000 q^{94} +240.000 q^{95} -483.000 q^{96} -14.0000 q^{97} +99.0000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.353553 −0.176777 0.984251i \(-0.556567\pi\)
−0.176777 + 0.984251i \(0.556567\pi\)
\(3\) 3.00000 0.577350
\(4\) −7.00000 −0.875000
\(5\) 4.00000 0.357771 0.178885 0.983870i \(-0.442751\pi\)
0.178885 + 0.983870i \(0.442751\pi\)
\(6\) −3.00000 −0.204124
\(7\) 0 0
\(8\) 15.0000 0.662913
\(9\) 9.00000 0.333333
\(10\) −4.00000 −0.126491
\(11\) 11.0000 0.301511
\(12\) −21.0000 −0.505181
\(13\) 32.0000 0.682708 0.341354 0.939935i \(-0.389115\pi\)
0.341354 + 0.939935i \(0.389115\pi\)
\(14\) 0 0
\(15\) 12.0000 0.206559
\(16\) 41.0000 0.640625
\(17\) −74.0000 −1.05574 −0.527872 0.849324i \(-0.677010\pi\)
−0.527872 + 0.849324i \(0.677010\pi\)
\(18\) −9.00000 −0.117851
\(19\) 60.0000 0.724471 0.362235 0.932087i \(-0.382014\pi\)
0.362235 + 0.932087i \(0.382014\pi\)
\(20\) −28.0000 −0.313050
\(21\) 0 0
\(22\) −11.0000 −0.106600
\(23\) −182.000 −1.64998 −0.824992 0.565145i \(-0.808820\pi\)
−0.824992 + 0.565145i \(0.808820\pi\)
\(24\) 45.0000 0.382733
\(25\) −109.000 −0.872000
\(26\) −32.0000 −0.241374
\(27\) 27.0000 0.192450
\(28\) 0 0
\(29\) −90.0000 −0.576296 −0.288148 0.957586i \(-0.593039\pi\)
−0.288148 + 0.957586i \(0.593039\pi\)
\(30\) −12.0000 −0.0730297
\(31\) 8.00000 0.0463498 0.0231749 0.999731i \(-0.492623\pi\)
0.0231749 + 0.999731i \(0.492623\pi\)
\(32\) −161.000 −0.889408
\(33\) 33.0000 0.174078
\(34\) 74.0000 0.373262
\(35\) 0 0
\(36\) −63.0000 −0.291667
\(37\) −66.0000 −0.293252 −0.146626 0.989192i \(-0.546841\pi\)
−0.146626 + 0.989192i \(0.546841\pi\)
\(38\) −60.0000 −0.256139
\(39\) 96.0000 0.394162
\(40\) 60.0000 0.237171
\(41\) −422.000 −1.60745 −0.803724 0.595003i \(-0.797151\pi\)
−0.803724 + 0.595003i \(0.797151\pi\)
\(42\) 0 0
\(43\) 408.000 1.44696 0.723482 0.690344i \(-0.242541\pi\)
0.723482 + 0.690344i \(0.242541\pi\)
\(44\) −77.0000 −0.263822
\(45\) 36.0000 0.119257
\(46\) 182.000 0.583357
\(47\) 506.000 1.57038 0.785188 0.619257i \(-0.212566\pi\)
0.785188 + 0.619257i \(0.212566\pi\)
\(48\) 123.000 0.369865
\(49\) 0 0
\(50\) 109.000 0.308299
\(51\) −222.000 −0.609534
\(52\) −224.000 −0.597369
\(53\) 348.000 0.901915 0.450957 0.892546i \(-0.351083\pi\)
0.450957 + 0.892546i \(0.351083\pi\)
\(54\) −27.0000 −0.0680414
\(55\) 44.0000 0.107872
\(56\) 0 0
\(57\) 180.000 0.418273
\(58\) 90.0000 0.203751
\(59\) 200.000 0.441318 0.220659 0.975351i \(-0.429179\pi\)
0.220659 + 0.975351i \(0.429179\pi\)
\(60\) −84.0000 −0.180739
\(61\) −132.000 −0.277063 −0.138532 0.990358i \(-0.544238\pi\)
−0.138532 + 0.990358i \(0.544238\pi\)
\(62\) −8.00000 −0.0163871
\(63\) 0 0
\(64\) −167.000 −0.326172
\(65\) 128.000 0.244253
\(66\) −33.0000 −0.0615457
\(67\) −1036.00 −1.88907 −0.944534 0.328414i \(-0.893486\pi\)
−0.944534 + 0.328414i \(0.893486\pi\)
\(68\) 518.000 0.923775
\(69\) −546.000 −0.952618
\(70\) 0 0
\(71\) 762.000 1.27370 0.636850 0.770987i \(-0.280237\pi\)
0.636850 + 0.770987i \(0.280237\pi\)
\(72\) 135.000 0.220971
\(73\) 542.000 0.868990 0.434495 0.900674i \(-0.356927\pi\)
0.434495 + 0.900674i \(0.356927\pi\)
\(74\) 66.0000 0.103680
\(75\) −327.000 −0.503449
\(76\) −420.000 −0.633912
\(77\) 0 0
\(78\) −96.0000 −0.139357
\(79\) −550.000 −0.783289 −0.391645 0.920117i \(-0.628094\pi\)
−0.391645 + 0.920117i \(0.628094\pi\)
\(80\) 164.000 0.229197
\(81\) 81.0000 0.111111
\(82\) 422.000 0.568318
\(83\) 132.000 0.174565 0.0872824 0.996184i \(-0.472182\pi\)
0.0872824 + 0.996184i \(0.472182\pi\)
\(84\) 0 0
\(85\) −296.000 −0.377714
\(86\) −408.000 −0.511579
\(87\) −270.000 −0.332725
\(88\) 165.000 0.199876
\(89\) −570.000 −0.678875 −0.339438 0.940629i \(-0.610237\pi\)
−0.339438 + 0.940629i \(0.610237\pi\)
\(90\) −36.0000 −0.0421637
\(91\) 0 0
\(92\) 1274.00 1.44374
\(93\) 24.0000 0.0267600
\(94\) −506.000 −0.555212
\(95\) 240.000 0.259195
\(96\) −483.000 −0.513500
\(97\) −14.0000 −0.0146545 −0.00732724 0.999973i \(-0.502332\pi\)
−0.00732724 + 0.999973i \(0.502332\pi\)
\(98\) 0 0
\(99\) 99.0000 0.100504
\(100\) 763.000 0.763000
\(101\) −1702.00 −1.67679 −0.838393 0.545067i \(-0.816504\pi\)
−0.838393 + 0.545067i \(0.816504\pi\)
\(102\) 222.000 0.215503
\(103\) 1132.00 1.08291 0.541453 0.840731i \(-0.317874\pi\)
0.541453 + 0.840731i \(0.317874\pi\)
\(104\) 480.000 0.452576
\(105\) 0 0
\(106\) −348.000 −0.318875
\(107\) 564.000 0.509570 0.254785 0.966998i \(-0.417995\pi\)
0.254785 + 0.966998i \(0.417995\pi\)
\(108\) −189.000 −0.168394
\(109\) −320.000 −0.281197 −0.140598 0.990067i \(-0.544903\pi\)
−0.140598 + 0.990067i \(0.544903\pi\)
\(110\) −44.0000 −0.0381385
\(111\) −198.000 −0.169309
\(112\) 0 0
\(113\) −2142.00 −1.78321 −0.891604 0.452817i \(-0.850419\pi\)
−0.891604 + 0.452817i \(0.850419\pi\)
\(114\) −180.000 −0.147882
\(115\) −728.000 −0.590316
\(116\) 630.000 0.504259
\(117\) 288.000 0.227569
\(118\) −200.000 −0.156030
\(119\) 0 0
\(120\) 180.000 0.136931
\(121\) 121.000 0.0909091
\(122\) 132.000 0.0979567
\(123\) −1266.00 −0.928060
\(124\) −56.0000 −0.0405560
\(125\) −936.000 −0.669747
\(126\) 0 0
\(127\) −1606.00 −1.12212 −0.561061 0.827775i \(-0.689607\pi\)
−0.561061 + 0.827775i \(0.689607\pi\)
\(128\) 1455.00 1.00473
\(129\) 1224.00 0.835405
\(130\) −128.000 −0.0863565
\(131\) 1908.00 1.27254 0.636270 0.771466i \(-0.280476\pi\)
0.636270 + 0.771466i \(0.280476\pi\)
\(132\) −231.000 −0.152318
\(133\) 0 0
\(134\) 1036.00 0.667886
\(135\) 108.000 0.0688530
\(136\) −1110.00 −0.699866
\(137\) −2186.00 −1.36323 −0.681615 0.731711i \(-0.738722\pi\)
−0.681615 + 0.731711i \(0.738722\pi\)
\(138\) 546.000 0.336801
\(139\) −2740.00 −1.67197 −0.835985 0.548753i \(-0.815103\pi\)
−0.835985 + 0.548753i \(0.815103\pi\)
\(140\) 0 0
\(141\) 1518.00 0.906657
\(142\) −762.000 −0.450321
\(143\) 352.000 0.205844
\(144\) 369.000 0.213542
\(145\) −360.000 −0.206182
\(146\) −542.000 −0.307235
\(147\) 0 0
\(148\) 462.000 0.256596
\(149\) −1310.00 −0.720264 −0.360132 0.932901i \(-0.617268\pi\)
−0.360132 + 0.932901i \(0.617268\pi\)
\(150\) 327.000 0.177996
\(151\) −1198.00 −0.645641 −0.322821 0.946460i \(-0.604631\pi\)
−0.322821 + 0.946460i \(0.604631\pi\)
\(152\) 900.000 0.480261
\(153\) −666.000 −0.351914
\(154\) 0 0
\(155\) 32.0000 0.0165826
\(156\) −672.000 −0.344891
\(157\) −2114.00 −1.07462 −0.537311 0.843384i \(-0.680560\pi\)
−0.537311 + 0.843384i \(0.680560\pi\)
\(158\) 550.000 0.276934
\(159\) 1044.00 0.520721
\(160\) −644.000 −0.318204
\(161\) 0 0
\(162\) −81.0000 −0.0392837
\(163\) 3868.00 1.85868 0.929341 0.369223i \(-0.120376\pi\)
0.929341 + 0.369223i \(0.120376\pi\)
\(164\) 2954.00 1.40652
\(165\) 132.000 0.0622799
\(166\) −132.000 −0.0617180
\(167\) −2004.00 −0.928588 −0.464294 0.885681i \(-0.653692\pi\)
−0.464294 + 0.885681i \(0.653692\pi\)
\(168\) 0 0
\(169\) −1173.00 −0.533910
\(170\) 296.000 0.133542
\(171\) 540.000 0.241490
\(172\) −2856.00 −1.26609
\(173\) −678.000 −0.297962 −0.148981 0.988840i \(-0.547599\pi\)
−0.148981 + 0.988840i \(0.547599\pi\)
\(174\) 270.000 0.117636
\(175\) 0 0
\(176\) 451.000 0.193156
\(177\) 600.000 0.254795
\(178\) 570.000 0.240019
\(179\) −1680.00 −0.701503 −0.350752 0.936469i \(-0.614074\pi\)
−0.350752 + 0.936469i \(0.614074\pi\)
\(180\) −252.000 −0.104350
\(181\) 4358.00 1.78966 0.894828 0.446412i \(-0.147298\pi\)
0.894828 + 0.446412i \(0.147298\pi\)
\(182\) 0 0
\(183\) −396.000 −0.159963
\(184\) −2730.00 −1.09379
\(185\) −264.000 −0.104917
\(186\) −24.0000 −0.00946110
\(187\) −814.000 −0.318319
\(188\) −3542.00 −1.37408
\(189\) 0 0
\(190\) −240.000 −0.0916391
\(191\) −1778.00 −0.673568 −0.336784 0.941582i \(-0.609339\pi\)
−0.336784 + 0.941582i \(0.609339\pi\)
\(192\) −501.000 −0.188315
\(193\) −3962.00 −1.47767 −0.738837 0.673884i \(-0.764625\pi\)
−0.738837 + 0.673884i \(0.764625\pi\)
\(194\) 14.0000 0.00518114
\(195\) 384.000 0.141020
\(196\) 0 0
\(197\) 374.000 0.135261 0.0676304 0.997710i \(-0.478456\pi\)
0.0676304 + 0.997710i \(0.478456\pi\)
\(198\) −99.0000 −0.0355335
\(199\) −2100.00 −0.748066 −0.374033 0.927415i \(-0.622025\pi\)
−0.374033 + 0.927415i \(0.622025\pi\)
\(200\) −1635.00 −0.578060
\(201\) −3108.00 −1.09065
\(202\) 1702.00 0.592833
\(203\) 0 0
\(204\) 1554.00 0.533342
\(205\) −1688.00 −0.575098
\(206\) −1132.00 −0.382865
\(207\) −1638.00 −0.549995
\(208\) 1312.00 0.437360
\(209\) 660.000 0.218436
\(210\) 0 0
\(211\) 2232.00 0.728233 0.364117 0.931353i \(-0.381371\pi\)
0.364117 + 0.931353i \(0.381371\pi\)
\(212\) −2436.00 −0.789175
\(213\) 2286.00 0.735372
\(214\) −564.000 −0.180160
\(215\) 1632.00 0.517681
\(216\) 405.000 0.127578
\(217\) 0 0
\(218\) 320.000 0.0994180
\(219\) 1626.00 0.501712
\(220\) −308.000 −0.0943880
\(221\) −2368.00 −0.720764
\(222\) 198.000 0.0598599
\(223\) −2128.00 −0.639020 −0.319510 0.947583i \(-0.603518\pi\)
−0.319510 + 0.947583i \(0.603518\pi\)
\(224\) 0 0
\(225\) −981.000 −0.290667
\(226\) 2142.00 0.630459
\(227\) −2964.00 −0.866641 −0.433321 0.901240i \(-0.642658\pi\)
−0.433321 + 0.901240i \(0.642658\pi\)
\(228\) −1260.00 −0.365989
\(229\) 2550.00 0.735846 0.367923 0.929856i \(-0.380069\pi\)
0.367923 + 0.929856i \(0.380069\pi\)
\(230\) 728.000 0.208708
\(231\) 0 0
\(232\) −1350.00 −0.382034
\(233\) −3042.00 −0.855314 −0.427657 0.903941i \(-0.640661\pi\)
−0.427657 + 0.903941i \(0.640661\pi\)
\(234\) −288.000 −0.0804579
\(235\) 2024.00 0.561835
\(236\) −1400.00 −0.386154
\(237\) −1650.00 −0.452232
\(238\) 0 0
\(239\) 2700.00 0.730747 0.365373 0.930861i \(-0.380941\pi\)
0.365373 + 0.930861i \(0.380941\pi\)
\(240\) 492.000 0.132327
\(241\) 578.000 0.154491 0.0772453 0.997012i \(-0.475388\pi\)
0.0772453 + 0.997012i \(0.475388\pi\)
\(242\) −121.000 −0.0321412
\(243\) 243.000 0.0641500
\(244\) 924.000 0.242430
\(245\) 0 0
\(246\) 1266.00 0.328119
\(247\) 1920.00 0.494602
\(248\) 120.000 0.0307258
\(249\) 396.000 0.100785
\(250\) 936.000 0.236791
\(251\) −3752.00 −0.943522 −0.471761 0.881726i \(-0.656382\pi\)
−0.471761 + 0.881726i \(0.656382\pi\)
\(252\) 0 0
\(253\) −2002.00 −0.497489
\(254\) 1606.00 0.396730
\(255\) −888.000 −0.218073
\(256\) −119.000 −0.0290527
\(257\) −674.000 −0.163591 −0.0817957 0.996649i \(-0.526065\pi\)
−0.0817957 + 0.996649i \(0.526065\pi\)
\(258\) −1224.00 −0.295360
\(259\) 0 0
\(260\) −896.000 −0.213721
\(261\) −810.000 −0.192099
\(262\) −1908.00 −0.449911
\(263\) −4352.00 −1.02036 −0.510182 0.860066i \(-0.670422\pi\)
−0.510182 + 0.860066i \(0.670422\pi\)
\(264\) 495.000 0.115398
\(265\) 1392.00 0.322679
\(266\) 0 0
\(267\) −1710.00 −0.391949
\(268\) 7252.00 1.65293
\(269\) −500.000 −0.113329 −0.0566646 0.998393i \(-0.518047\pi\)
−0.0566646 + 0.998393i \(0.518047\pi\)
\(270\) −108.000 −0.0243432
\(271\) 6538.00 1.46552 0.732759 0.680489i \(-0.238232\pi\)
0.732759 + 0.680489i \(0.238232\pi\)
\(272\) −3034.00 −0.676336
\(273\) 0 0
\(274\) 2186.00 0.481975
\(275\) −1199.00 −0.262918
\(276\) 3822.00 0.833541
\(277\) 124.000 0.0268969 0.0134484 0.999910i \(-0.495719\pi\)
0.0134484 + 0.999910i \(0.495719\pi\)
\(278\) 2740.00 0.591131
\(279\) 72.0000 0.0154499
\(280\) 0 0
\(281\) 3642.00 0.773180 0.386590 0.922252i \(-0.373653\pi\)
0.386590 + 0.922252i \(0.373653\pi\)
\(282\) −1518.00 −0.320552
\(283\) −4648.00 −0.976307 −0.488154 0.872758i \(-0.662329\pi\)
−0.488154 + 0.872758i \(0.662329\pi\)
\(284\) −5334.00 −1.11449
\(285\) 720.000 0.149646
\(286\) −352.000 −0.0727769
\(287\) 0 0
\(288\) −1449.00 −0.296469
\(289\) 563.000 0.114594
\(290\) 360.000 0.0728963
\(291\) −42.0000 −0.00846077
\(292\) −3794.00 −0.760367
\(293\) 3102.00 0.618501 0.309250 0.950981i \(-0.399922\pi\)
0.309250 + 0.950981i \(0.399922\pi\)
\(294\) 0 0
\(295\) 800.000 0.157891
\(296\) −990.000 −0.194401
\(297\) 297.000 0.0580259
\(298\) 1310.00 0.254652
\(299\) −5824.00 −1.12646
\(300\) 2289.00 0.440518
\(301\) 0 0
\(302\) 1198.00 0.228269
\(303\) −5106.00 −0.968093
\(304\) 2460.00 0.464114
\(305\) −528.000 −0.0991252
\(306\) 666.000 0.124421
\(307\) −1244.00 −0.231267 −0.115633 0.993292i \(-0.536890\pi\)
−0.115633 + 0.993292i \(0.536890\pi\)
\(308\) 0 0
\(309\) 3396.00 0.625216
\(310\) −32.0000 −0.00586283
\(311\) −2082.00 −0.379612 −0.189806 0.981822i \(-0.560786\pi\)
−0.189806 + 0.981822i \(0.560786\pi\)
\(312\) 1440.00 0.261295
\(313\) −2378.00 −0.429433 −0.214716 0.976676i \(-0.568883\pi\)
−0.214716 + 0.976676i \(0.568883\pi\)
\(314\) 2114.00 0.379936
\(315\) 0 0
\(316\) 3850.00 0.685378
\(317\) −496.000 −0.0878806 −0.0439403 0.999034i \(-0.513991\pi\)
−0.0439403 + 0.999034i \(0.513991\pi\)
\(318\) −1044.00 −0.184103
\(319\) −990.000 −0.173760
\(320\) −668.000 −0.116695
\(321\) 1692.00 0.294200
\(322\) 0 0
\(323\) −4440.00 −0.764855
\(324\) −567.000 −0.0972222
\(325\) −3488.00 −0.595321
\(326\) −3868.00 −0.657143
\(327\) −960.000 −0.162349
\(328\) −6330.00 −1.06560
\(329\) 0 0
\(330\) −132.000 −0.0220193
\(331\) −2708.00 −0.449683 −0.224842 0.974395i \(-0.572186\pi\)
−0.224842 + 0.974395i \(0.572186\pi\)
\(332\) −924.000 −0.152744
\(333\) −594.000 −0.0977507
\(334\) 2004.00 0.328305
\(335\) −4144.00 −0.675853
\(336\) 0 0
\(337\) 4034.00 0.652065 0.326033 0.945359i \(-0.394288\pi\)
0.326033 + 0.945359i \(0.394288\pi\)
\(338\) 1173.00 0.188766
\(339\) −6426.00 −1.02954
\(340\) 2072.00 0.330500
\(341\) 88.0000 0.0139750
\(342\) −540.000 −0.0853797
\(343\) 0 0
\(344\) 6120.00 0.959210
\(345\) −2184.00 −0.340819
\(346\) 678.000 0.105345
\(347\) 11084.0 1.71476 0.857378 0.514687i \(-0.172092\pi\)
0.857378 + 0.514687i \(0.172092\pi\)
\(348\) 1890.00 0.291134
\(349\) 3120.00 0.478538 0.239269 0.970953i \(-0.423092\pi\)
0.239269 + 0.970953i \(0.423092\pi\)
\(350\) 0 0
\(351\) 864.000 0.131387
\(352\) −1771.00 −0.268167
\(353\) 5622.00 0.847674 0.423837 0.905739i \(-0.360683\pi\)
0.423837 + 0.905739i \(0.360683\pi\)
\(354\) −600.000 −0.0900837
\(355\) 3048.00 0.455693
\(356\) 3990.00 0.594016
\(357\) 0 0
\(358\) 1680.00 0.248019
\(359\) −8500.00 −1.24962 −0.624809 0.780778i \(-0.714823\pi\)
−0.624809 + 0.780778i \(0.714823\pi\)
\(360\) 540.000 0.0790569
\(361\) −3259.00 −0.475142
\(362\) −4358.00 −0.632739
\(363\) 363.000 0.0524864
\(364\) 0 0
\(365\) 2168.00 0.310899
\(366\) 396.000 0.0565553
\(367\) −7144.00 −1.01611 −0.508057 0.861324i \(-0.669636\pi\)
−0.508057 + 0.861324i \(0.669636\pi\)
\(368\) −7462.00 −1.05702
\(369\) −3798.00 −0.535816
\(370\) 264.000 0.0370938
\(371\) 0 0
\(372\) −168.000 −0.0234150
\(373\) −632.000 −0.0877312 −0.0438656 0.999037i \(-0.513967\pi\)
−0.0438656 + 0.999037i \(0.513967\pi\)
\(374\) 814.000 0.112543
\(375\) −2808.00 −0.386679
\(376\) 7590.00 1.04102
\(377\) −2880.00 −0.393442
\(378\) 0 0
\(379\) −4220.00 −0.571944 −0.285972 0.958238i \(-0.592316\pi\)
−0.285972 + 0.958238i \(0.592316\pi\)
\(380\) −1680.00 −0.226795
\(381\) −4818.00 −0.647857
\(382\) 1778.00 0.238142
\(383\) −8458.00 −1.12842 −0.564208 0.825632i \(-0.690819\pi\)
−0.564208 + 0.825632i \(0.690819\pi\)
\(384\) 4365.00 0.580079
\(385\) 0 0
\(386\) 3962.00 0.522437
\(387\) 3672.00 0.482321
\(388\) 98.0000 0.0128227
\(389\) 1740.00 0.226790 0.113395 0.993550i \(-0.463827\pi\)
0.113395 + 0.993550i \(0.463827\pi\)
\(390\) −384.000 −0.0498579
\(391\) 13468.0 1.74196
\(392\) 0 0
\(393\) 5724.00 0.734701
\(394\) −374.000 −0.0478219
\(395\) −2200.00 −0.280238
\(396\) −693.000 −0.0879408
\(397\) 5126.00 0.648027 0.324013 0.946053i \(-0.394968\pi\)
0.324013 + 0.946053i \(0.394968\pi\)
\(398\) 2100.00 0.264481
\(399\) 0 0
\(400\) −4469.00 −0.558625
\(401\) −3098.00 −0.385802 −0.192901 0.981218i \(-0.561790\pi\)
−0.192901 + 0.981218i \(0.561790\pi\)
\(402\) 3108.00 0.385604
\(403\) 256.000 0.0316433
\(404\) 11914.0 1.46719
\(405\) 324.000 0.0397523
\(406\) 0 0
\(407\) −726.000 −0.0884189
\(408\) −3330.00 −0.404068
\(409\) −6390.00 −0.772531 −0.386265 0.922388i \(-0.626235\pi\)
−0.386265 + 0.922388i \(0.626235\pi\)
\(410\) 1688.00 0.203328
\(411\) −6558.00 −0.787062
\(412\) −7924.00 −0.947542
\(413\) 0 0
\(414\) 1638.00 0.194452
\(415\) 528.000 0.0624542
\(416\) −5152.00 −0.607206
\(417\) −8220.00 −0.965312
\(418\) −660.000 −0.0772288
\(419\) −9760.00 −1.13796 −0.568982 0.822350i \(-0.692663\pi\)
−0.568982 + 0.822350i \(0.692663\pi\)
\(420\) 0 0
\(421\) −5138.00 −0.594800 −0.297400 0.954753i \(-0.596119\pi\)
−0.297400 + 0.954753i \(0.596119\pi\)
\(422\) −2232.00 −0.257469
\(423\) 4554.00 0.523459
\(424\) 5220.00 0.597891
\(425\) 8066.00 0.920608
\(426\) −2286.00 −0.259993
\(427\) 0 0
\(428\) −3948.00 −0.445873
\(429\) 1056.00 0.118844
\(430\) −1632.00 −0.183028
\(431\) −7008.00 −0.783210 −0.391605 0.920133i \(-0.628080\pi\)
−0.391605 + 0.920133i \(0.628080\pi\)
\(432\) 1107.00 0.123288
\(433\) −5578.00 −0.619080 −0.309540 0.950886i \(-0.600175\pi\)
−0.309540 + 0.950886i \(0.600175\pi\)
\(434\) 0 0
\(435\) −1080.00 −0.119039
\(436\) 2240.00 0.246047
\(437\) −10920.0 −1.19536
\(438\) −1626.00 −0.177382
\(439\) 10430.0 1.13393 0.566967 0.823741i \(-0.308117\pi\)
0.566967 + 0.823741i \(0.308117\pi\)
\(440\) 660.000 0.0715097
\(441\) 0 0
\(442\) 2368.00 0.254829
\(443\) −4432.00 −0.475329 −0.237664 0.971347i \(-0.576382\pi\)
−0.237664 + 0.971347i \(0.576382\pi\)
\(444\) 1386.00 0.148146
\(445\) −2280.00 −0.242882
\(446\) 2128.00 0.225928
\(447\) −3930.00 −0.415845
\(448\) 0 0
\(449\) −6290.00 −0.661121 −0.330561 0.943785i \(-0.607238\pi\)
−0.330561 + 0.943785i \(0.607238\pi\)
\(450\) 981.000 0.102766
\(451\) −4642.00 −0.484664
\(452\) 14994.0 1.56031
\(453\) −3594.00 −0.372761
\(454\) 2964.00 0.306404
\(455\) 0 0
\(456\) 2700.00 0.277279
\(457\) 3054.00 0.312604 0.156302 0.987709i \(-0.450043\pi\)
0.156302 + 0.987709i \(0.450043\pi\)
\(458\) −2550.00 −0.260161
\(459\) −1998.00 −0.203178
\(460\) 5096.00 0.516527
\(461\) −12882.0 −1.30146 −0.650732 0.759308i \(-0.725538\pi\)
−0.650732 + 0.759308i \(0.725538\pi\)
\(462\) 0 0
\(463\) 6148.00 0.617110 0.308555 0.951207i \(-0.400155\pi\)
0.308555 + 0.951207i \(0.400155\pi\)
\(464\) −3690.00 −0.369190
\(465\) 96.0000 0.00957396
\(466\) 3042.00 0.302399
\(467\) −5124.00 −0.507731 −0.253866 0.967240i \(-0.581702\pi\)
−0.253866 + 0.967240i \(0.581702\pi\)
\(468\) −2016.00 −0.199123
\(469\) 0 0
\(470\) −2024.00 −0.198639
\(471\) −6342.00 −0.620433
\(472\) 3000.00 0.292555
\(473\) 4488.00 0.436276
\(474\) 1650.00 0.159888
\(475\) −6540.00 −0.631738
\(476\) 0 0
\(477\) 3132.00 0.300638
\(478\) −2700.00 −0.258358
\(479\) 16520.0 1.57582 0.787910 0.615790i \(-0.211163\pi\)
0.787910 + 0.615790i \(0.211163\pi\)
\(480\) −1932.00 −0.183715
\(481\) −2112.00 −0.200206
\(482\) −578.000 −0.0546207
\(483\) 0 0
\(484\) −847.000 −0.0795455
\(485\) −56.0000 −0.00524295
\(486\) −243.000 −0.0226805
\(487\) 524.000 0.0487571 0.0243785 0.999703i \(-0.492239\pi\)
0.0243785 + 0.999703i \(0.492239\pi\)
\(488\) −1980.00 −0.183669
\(489\) 11604.0 1.07311
\(490\) 0 0
\(491\) −15028.0 −1.38127 −0.690636 0.723203i \(-0.742669\pi\)
−0.690636 + 0.723203i \(0.742669\pi\)
\(492\) 8862.00 0.812052
\(493\) 6660.00 0.608421
\(494\) −1920.00 −0.174868
\(495\) 396.000 0.0359573
\(496\) 328.000 0.0296928
\(497\) 0 0
\(498\) −396.000 −0.0356329
\(499\) 9020.00 0.809200 0.404600 0.914494i \(-0.367411\pi\)
0.404600 + 0.914494i \(0.367411\pi\)
\(500\) 6552.00 0.586029
\(501\) −6012.00 −0.536120
\(502\) 3752.00 0.333586
\(503\) 14812.0 1.31299 0.656495 0.754330i \(-0.272038\pi\)
0.656495 + 0.754330i \(0.272038\pi\)
\(504\) 0 0
\(505\) −6808.00 −0.599905
\(506\) 2002.00 0.175889
\(507\) −3519.00 −0.308253
\(508\) 11242.0 0.981856
\(509\) −12660.0 −1.10245 −0.551223 0.834358i \(-0.685839\pi\)
−0.551223 + 0.834358i \(0.685839\pi\)
\(510\) 888.000 0.0771006
\(511\) 0 0
\(512\) −11521.0 −0.994455
\(513\) 1620.00 0.139424
\(514\) 674.000 0.0578383
\(515\) 4528.00 0.387432
\(516\) −8568.00 −0.730979
\(517\) 5566.00 0.473486
\(518\) 0 0
\(519\) −2034.00 −0.172028
\(520\) 1920.00 0.161918
\(521\) 3738.00 0.314328 0.157164 0.987573i \(-0.449765\pi\)
0.157164 + 0.987573i \(0.449765\pi\)
\(522\) 810.000 0.0679171
\(523\) 6352.00 0.531078 0.265539 0.964100i \(-0.414450\pi\)
0.265539 + 0.964100i \(0.414450\pi\)
\(524\) −13356.0 −1.11347
\(525\) 0 0
\(526\) 4352.00 0.360753
\(527\) −592.000 −0.0489334
\(528\) 1353.00 0.111518
\(529\) 20957.0 1.72245
\(530\) −1392.00 −0.114084
\(531\) 1800.00 0.147106
\(532\) 0 0
\(533\) −13504.0 −1.09742
\(534\) 1710.00 0.138575
\(535\) 2256.00 0.182309
\(536\) −15540.0 −1.25229
\(537\) −5040.00 −0.405013
\(538\) 500.000 0.0400679
\(539\) 0 0
\(540\) −756.000 −0.0602464
\(541\) −24728.0 −1.96514 −0.982569 0.185898i \(-0.940481\pi\)
−0.982569 + 0.185898i \(0.940481\pi\)
\(542\) −6538.00 −0.518139
\(543\) 13074.0 1.03326
\(544\) 11914.0 0.938986
\(545\) −1280.00 −0.100604
\(546\) 0 0
\(547\) −22756.0 −1.77875 −0.889375 0.457178i \(-0.848860\pi\)
−0.889375 + 0.457178i \(0.848860\pi\)
\(548\) 15302.0 1.19283
\(549\) −1188.00 −0.0923545
\(550\) 1199.00 0.0929555
\(551\) −5400.00 −0.417509
\(552\) −8190.00 −0.631503
\(553\) 0 0
\(554\) −124.000 −0.00950949
\(555\) −792.000 −0.0605739
\(556\) 19180.0 1.46297
\(557\) −9526.00 −0.724649 −0.362325 0.932052i \(-0.618017\pi\)
−0.362325 + 0.932052i \(0.618017\pi\)
\(558\) −72.0000 −0.00546237
\(559\) 13056.0 0.987853
\(560\) 0 0
\(561\) −2442.00 −0.183781
\(562\) −3642.00 −0.273360
\(563\) −12068.0 −0.903385 −0.451692 0.892174i \(-0.649180\pi\)
−0.451692 + 0.892174i \(0.649180\pi\)
\(564\) −10626.0 −0.793325
\(565\) −8568.00 −0.637980
\(566\) 4648.00 0.345177
\(567\) 0 0
\(568\) 11430.0 0.844352
\(569\) 15090.0 1.11179 0.555893 0.831254i \(-0.312377\pi\)
0.555893 + 0.831254i \(0.312377\pi\)
\(570\) −720.000 −0.0529079
\(571\) 4412.00 0.323356 0.161678 0.986844i \(-0.448309\pi\)
0.161678 + 0.986844i \(0.448309\pi\)
\(572\) −2464.00 −0.180114
\(573\) −5334.00 −0.388885
\(574\) 0 0
\(575\) 19838.0 1.43879
\(576\) −1503.00 −0.108724
\(577\) 3906.00 0.281818 0.140909 0.990023i \(-0.454998\pi\)
0.140909 + 0.990023i \(0.454998\pi\)
\(578\) −563.000 −0.0405151
\(579\) −11886.0 −0.853135
\(580\) 2520.00 0.180409
\(581\) 0 0
\(582\) 42.0000 0.00299133
\(583\) 3828.00 0.271937
\(584\) 8130.00 0.576065
\(585\) 1152.00 0.0814177
\(586\) −3102.00 −0.218673
\(587\) 12016.0 0.844895 0.422448 0.906387i \(-0.361171\pi\)
0.422448 + 0.906387i \(0.361171\pi\)
\(588\) 0 0
\(589\) 480.000 0.0335790
\(590\) −800.000 −0.0558228
\(591\) 1122.00 0.0780929
\(592\) −2706.00 −0.187865
\(593\) 11342.0 0.785430 0.392715 0.919660i \(-0.371536\pi\)
0.392715 + 0.919660i \(0.371536\pi\)
\(594\) −297.000 −0.0205152
\(595\) 0 0
\(596\) 9170.00 0.630231
\(597\) −6300.00 −0.431896
\(598\) 5824.00 0.398263
\(599\) 20690.0 1.41130 0.705651 0.708559i \(-0.250654\pi\)
0.705651 + 0.708559i \(0.250654\pi\)
\(600\) −4905.00 −0.333743
\(601\) 598.000 0.0405872 0.0202936 0.999794i \(-0.493540\pi\)
0.0202936 + 0.999794i \(0.493540\pi\)
\(602\) 0 0
\(603\) −9324.00 −0.629689
\(604\) 8386.00 0.564936
\(605\) 484.000 0.0325246
\(606\) 5106.00 0.342272
\(607\) 166.000 0.0111001 0.00555003 0.999985i \(-0.498233\pi\)
0.00555003 + 0.999985i \(0.498233\pi\)
\(608\) −9660.00 −0.644350
\(609\) 0 0
\(610\) 528.000 0.0350461
\(611\) 16192.0 1.07211
\(612\) 4662.00 0.307925
\(613\) 20108.0 1.32488 0.662442 0.749113i \(-0.269520\pi\)
0.662442 + 0.749113i \(0.269520\pi\)
\(614\) 1244.00 0.0817651
\(615\) −5064.00 −0.332033
\(616\) 0 0
\(617\) −2286.00 −0.149159 −0.0745793 0.997215i \(-0.523761\pi\)
−0.0745793 + 0.997215i \(0.523761\pi\)
\(618\) −3396.00 −0.221047
\(619\) 25660.0 1.66618 0.833088 0.553141i \(-0.186571\pi\)
0.833088 + 0.553141i \(0.186571\pi\)
\(620\) −224.000 −0.0145098
\(621\) −4914.00 −0.317539
\(622\) 2082.00 0.134213
\(623\) 0 0
\(624\) 3936.00 0.252510
\(625\) 9881.00 0.632384
\(626\) 2378.00 0.151827
\(627\) 1980.00 0.126114
\(628\) 14798.0 0.940294
\(629\) 4884.00 0.309599
\(630\) 0 0
\(631\) −11408.0 −0.719723 −0.359862 0.933006i \(-0.617176\pi\)
−0.359862 + 0.933006i \(0.617176\pi\)
\(632\) −8250.00 −0.519252
\(633\) 6696.00 0.420446
\(634\) 496.000 0.0310705
\(635\) −6424.00 −0.401462
\(636\) −7308.00 −0.455631
\(637\) 0 0
\(638\) 990.000 0.0614333
\(639\) 6858.00 0.424567
\(640\) 5820.00 0.359462
\(641\) −3378.00 −0.208148 −0.104074 0.994570i \(-0.533188\pi\)
−0.104074 + 0.994570i \(0.533188\pi\)
\(642\) −1692.00 −0.104015
\(643\) 11212.0 0.687649 0.343824 0.939034i \(-0.388278\pi\)
0.343824 + 0.939034i \(0.388278\pi\)
\(644\) 0 0
\(645\) 4896.00 0.298883
\(646\) 4440.00 0.270417
\(647\) 86.0000 0.00522567 0.00261284 0.999997i \(-0.499168\pi\)
0.00261284 + 0.999997i \(0.499168\pi\)
\(648\) 1215.00 0.0736570
\(649\) 2200.00 0.133062
\(650\) 3488.00 0.210478
\(651\) 0 0
\(652\) −27076.0 −1.62635
\(653\) −4432.00 −0.265601 −0.132801 0.991143i \(-0.542397\pi\)
−0.132801 + 0.991143i \(0.542397\pi\)
\(654\) 960.000 0.0573990
\(655\) 7632.00 0.455278
\(656\) −17302.0 −1.02977
\(657\) 4878.00 0.289663
\(658\) 0 0
\(659\) 4580.00 0.270731 0.135365 0.990796i \(-0.456779\pi\)
0.135365 + 0.990796i \(0.456779\pi\)
\(660\) −924.000 −0.0544949
\(661\) −4282.00 −0.251967 −0.125984 0.992032i \(-0.540209\pi\)
−0.125984 + 0.992032i \(0.540209\pi\)
\(662\) 2708.00 0.158987
\(663\) −7104.00 −0.416133
\(664\) 1980.00 0.115721
\(665\) 0 0
\(666\) 594.000 0.0345601
\(667\) 16380.0 0.950879
\(668\) 14028.0 0.812514
\(669\) −6384.00 −0.368938
\(670\) 4144.00 0.238950
\(671\) −1452.00 −0.0835378
\(672\) 0 0
\(673\) 8438.00 0.483300 0.241650 0.970363i \(-0.422311\pi\)
0.241650 + 0.970363i \(0.422311\pi\)
\(674\) −4034.00 −0.230540
\(675\) −2943.00 −0.167816
\(676\) 8211.00 0.467171
\(677\) −34494.0 −1.95822 −0.979108 0.203341i \(-0.934820\pi\)
−0.979108 + 0.203341i \(0.934820\pi\)
\(678\) 6426.00 0.363996
\(679\) 0 0
\(680\) −4440.00 −0.250392
\(681\) −8892.00 −0.500356
\(682\) −88.0000 −0.00494090
\(683\) −13712.0 −0.768192 −0.384096 0.923293i \(-0.625487\pi\)
−0.384096 + 0.923293i \(0.625487\pi\)
\(684\) −3780.00 −0.211304
\(685\) −8744.00 −0.487724
\(686\) 0 0
\(687\) 7650.00 0.424841
\(688\) 16728.0 0.926961
\(689\) 11136.0 0.615744
\(690\) 2184.00 0.120498
\(691\) −11372.0 −0.626066 −0.313033 0.949742i \(-0.601345\pi\)
−0.313033 + 0.949742i \(0.601345\pi\)
\(692\) 4746.00 0.260717
\(693\) 0 0
\(694\) −11084.0 −0.606258
\(695\) −10960.0 −0.598182
\(696\) −4050.00 −0.220567
\(697\) 31228.0 1.69705
\(698\) −3120.00 −0.169189
\(699\) −9126.00 −0.493815
\(700\) 0 0
\(701\) −6398.00 −0.344721 −0.172360 0.985034i \(-0.555139\pi\)
−0.172360 + 0.985034i \(0.555139\pi\)
\(702\) −864.000 −0.0464524
\(703\) −3960.00 −0.212453
\(704\) −1837.00 −0.0983445
\(705\) 6072.00 0.324376
\(706\) −5622.00 −0.299698
\(707\) 0 0
\(708\) −4200.00 −0.222946
\(709\) −5830.00 −0.308816 −0.154408 0.988007i \(-0.549347\pi\)
−0.154408 + 0.988007i \(0.549347\pi\)
\(710\) −3048.00 −0.161112
\(711\) −4950.00 −0.261096
\(712\) −8550.00 −0.450035
\(713\) −1456.00 −0.0764763
\(714\) 0 0
\(715\) 1408.00 0.0736451
\(716\) 11760.0 0.613815
\(717\) 8100.00 0.421897
\(718\) 8500.00 0.441807
\(719\) −34530.0 −1.79103 −0.895516 0.445030i \(-0.853193\pi\)
−0.895516 + 0.445030i \(0.853193\pi\)
\(720\) 1476.00 0.0763990
\(721\) 0 0
\(722\) 3259.00 0.167988
\(723\) 1734.00 0.0891952
\(724\) −30506.0 −1.56595
\(725\) 9810.00 0.502530
\(726\) −363.000 −0.0185567
\(727\) 17316.0 0.883377 0.441688 0.897169i \(-0.354380\pi\)
0.441688 + 0.897169i \(0.354380\pi\)
\(728\) 0 0
\(729\) 729.000 0.0370370
\(730\) −2168.00 −0.109920
\(731\) −30192.0 −1.52762
\(732\) 2772.00 0.139967
\(733\) 27072.0 1.36416 0.682079 0.731279i \(-0.261076\pi\)
0.682079 + 0.731279i \(0.261076\pi\)
\(734\) 7144.00 0.359250
\(735\) 0 0
\(736\) 29302.0 1.46751
\(737\) −11396.0 −0.569575
\(738\) 3798.00 0.189439
\(739\) −17320.0 −0.862147 −0.431073 0.902317i \(-0.641865\pi\)
−0.431073 + 0.902317i \(0.641865\pi\)
\(740\) 1848.00 0.0918025
\(741\) 5760.00 0.285559
\(742\) 0 0
\(743\) 14588.0 0.720299 0.360149 0.932895i \(-0.382726\pi\)
0.360149 + 0.932895i \(0.382726\pi\)
\(744\) 360.000 0.0177396
\(745\) −5240.00 −0.257690
\(746\) 632.000 0.0310176
\(747\) 1188.00 0.0581883
\(748\) 5698.00 0.278529
\(749\) 0 0
\(750\) 2808.00 0.136712
\(751\) 26152.0 1.27071 0.635353 0.772222i \(-0.280855\pi\)
0.635353 + 0.772222i \(0.280855\pi\)
\(752\) 20746.0 1.00602
\(753\) −11256.0 −0.544743
\(754\) 2880.00 0.139103
\(755\) −4792.00 −0.230992
\(756\) 0 0
\(757\) −1066.00 −0.0511815 −0.0255908 0.999673i \(-0.508147\pi\)
−0.0255908 + 0.999673i \(0.508147\pi\)
\(758\) 4220.00 0.202213
\(759\) −6006.00 −0.287225
\(760\) 3600.00 0.171823
\(761\) 37518.0 1.78716 0.893578 0.448907i \(-0.148187\pi\)
0.893578 + 0.448907i \(0.148187\pi\)
\(762\) 4818.00 0.229052
\(763\) 0 0
\(764\) 12446.0 0.589372
\(765\) −2664.00 −0.125905
\(766\) 8458.00 0.398956
\(767\) 6400.00 0.301292
\(768\) −357.000 −0.0167736
\(769\) 17290.0 0.810785 0.405392 0.914143i \(-0.367135\pi\)
0.405392 + 0.914143i \(0.367135\pi\)
\(770\) 0 0
\(771\) −2022.00 −0.0944495
\(772\) 27734.0 1.29296
\(773\) 17172.0 0.799009 0.399504 0.916731i \(-0.369182\pi\)
0.399504 + 0.916731i \(0.369182\pi\)
\(774\) −3672.00 −0.170526
\(775\) −872.000 −0.0404170
\(776\) −210.000 −0.00971464
\(777\) 0 0
\(778\) −1740.00 −0.0801825
\(779\) −25320.0 −1.16455
\(780\) −2688.00 −0.123392
\(781\) 8382.00 0.384035
\(782\) −13468.0 −0.615876
\(783\) −2430.00 −0.110908
\(784\) 0 0
\(785\) −8456.00 −0.384468
\(786\) −5724.00 −0.259756
\(787\) 9536.00 0.431921 0.215960 0.976402i \(-0.430712\pi\)
0.215960 + 0.976402i \(0.430712\pi\)
\(788\) −2618.00 −0.118353
\(789\) −13056.0 −0.589108
\(790\) 2200.00 0.0990791
\(791\) 0 0
\(792\) 1485.00 0.0666252
\(793\) −4224.00 −0.189153
\(794\) −5126.00 −0.229112
\(795\) 4176.00 0.186299
\(796\) 14700.0 0.654557
\(797\) 20516.0 0.911812 0.455906 0.890028i \(-0.349315\pi\)
0.455906 + 0.890028i \(0.349315\pi\)
\(798\) 0 0
\(799\) −37444.0 −1.65791
\(800\) 17549.0 0.775564
\(801\) −5130.00 −0.226292
\(802\) 3098.00 0.136402
\(803\) 5962.00 0.262010
\(804\) 21756.0 0.954322
\(805\) 0 0
\(806\) −256.000 −0.0111876
\(807\) −1500.00 −0.0654306
\(808\) −25530.0 −1.11156
\(809\) 22470.0 0.976518 0.488259 0.872699i \(-0.337632\pi\)
0.488259 + 0.872699i \(0.337632\pi\)
\(810\) −324.000 −0.0140546
\(811\) 3368.00 0.145828 0.0729140 0.997338i \(-0.476770\pi\)
0.0729140 + 0.997338i \(0.476770\pi\)
\(812\) 0 0
\(813\) 19614.0 0.846117
\(814\) 726.000 0.0312608
\(815\) 15472.0 0.664982
\(816\) −9102.00 −0.390483
\(817\) 24480.0 1.04828
\(818\) 6390.00 0.273131
\(819\) 0 0
\(820\) 11816.0 0.503211
\(821\) −10738.0 −0.456466 −0.228233 0.973607i \(-0.573295\pi\)
−0.228233 + 0.973607i \(0.573295\pi\)
\(822\) 6558.00 0.278268
\(823\) −15912.0 −0.673946 −0.336973 0.941514i \(-0.609403\pi\)
−0.336973 + 0.941514i \(0.609403\pi\)
\(824\) 16980.0 0.717872
\(825\) −3597.00 −0.151796
\(826\) 0 0
\(827\) 22924.0 0.963900 0.481950 0.876199i \(-0.339929\pi\)
0.481950 + 0.876199i \(0.339929\pi\)
\(828\) 11466.0 0.481245
\(829\) 41690.0 1.74663 0.873313 0.487159i \(-0.161967\pi\)
0.873313 + 0.487159i \(0.161967\pi\)
\(830\) −528.000 −0.0220809
\(831\) 372.000 0.0155289
\(832\) −5344.00 −0.222680
\(833\) 0 0
\(834\) 8220.00 0.341289
\(835\) −8016.00 −0.332222
\(836\) −4620.00 −0.191132
\(837\) 216.000 0.00892001
\(838\) 9760.00 0.402331
\(839\) 16450.0 0.676898 0.338449 0.940985i \(-0.390098\pi\)
0.338449 + 0.940985i \(0.390098\pi\)
\(840\) 0 0
\(841\) −16289.0 −0.667883
\(842\) 5138.00 0.210294
\(843\) 10926.0 0.446396
\(844\) −15624.0 −0.637204
\(845\) −4692.00 −0.191017
\(846\) −4554.00 −0.185071
\(847\) 0 0
\(848\) 14268.0 0.577789
\(849\) −13944.0 −0.563671
\(850\) −8066.00 −0.325484
\(851\) 12012.0 0.483861
\(852\) −16002.0 −0.643450
\(853\) 30892.0 1.24000 0.620001 0.784601i \(-0.287132\pi\)
0.620001 + 0.784601i \(0.287132\pi\)
\(854\) 0 0
\(855\) 2160.00 0.0863982
\(856\) 8460.00 0.337800
\(857\) 38906.0 1.55076 0.775381 0.631493i \(-0.217558\pi\)
0.775381 + 0.631493i \(0.217558\pi\)
\(858\) −1056.00 −0.0420178
\(859\) 1020.00 0.0405145 0.0202572 0.999795i \(-0.493551\pi\)
0.0202572 + 0.999795i \(0.493551\pi\)
\(860\) −11424.0 −0.452971
\(861\) 0 0
\(862\) 7008.00 0.276907
\(863\) 15078.0 0.594741 0.297370 0.954762i \(-0.403890\pi\)
0.297370 + 0.954762i \(0.403890\pi\)
\(864\) −4347.00 −0.171167
\(865\) −2712.00 −0.106602
\(866\) 5578.00 0.218878
\(867\) 1689.00 0.0661608
\(868\) 0 0
\(869\) −6050.00 −0.236171
\(870\) 1080.00 0.0420867
\(871\) −33152.0 −1.28968
\(872\) −4800.00 −0.186409
\(873\) −126.000 −0.00488483
\(874\) 10920.0 0.422625
\(875\) 0 0
\(876\) −11382.0 −0.438998
\(877\) 22704.0 0.874184 0.437092 0.899417i \(-0.356008\pi\)
0.437092 + 0.899417i \(0.356008\pi\)
\(878\) −10430.0 −0.400906
\(879\) 9306.00 0.357092
\(880\) 1804.00 0.0691055
\(881\) 19358.0 0.740281 0.370141 0.928976i \(-0.379310\pi\)
0.370141 + 0.928976i \(0.379310\pi\)
\(882\) 0 0
\(883\) −11252.0 −0.428833 −0.214417 0.976742i \(-0.568785\pi\)
−0.214417 + 0.976742i \(0.568785\pi\)
\(884\) 16576.0 0.630669
\(885\) 2400.00 0.0911583
\(886\) 4432.00 0.168054
\(887\) −43684.0 −1.65362 −0.826812 0.562478i \(-0.809848\pi\)
−0.826812 + 0.562478i \(0.809848\pi\)
\(888\) −2970.00 −0.112237
\(889\) 0 0
\(890\) 2280.00 0.0858717
\(891\) 891.000 0.0335013
\(892\) 14896.0 0.559142
\(893\) 30360.0 1.13769
\(894\) 3930.00 0.147023
\(895\) −6720.00 −0.250977
\(896\) 0 0
\(897\) −17472.0 −0.650360
\(898\) 6290.00 0.233742
\(899\) −720.000 −0.0267112
\(900\) 6867.00 0.254333
\(901\) −25752.0 −0.952190
\(902\) 4642.00 0.171354
\(903\) 0 0
\(904\) −32130.0 −1.18211
\(905\) 17432.0 0.640287
\(906\) 3594.00 0.131791
\(907\) 45804.0 1.67684 0.838422 0.545022i \(-0.183479\pi\)
0.838422 + 0.545022i \(0.183479\pi\)
\(908\) 20748.0 0.758311
\(909\) −15318.0 −0.558928
\(910\) 0 0
\(911\) −15318.0 −0.557089 −0.278544 0.960423i \(-0.589852\pi\)
−0.278544 + 0.960423i \(0.589852\pi\)
\(912\) 7380.00 0.267956
\(913\) 1452.00 0.0526333
\(914\) −3054.00 −0.110522
\(915\) −1584.00 −0.0572300
\(916\) −17850.0 −0.643865
\(917\) 0 0
\(918\) 1998.00 0.0718342
\(919\) 11350.0 0.407401 0.203701 0.979033i \(-0.434703\pi\)
0.203701 + 0.979033i \(0.434703\pi\)
\(920\) −10920.0 −0.391328
\(921\) −3732.00 −0.133522
\(922\) 12882.0 0.460137
\(923\) 24384.0 0.869566
\(924\) 0 0
\(925\) 7194.00 0.255716
\(926\) −6148.00 −0.218181
\(927\) 10188.0 0.360969
\(928\) 14490.0 0.512562
\(929\) −33030.0 −1.16650 −0.583250 0.812292i \(-0.698219\pi\)
−0.583250 + 0.812292i \(0.698219\pi\)
\(930\) −96.0000 −0.00338491
\(931\) 0 0
\(932\) 21294.0 0.748399
\(933\) −6246.00 −0.219169
\(934\) 5124.00 0.179510
\(935\) −3256.00 −0.113885
\(936\) 4320.00 0.150859
\(937\) 10006.0 0.348860 0.174430 0.984670i \(-0.444192\pi\)
0.174430 + 0.984670i \(0.444192\pi\)
\(938\) 0 0
\(939\) −7134.00 −0.247933
\(940\) −14168.0 −0.491606
\(941\) −2622.00 −0.0908340 −0.0454170 0.998968i \(-0.514462\pi\)
−0.0454170 + 0.998968i \(0.514462\pi\)
\(942\) 6342.00 0.219356
\(943\) 76804.0 2.65226
\(944\) 8200.00 0.282720
\(945\) 0 0
\(946\) −4488.00 −0.154247
\(947\) −39876.0 −1.36832 −0.684158 0.729334i \(-0.739830\pi\)
−0.684158 + 0.729334i \(0.739830\pi\)
\(948\) 11550.0 0.395703
\(949\) 17344.0 0.593267
\(950\) 6540.00 0.223353
\(951\) −1488.00 −0.0507379
\(952\) 0 0
\(953\) 38918.0 1.32285 0.661426 0.750011i \(-0.269952\pi\)
0.661426 + 0.750011i \(0.269952\pi\)
\(954\) −3132.00 −0.106292
\(955\) −7112.00 −0.240983
\(956\) −18900.0 −0.639403
\(957\) −2970.00 −0.100320
\(958\) −16520.0 −0.557137
\(959\) 0 0
\(960\) −2004.00 −0.0673738
\(961\) −29727.0 −0.997852
\(962\) 2112.00 0.0707834
\(963\) 5076.00 0.169857
\(964\) −4046.00 −0.135179
\(965\) −15848.0 −0.528669
\(966\) 0 0
\(967\) 1114.00 0.0370464 0.0185232 0.999828i \(-0.494104\pi\)
0.0185232 + 0.999828i \(0.494104\pi\)
\(968\) 1815.00 0.0602648
\(969\) −13320.0 −0.441589
\(970\) 56.0000 0.00185366
\(971\) 1688.00 0.0557884 0.0278942 0.999611i \(-0.491120\pi\)
0.0278942 + 0.999611i \(0.491120\pi\)
\(972\) −1701.00 −0.0561313
\(973\) 0 0
\(974\) −524.000 −0.0172382
\(975\) −10464.0 −0.343709
\(976\) −5412.00 −0.177494
\(977\) −41826.0 −1.36963 −0.684817 0.728715i \(-0.740118\pi\)
−0.684817 + 0.728715i \(0.740118\pi\)
\(978\) −11604.0 −0.379402
\(979\) −6270.00 −0.204689
\(980\) 0 0
\(981\) −2880.00 −0.0937322
\(982\) 15028.0 0.488353
\(983\) −978.000 −0.0317328 −0.0158664 0.999874i \(-0.505051\pi\)
−0.0158664 + 0.999874i \(0.505051\pi\)
\(984\) −18990.0 −0.615223
\(985\) 1496.00 0.0483924
\(986\) −6660.00 −0.215109
\(987\) 0 0
\(988\) −13440.0 −0.432777
\(989\) −74256.0 −2.38747
\(990\) −396.000 −0.0127128
\(991\) 47272.0 1.51528 0.757641 0.652671i \(-0.226352\pi\)
0.757641 + 0.652671i \(0.226352\pi\)
\(992\) −1288.00 −0.0412238
\(993\) −8124.00 −0.259625
\(994\) 0 0
\(995\) −8400.00 −0.267636
\(996\) −2772.00 −0.0881869
\(997\) −51104.0 −1.62335 −0.811675 0.584109i \(-0.801444\pi\)
−0.811675 + 0.584109i \(0.801444\pi\)
\(998\) −9020.00 −0.286095
\(999\) −1782.00 −0.0564364
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1617.4.a.d.1.1 1
7.6 odd 2 33.4.a.b.1.1 1
21.20 even 2 99.4.a.a.1.1 1
28.27 even 2 528.4.a.h.1.1 1
35.13 even 4 825.4.c.f.199.2 2
35.27 even 4 825.4.c.f.199.1 2
35.34 odd 2 825.4.a.f.1.1 1
56.13 odd 2 2112.4.a.u.1.1 1
56.27 even 2 2112.4.a.h.1.1 1
77.76 even 2 363.4.a.d.1.1 1
84.83 odd 2 1584.4.a.l.1.1 1
105.104 even 2 2475.4.a.e.1.1 1
231.230 odd 2 1089.4.a.e.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
33.4.a.b.1.1 1 7.6 odd 2
99.4.a.a.1.1 1 21.20 even 2
363.4.a.d.1.1 1 77.76 even 2
528.4.a.h.1.1 1 28.27 even 2
825.4.a.f.1.1 1 35.34 odd 2
825.4.c.f.199.1 2 35.27 even 4
825.4.c.f.199.2 2 35.13 even 4
1089.4.a.e.1.1 1 231.230 odd 2
1584.4.a.l.1.1 1 84.83 odd 2
1617.4.a.d.1.1 1 1.1 even 1 trivial
2112.4.a.h.1.1 1 56.27 even 2
2112.4.a.u.1.1 1 56.13 odd 2
2475.4.a.e.1.1 1 105.104 even 2