Properties

Label 1617.4.a.c.1.1
Level $1617$
Weight $4$
Character 1617.1
Self dual yes
Analytic conductor $95.406$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1617,4,Mod(1,1617)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1617, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1617.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1617 = 3 \cdot 7^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1617.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(95.4060884793\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 231)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 1617.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000 q^{2} -3.00000 q^{3} -4.00000 q^{4} -1.00000 q^{5} +6.00000 q^{6} +24.0000 q^{8} +9.00000 q^{9} +2.00000 q^{10} -11.0000 q^{11} +12.0000 q^{12} -7.00000 q^{13} +3.00000 q^{15} -16.0000 q^{16} +14.0000 q^{17} -18.0000 q^{18} +45.0000 q^{19} +4.00000 q^{20} +22.0000 q^{22} -88.0000 q^{23} -72.0000 q^{24} -124.000 q^{25} +14.0000 q^{26} -27.0000 q^{27} -69.0000 q^{29} -6.00000 q^{30} -22.0000 q^{31} -160.000 q^{32} +33.0000 q^{33} -28.0000 q^{34} -36.0000 q^{36} +57.0000 q^{37} -90.0000 q^{38} +21.0000 q^{39} -24.0000 q^{40} +380.000 q^{41} +48.0000 q^{43} +44.0000 q^{44} -9.00000 q^{45} +176.000 q^{46} +385.000 q^{47} +48.0000 q^{48} +248.000 q^{50} -42.0000 q^{51} +28.0000 q^{52} -672.000 q^{53} +54.0000 q^{54} +11.0000 q^{55} -135.000 q^{57} +138.000 q^{58} +469.000 q^{59} -12.0000 q^{60} +342.000 q^{61} +44.0000 q^{62} +448.000 q^{64} +7.00000 q^{65} -66.0000 q^{66} -139.000 q^{67} -56.0000 q^{68} +264.000 q^{69} +132.000 q^{71} +216.000 q^{72} -145.000 q^{73} -114.000 q^{74} +372.000 q^{75} -180.000 q^{76} -42.0000 q^{78} +1244.00 q^{79} +16.0000 q^{80} +81.0000 q^{81} -760.000 q^{82} -522.000 q^{83} -14.0000 q^{85} -96.0000 q^{86} +207.000 q^{87} -264.000 q^{88} -822.000 q^{89} +18.0000 q^{90} +352.000 q^{92} +66.0000 q^{93} -770.000 q^{94} -45.0000 q^{95} +480.000 q^{96} -272.000 q^{97} -99.0000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.00000 −0.707107 −0.353553 0.935414i \(-0.615027\pi\)
−0.353553 + 0.935414i \(0.615027\pi\)
\(3\) −3.00000 −0.577350
\(4\) −4.00000 −0.500000
\(5\) −1.00000 −0.0894427 −0.0447214 0.998999i \(-0.514240\pi\)
−0.0447214 + 0.998999i \(0.514240\pi\)
\(6\) 6.00000 0.408248
\(7\) 0 0
\(8\) 24.0000 1.06066
\(9\) 9.00000 0.333333
\(10\) 2.00000 0.0632456
\(11\) −11.0000 −0.301511
\(12\) 12.0000 0.288675
\(13\) −7.00000 −0.149342 −0.0746712 0.997208i \(-0.523791\pi\)
−0.0746712 + 0.997208i \(0.523791\pi\)
\(14\) 0 0
\(15\) 3.00000 0.0516398
\(16\) −16.0000 −0.250000
\(17\) 14.0000 0.199735 0.0998676 0.995001i \(-0.468158\pi\)
0.0998676 + 0.995001i \(0.468158\pi\)
\(18\) −18.0000 −0.235702
\(19\) 45.0000 0.543353 0.271677 0.962389i \(-0.412422\pi\)
0.271677 + 0.962389i \(0.412422\pi\)
\(20\) 4.00000 0.0447214
\(21\) 0 0
\(22\) 22.0000 0.213201
\(23\) −88.0000 −0.797794 −0.398897 0.916996i \(-0.630607\pi\)
−0.398897 + 0.916996i \(0.630607\pi\)
\(24\) −72.0000 −0.612372
\(25\) −124.000 −0.992000
\(26\) 14.0000 0.105601
\(27\) −27.0000 −0.192450
\(28\) 0 0
\(29\) −69.0000 −0.441827 −0.220913 0.975293i \(-0.570904\pi\)
−0.220913 + 0.975293i \(0.570904\pi\)
\(30\) −6.00000 −0.0365148
\(31\) −22.0000 −0.127462 −0.0637309 0.997967i \(-0.520300\pi\)
−0.0637309 + 0.997967i \(0.520300\pi\)
\(32\) −160.000 −0.883883
\(33\) 33.0000 0.174078
\(34\) −28.0000 −0.141234
\(35\) 0 0
\(36\) −36.0000 −0.166667
\(37\) 57.0000 0.253263 0.126632 0.991950i \(-0.459583\pi\)
0.126632 + 0.991950i \(0.459583\pi\)
\(38\) −90.0000 −0.384209
\(39\) 21.0000 0.0862229
\(40\) −24.0000 −0.0948683
\(41\) 380.000 1.44746 0.723732 0.690081i \(-0.242425\pi\)
0.723732 + 0.690081i \(0.242425\pi\)
\(42\) 0 0
\(43\) 48.0000 0.170231 0.0851155 0.996371i \(-0.472874\pi\)
0.0851155 + 0.996371i \(0.472874\pi\)
\(44\) 44.0000 0.150756
\(45\) −9.00000 −0.0298142
\(46\) 176.000 0.564126
\(47\) 385.000 1.19485 0.597426 0.801924i \(-0.296190\pi\)
0.597426 + 0.801924i \(0.296190\pi\)
\(48\) 48.0000 0.144338
\(49\) 0 0
\(50\) 248.000 0.701450
\(51\) −42.0000 −0.115317
\(52\) 28.0000 0.0746712
\(53\) −672.000 −1.74163 −0.870814 0.491612i \(-0.836408\pi\)
−0.870814 + 0.491612i \(0.836408\pi\)
\(54\) 54.0000 0.136083
\(55\) 11.0000 0.0269680
\(56\) 0 0
\(57\) −135.000 −0.313705
\(58\) 138.000 0.312419
\(59\) 469.000 1.03489 0.517446 0.855716i \(-0.326883\pi\)
0.517446 + 0.855716i \(0.326883\pi\)
\(60\) −12.0000 −0.0258199
\(61\) 342.000 0.717846 0.358923 0.933367i \(-0.383144\pi\)
0.358923 + 0.933367i \(0.383144\pi\)
\(62\) 44.0000 0.0901291
\(63\) 0 0
\(64\) 448.000 0.875000
\(65\) 7.00000 0.0133576
\(66\) −66.0000 −0.123091
\(67\) −139.000 −0.253456 −0.126728 0.991938i \(-0.540448\pi\)
−0.126728 + 0.991938i \(0.540448\pi\)
\(68\) −56.0000 −0.0998676
\(69\) 264.000 0.460607
\(70\) 0 0
\(71\) 132.000 0.220641 0.110321 0.993896i \(-0.464812\pi\)
0.110321 + 0.993896i \(0.464812\pi\)
\(72\) 216.000 0.353553
\(73\) −145.000 −0.232479 −0.116239 0.993221i \(-0.537084\pi\)
−0.116239 + 0.993221i \(0.537084\pi\)
\(74\) −114.000 −0.179084
\(75\) 372.000 0.572731
\(76\) −180.000 −0.271677
\(77\) 0 0
\(78\) −42.0000 −0.0609688
\(79\) 1244.00 1.77166 0.885829 0.464012i \(-0.153591\pi\)
0.885829 + 0.464012i \(0.153591\pi\)
\(80\) 16.0000 0.0223607
\(81\) 81.0000 0.111111
\(82\) −760.000 −1.02351
\(83\) −522.000 −0.690325 −0.345162 0.938543i \(-0.612176\pi\)
−0.345162 + 0.938543i \(0.612176\pi\)
\(84\) 0 0
\(85\) −14.0000 −0.0178649
\(86\) −96.0000 −0.120371
\(87\) 207.000 0.255089
\(88\) −264.000 −0.319801
\(89\) −822.000 −0.979009 −0.489505 0.872001i \(-0.662822\pi\)
−0.489505 + 0.872001i \(0.662822\pi\)
\(90\) 18.0000 0.0210819
\(91\) 0 0
\(92\) 352.000 0.398897
\(93\) 66.0000 0.0735901
\(94\) −770.000 −0.844888
\(95\) −45.0000 −0.0485990
\(96\) 480.000 0.510310
\(97\) −272.000 −0.284716 −0.142358 0.989815i \(-0.545468\pi\)
−0.142358 + 0.989815i \(0.545468\pi\)
\(98\) 0 0
\(99\) −99.0000 −0.100504
\(100\) 496.000 0.496000
\(101\) 874.000 0.861052 0.430526 0.902578i \(-0.358328\pi\)
0.430526 + 0.902578i \(0.358328\pi\)
\(102\) 84.0000 0.0815416
\(103\) 826.000 0.790177 0.395088 0.918643i \(-0.370714\pi\)
0.395088 + 0.918643i \(0.370714\pi\)
\(104\) −168.000 −0.158401
\(105\) 0 0
\(106\) 1344.00 1.23152
\(107\) 219.000 0.197865 0.0989324 0.995094i \(-0.468457\pi\)
0.0989324 + 0.995094i \(0.468457\pi\)
\(108\) 108.000 0.0962250
\(109\) 1426.00 1.25308 0.626541 0.779388i \(-0.284470\pi\)
0.626541 + 0.779388i \(0.284470\pi\)
\(110\) −22.0000 −0.0190693
\(111\) −171.000 −0.146222
\(112\) 0 0
\(113\) 882.000 0.734262 0.367131 0.930169i \(-0.380340\pi\)
0.367131 + 0.930169i \(0.380340\pi\)
\(114\) 270.000 0.221823
\(115\) 88.0000 0.0713569
\(116\) 276.000 0.220913
\(117\) −63.0000 −0.0497808
\(118\) −938.000 −0.731779
\(119\) 0 0
\(120\) 72.0000 0.0547723
\(121\) 121.000 0.0909091
\(122\) −684.000 −0.507594
\(123\) −1140.00 −0.835694
\(124\) 88.0000 0.0637309
\(125\) 249.000 0.178170
\(126\) 0 0
\(127\) 1826.00 1.27584 0.637918 0.770104i \(-0.279796\pi\)
0.637918 + 0.770104i \(0.279796\pi\)
\(128\) 384.000 0.265165
\(129\) −144.000 −0.0982829
\(130\) −14.0000 −0.00944524
\(131\) −84.0000 −0.0560238 −0.0280119 0.999608i \(-0.508918\pi\)
−0.0280119 + 0.999608i \(0.508918\pi\)
\(132\) −132.000 −0.0870388
\(133\) 0 0
\(134\) 278.000 0.179220
\(135\) 27.0000 0.0172133
\(136\) 336.000 0.211851
\(137\) −1834.00 −1.14372 −0.571858 0.820352i \(-0.693777\pi\)
−0.571858 + 0.820352i \(0.693777\pi\)
\(138\) −528.000 −0.325698
\(139\) −2416.00 −1.47426 −0.737131 0.675750i \(-0.763820\pi\)
−0.737131 + 0.675750i \(0.763820\pi\)
\(140\) 0 0
\(141\) −1155.00 −0.689848
\(142\) −264.000 −0.156017
\(143\) 77.0000 0.0450284
\(144\) −144.000 −0.0833333
\(145\) 69.0000 0.0395182
\(146\) 290.000 0.164387
\(147\) 0 0
\(148\) −228.000 −0.126632
\(149\) 1895.00 1.04191 0.520955 0.853584i \(-0.325576\pi\)
0.520955 + 0.853584i \(0.325576\pi\)
\(150\) −744.000 −0.404982
\(151\) −3478.00 −1.87441 −0.937204 0.348782i \(-0.886596\pi\)
−0.937204 + 0.348782i \(0.886596\pi\)
\(152\) 1080.00 0.576313
\(153\) 126.000 0.0665784
\(154\) 0 0
\(155\) 22.0000 0.0114005
\(156\) −84.0000 −0.0431114
\(157\) 952.000 0.483935 0.241968 0.970284i \(-0.422207\pi\)
0.241968 + 0.970284i \(0.422207\pi\)
\(158\) −2488.00 −1.25275
\(159\) 2016.00 1.00553
\(160\) 160.000 0.0790569
\(161\) 0 0
\(162\) −162.000 −0.0785674
\(163\) −2483.00 −1.19315 −0.596575 0.802557i \(-0.703472\pi\)
−0.596575 + 0.802557i \(0.703472\pi\)
\(164\) −1520.00 −0.723732
\(165\) −33.0000 −0.0155700
\(166\) 1044.00 0.488133
\(167\) −468.000 −0.216856 −0.108428 0.994104i \(-0.534582\pi\)
−0.108428 + 0.994104i \(0.534582\pi\)
\(168\) 0 0
\(169\) −2148.00 −0.977697
\(170\) 28.0000 0.0126324
\(171\) 405.000 0.181118
\(172\) −192.000 −0.0851155
\(173\) 2148.00 0.943985 0.471993 0.881603i \(-0.343535\pi\)
0.471993 + 0.881603i \(0.343535\pi\)
\(174\) −414.000 −0.180375
\(175\) 0 0
\(176\) 176.000 0.0753778
\(177\) −1407.00 −0.597495
\(178\) 1644.00 0.692264
\(179\) −1464.00 −0.611310 −0.305655 0.952142i \(-0.598875\pi\)
−0.305655 + 0.952142i \(0.598875\pi\)
\(180\) 36.0000 0.0149071
\(181\) −1432.00 −0.588065 −0.294032 0.955795i \(-0.594997\pi\)
−0.294032 + 0.955795i \(0.594997\pi\)
\(182\) 0 0
\(183\) −1026.00 −0.414449
\(184\) −2112.00 −0.846189
\(185\) −57.0000 −0.0226526
\(186\) −132.000 −0.0520361
\(187\) −154.000 −0.0602224
\(188\) −1540.00 −0.597426
\(189\) 0 0
\(190\) 90.0000 0.0343647
\(191\) −1330.00 −0.503850 −0.251925 0.967747i \(-0.581064\pi\)
−0.251925 + 0.967747i \(0.581064\pi\)
\(192\) −1344.00 −0.505181
\(193\) −2540.00 −0.947322 −0.473661 0.880707i \(-0.657068\pi\)
−0.473661 + 0.880707i \(0.657068\pi\)
\(194\) 544.000 0.201324
\(195\) −21.0000 −0.00771201
\(196\) 0 0
\(197\) 1606.00 0.580826 0.290413 0.956901i \(-0.406207\pi\)
0.290413 + 0.956901i \(0.406207\pi\)
\(198\) 198.000 0.0710669
\(199\) −288.000 −0.102592 −0.0512959 0.998683i \(-0.516335\pi\)
−0.0512959 + 0.998683i \(0.516335\pi\)
\(200\) −2976.00 −1.05217
\(201\) 417.000 0.146333
\(202\) −1748.00 −0.608856
\(203\) 0 0
\(204\) 168.000 0.0576586
\(205\) −380.000 −0.129465
\(206\) −1652.00 −0.558739
\(207\) −792.000 −0.265931
\(208\) 112.000 0.0373356
\(209\) −495.000 −0.163827
\(210\) 0 0
\(211\) 1482.00 0.483531 0.241766 0.970335i \(-0.422273\pi\)
0.241766 + 0.970335i \(0.422273\pi\)
\(212\) 2688.00 0.870814
\(213\) −396.000 −0.127387
\(214\) −438.000 −0.139912
\(215\) −48.0000 −0.0152259
\(216\) −648.000 −0.204124
\(217\) 0 0
\(218\) −2852.00 −0.886063
\(219\) 435.000 0.134222
\(220\) −44.0000 −0.0134840
\(221\) −98.0000 −0.0298289
\(222\) 342.000 0.103394
\(223\) −3502.00 −1.05162 −0.525810 0.850602i \(-0.676238\pi\)
−0.525810 + 0.850602i \(0.676238\pi\)
\(224\) 0 0
\(225\) −1116.00 −0.330667
\(226\) −1764.00 −0.519201
\(227\) −1830.00 −0.535072 −0.267536 0.963548i \(-0.586209\pi\)
−0.267536 + 0.963548i \(0.586209\pi\)
\(228\) 540.000 0.156853
\(229\) 2268.00 0.654470 0.327235 0.944943i \(-0.393883\pi\)
0.327235 + 0.944943i \(0.393883\pi\)
\(230\) −176.000 −0.0504569
\(231\) 0 0
\(232\) −1656.00 −0.468628
\(233\) 2430.00 0.683239 0.341619 0.939838i \(-0.389025\pi\)
0.341619 + 0.939838i \(0.389025\pi\)
\(234\) 126.000 0.0352003
\(235\) −385.000 −0.106871
\(236\) −1876.00 −0.517446
\(237\) −3732.00 −1.02287
\(238\) 0 0
\(239\) −2151.00 −0.582162 −0.291081 0.956698i \(-0.594015\pi\)
−0.291081 + 0.956698i \(0.594015\pi\)
\(240\) −48.0000 −0.0129099
\(241\) −2803.00 −0.749200 −0.374600 0.927187i \(-0.622220\pi\)
−0.374600 + 0.927187i \(0.622220\pi\)
\(242\) −242.000 −0.0642824
\(243\) −243.000 −0.0641500
\(244\) −1368.00 −0.358923
\(245\) 0 0
\(246\) 2280.00 0.590925
\(247\) −315.000 −0.0811456
\(248\) −528.000 −0.135194
\(249\) 1566.00 0.398559
\(250\) −498.000 −0.125985
\(251\) 5339.00 1.34261 0.671304 0.741182i \(-0.265734\pi\)
0.671304 + 0.741182i \(0.265734\pi\)
\(252\) 0 0
\(253\) 968.000 0.240544
\(254\) −3652.00 −0.902153
\(255\) 42.0000 0.0103143
\(256\) −4352.00 −1.06250
\(257\) 4439.00 1.07742 0.538711 0.842491i \(-0.318912\pi\)
0.538711 + 0.842491i \(0.318912\pi\)
\(258\) 288.000 0.0694965
\(259\) 0 0
\(260\) −28.0000 −0.00667879
\(261\) −621.000 −0.147276
\(262\) 168.000 0.0396148
\(263\) 1271.00 0.297997 0.148999 0.988837i \(-0.452395\pi\)
0.148999 + 0.988837i \(0.452395\pi\)
\(264\) 792.000 0.184637
\(265\) 672.000 0.155776
\(266\) 0 0
\(267\) 2466.00 0.565231
\(268\) 556.000 0.126728
\(269\) −3682.00 −0.834556 −0.417278 0.908779i \(-0.637016\pi\)
−0.417278 + 0.908779i \(0.637016\pi\)
\(270\) −54.0000 −0.0121716
\(271\) −4127.00 −0.925083 −0.462541 0.886598i \(-0.653062\pi\)
−0.462541 + 0.886598i \(0.653062\pi\)
\(272\) −224.000 −0.0499338
\(273\) 0 0
\(274\) 3668.00 0.808730
\(275\) 1364.00 0.299099
\(276\) −1056.00 −0.230303
\(277\) −44.0000 −0.00954406 −0.00477203 0.999989i \(-0.501519\pi\)
−0.00477203 + 0.999989i \(0.501519\pi\)
\(278\) 4832.00 1.04246
\(279\) −198.000 −0.0424873
\(280\) 0 0
\(281\) −561.000 −0.119098 −0.0595489 0.998225i \(-0.518966\pi\)
−0.0595489 + 0.998225i \(0.518966\pi\)
\(282\) 2310.00 0.487796
\(283\) 3845.00 0.807638 0.403819 0.914839i \(-0.367683\pi\)
0.403819 + 0.914839i \(0.367683\pi\)
\(284\) −528.000 −0.110321
\(285\) 135.000 0.0280586
\(286\) −154.000 −0.0318399
\(287\) 0 0
\(288\) −1440.00 −0.294628
\(289\) −4717.00 −0.960106
\(290\) −138.000 −0.0279436
\(291\) 816.000 0.164381
\(292\) 580.000 0.116239
\(293\) −912.000 −0.181842 −0.0909208 0.995858i \(-0.528981\pi\)
−0.0909208 + 0.995858i \(0.528981\pi\)
\(294\) 0 0
\(295\) −469.000 −0.0925635
\(296\) 1368.00 0.268626
\(297\) 297.000 0.0580259
\(298\) −3790.00 −0.736741
\(299\) 616.000 0.119144
\(300\) −1488.00 −0.286366
\(301\) 0 0
\(302\) 6956.00 1.32541
\(303\) −2622.00 −0.497129
\(304\) −720.000 −0.135838
\(305\) −342.000 −0.0642061
\(306\) −252.000 −0.0470780
\(307\) −6860.00 −1.27531 −0.637656 0.770321i \(-0.720096\pi\)
−0.637656 + 0.770321i \(0.720096\pi\)
\(308\) 0 0
\(309\) −2478.00 −0.456209
\(310\) −44.0000 −0.00806139
\(311\) −5472.00 −0.997713 −0.498856 0.866685i \(-0.666246\pi\)
−0.498856 + 0.866685i \(0.666246\pi\)
\(312\) 504.000 0.0914531
\(313\) −6422.00 −1.15972 −0.579861 0.814716i \(-0.696893\pi\)
−0.579861 + 0.814716i \(0.696893\pi\)
\(314\) −1904.00 −0.342194
\(315\) 0 0
\(316\) −4976.00 −0.885829
\(317\) −6476.00 −1.14741 −0.573704 0.819063i \(-0.694494\pi\)
−0.573704 + 0.819063i \(0.694494\pi\)
\(318\) −4032.00 −0.711017
\(319\) 759.000 0.133216
\(320\) −448.000 −0.0782624
\(321\) −657.000 −0.114237
\(322\) 0 0
\(323\) 630.000 0.108527
\(324\) −324.000 −0.0555556
\(325\) 868.000 0.148148
\(326\) 4966.00 0.843685
\(327\) −4278.00 −0.723468
\(328\) 9120.00 1.53527
\(329\) 0 0
\(330\) 66.0000 0.0110096
\(331\) −11840.0 −1.96612 −0.983059 0.183288i \(-0.941326\pi\)
−0.983059 + 0.183288i \(0.941326\pi\)
\(332\) 2088.00 0.345162
\(333\) 513.000 0.0844211
\(334\) 936.000 0.153340
\(335\) 139.000 0.0226698
\(336\) 0 0
\(337\) 1640.00 0.265093 0.132547 0.991177i \(-0.457685\pi\)
0.132547 + 0.991177i \(0.457685\pi\)
\(338\) 4296.00 0.691336
\(339\) −2646.00 −0.423926
\(340\) 56.0000 0.00893243
\(341\) 242.000 0.0384312
\(342\) −810.000 −0.128070
\(343\) 0 0
\(344\) 1152.00 0.180557
\(345\) −264.000 −0.0411979
\(346\) −4296.00 −0.667498
\(347\) 2032.00 0.314362 0.157181 0.987570i \(-0.449759\pi\)
0.157181 + 0.987570i \(0.449759\pi\)
\(348\) −828.000 −0.127544
\(349\) −1755.00 −0.269178 −0.134589 0.990902i \(-0.542971\pi\)
−0.134589 + 0.990902i \(0.542971\pi\)
\(350\) 0 0
\(351\) 189.000 0.0287410
\(352\) 1760.00 0.266501
\(353\) 1101.00 0.166007 0.0830033 0.996549i \(-0.473549\pi\)
0.0830033 + 0.996549i \(0.473549\pi\)
\(354\) 2814.00 0.422493
\(355\) −132.000 −0.0197347
\(356\) 3288.00 0.489505
\(357\) 0 0
\(358\) 2928.00 0.432261
\(359\) 5020.00 0.738010 0.369005 0.929427i \(-0.379699\pi\)
0.369005 + 0.929427i \(0.379699\pi\)
\(360\) −216.000 −0.0316228
\(361\) −4834.00 −0.704767
\(362\) 2864.00 0.415825
\(363\) −363.000 −0.0524864
\(364\) 0 0
\(365\) 145.000 0.0207936
\(366\) 2052.00 0.293059
\(367\) −11638.0 −1.65531 −0.827655 0.561237i \(-0.810325\pi\)
−0.827655 + 0.561237i \(0.810325\pi\)
\(368\) 1408.00 0.199449
\(369\) 3420.00 0.482488
\(370\) 114.000 0.0160178
\(371\) 0 0
\(372\) −264.000 −0.0367951
\(373\) −8834.00 −1.22629 −0.613146 0.789969i \(-0.710096\pi\)
−0.613146 + 0.789969i \(0.710096\pi\)
\(374\) 308.000 0.0425837
\(375\) −747.000 −0.102866
\(376\) 9240.00 1.26733
\(377\) 483.000 0.0659835
\(378\) 0 0
\(379\) 7507.00 1.01744 0.508719 0.860933i \(-0.330119\pi\)
0.508719 + 0.860933i \(0.330119\pi\)
\(380\) 180.000 0.0242995
\(381\) −5478.00 −0.736605
\(382\) 2660.00 0.356276
\(383\) −3608.00 −0.481358 −0.240679 0.970605i \(-0.577370\pi\)
−0.240679 + 0.970605i \(0.577370\pi\)
\(384\) −1152.00 −0.153093
\(385\) 0 0
\(386\) 5080.00 0.669858
\(387\) 432.000 0.0567437
\(388\) 1088.00 0.142358
\(389\) −7896.00 −1.02916 −0.514580 0.857442i \(-0.672052\pi\)
−0.514580 + 0.857442i \(0.672052\pi\)
\(390\) 42.0000 0.00545321
\(391\) −1232.00 −0.159348
\(392\) 0 0
\(393\) 252.000 0.0323453
\(394\) −3212.00 −0.410706
\(395\) −1244.00 −0.158462
\(396\) 396.000 0.0502519
\(397\) −6934.00 −0.876593 −0.438297 0.898830i \(-0.644418\pi\)
−0.438297 + 0.898830i \(0.644418\pi\)
\(398\) 576.000 0.0725434
\(399\) 0 0
\(400\) 1984.00 0.248000
\(401\) −700.000 −0.0871729 −0.0435864 0.999050i \(-0.513878\pi\)
−0.0435864 + 0.999050i \(0.513878\pi\)
\(402\) −834.000 −0.103473
\(403\) 154.000 0.0190355
\(404\) −3496.00 −0.430526
\(405\) −81.0000 −0.00993808
\(406\) 0 0
\(407\) −627.000 −0.0763618
\(408\) −1008.00 −0.122312
\(409\) 11550.0 1.39636 0.698179 0.715923i \(-0.253994\pi\)
0.698179 + 0.715923i \(0.253994\pi\)
\(410\) 760.000 0.0915457
\(411\) 5502.00 0.660325
\(412\) −3304.00 −0.395088
\(413\) 0 0
\(414\) 1584.00 0.188042
\(415\) 522.000 0.0617445
\(416\) 1120.00 0.132001
\(417\) 7248.00 0.851166
\(418\) 990.000 0.115843
\(419\) 4555.00 0.531089 0.265545 0.964099i \(-0.414448\pi\)
0.265545 + 0.964099i \(0.414448\pi\)
\(420\) 0 0
\(421\) −161.000 −0.0186381 −0.00931907 0.999957i \(-0.502966\pi\)
−0.00931907 + 0.999957i \(0.502966\pi\)
\(422\) −2964.00 −0.341908
\(423\) 3465.00 0.398284
\(424\) −16128.0 −1.84728
\(425\) −1736.00 −0.198137
\(426\) 792.000 0.0900764
\(427\) 0 0
\(428\) −876.000 −0.0989324
\(429\) −231.000 −0.0259972
\(430\) 96.0000 0.0107664
\(431\) −3249.00 −0.363106 −0.181553 0.983381i \(-0.558112\pi\)
−0.181553 + 0.983381i \(0.558112\pi\)
\(432\) 432.000 0.0481125
\(433\) −1792.00 −0.198887 −0.0994434 0.995043i \(-0.531706\pi\)
−0.0994434 + 0.995043i \(0.531706\pi\)
\(434\) 0 0
\(435\) −207.000 −0.0228158
\(436\) −5704.00 −0.626541
\(437\) −3960.00 −0.433484
\(438\) −870.000 −0.0949092
\(439\) −9319.00 −1.01315 −0.506574 0.862197i \(-0.669088\pi\)
−0.506574 + 0.862197i \(0.669088\pi\)
\(440\) 264.000 0.0286039
\(441\) 0 0
\(442\) 196.000 0.0210922
\(443\) 5608.00 0.601454 0.300727 0.953710i \(-0.402771\pi\)
0.300727 + 0.953710i \(0.402771\pi\)
\(444\) 684.000 0.0731108
\(445\) 822.000 0.0875653
\(446\) 7004.00 0.743608
\(447\) −5685.00 −0.601546
\(448\) 0 0
\(449\) −4384.00 −0.460788 −0.230394 0.973097i \(-0.574001\pi\)
−0.230394 + 0.973097i \(0.574001\pi\)
\(450\) 2232.00 0.233817
\(451\) −4180.00 −0.436427
\(452\) −3528.00 −0.367131
\(453\) 10434.0 1.08219
\(454\) 3660.00 0.378353
\(455\) 0 0
\(456\) −3240.00 −0.332734
\(457\) 324.000 0.0331643 0.0165821 0.999863i \(-0.494721\pi\)
0.0165821 + 0.999863i \(0.494721\pi\)
\(458\) −4536.00 −0.462780
\(459\) −378.000 −0.0384391
\(460\) −352.000 −0.0356784
\(461\) 18360.0 1.85490 0.927452 0.373943i \(-0.121994\pi\)
0.927452 + 0.373943i \(0.121994\pi\)
\(462\) 0 0
\(463\) −1667.00 −0.167326 −0.0836631 0.996494i \(-0.526662\pi\)
−0.0836631 + 0.996494i \(0.526662\pi\)
\(464\) 1104.00 0.110457
\(465\) −66.0000 −0.00658210
\(466\) −4860.00 −0.483123
\(467\) −10839.0 −1.07402 −0.537012 0.843575i \(-0.680447\pi\)
−0.537012 + 0.843575i \(0.680447\pi\)
\(468\) 252.000 0.0248904
\(469\) 0 0
\(470\) 770.000 0.0755690
\(471\) −2856.00 −0.279400
\(472\) 11256.0 1.09767
\(473\) −528.000 −0.0513266
\(474\) 7464.00 0.723276
\(475\) −5580.00 −0.539006
\(476\) 0 0
\(477\) −6048.00 −0.580543
\(478\) 4302.00 0.411650
\(479\) 910.000 0.0868037 0.0434018 0.999058i \(-0.486180\pi\)
0.0434018 + 0.999058i \(0.486180\pi\)
\(480\) −480.000 −0.0456435
\(481\) −399.000 −0.0378229
\(482\) 5606.00 0.529764
\(483\) 0 0
\(484\) −484.000 −0.0454545
\(485\) 272.000 0.0254657
\(486\) 486.000 0.0453609
\(487\) 12032.0 1.11955 0.559776 0.828644i \(-0.310887\pi\)
0.559776 + 0.828644i \(0.310887\pi\)
\(488\) 8208.00 0.761391
\(489\) 7449.00 0.688866
\(490\) 0 0
\(491\) 4243.00 0.389988 0.194994 0.980804i \(-0.437531\pi\)
0.194994 + 0.980804i \(0.437531\pi\)
\(492\) 4560.00 0.417847
\(493\) −966.000 −0.0882484
\(494\) 630.000 0.0573786
\(495\) 99.0000 0.00898933
\(496\) 352.000 0.0318655
\(497\) 0 0
\(498\) −3132.00 −0.281824
\(499\) −5869.00 −0.526518 −0.263259 0.964725i \(-0.584797\pi\)
−0.263259 + 0.964725i \(0.584797\pi\)
\(500\) −996.000 −0.0890849
\(501\) 1404.00 0.125202
\(502\) −10678.0 −0.949367
\(503\) −148.000 −0.0131193 −0.00655964 0.999978i \(-0.502088\pi\)
−0.00655964 + 0.999978i \(0.502088\pi\)
\(504\) 0 0
\(505\) −874.000 −0.0770148
\(506\) −1936.00 −0.170090
\(507\) 6444.00 0.564474
\(508\) −7304.00 −0.637918
\(509\) −12114.0 −1.05490 −0.527450 0.849586i \(-0.676852\pi\)
−0.527450 + 0.849586i \(0.676852\pi\)
\(510\) −84.0000 −0.00729330
\(511\) 0 0
\(512\) 5632.00 0.486136
\(513\) −1215.00 −0.104568
\(514\) −8878.00 −0.761852
\(515\) −826.000 −0.0706756
\(516\) 576.000 0.0491414
\(517\) −4235.00 −0.360261
\(518\) 0 0
\(519\) −6444.00 −0.545010
\(520\) 168.000 0.0141679
\(521\) 14943.0 1.25655 0.628277 0.777990i \(-0.283760\pi\)
0.628277 + 0.777990i \(0.283760\pi\)
\(522\) 1242.00 0.104140
\(523\) −16589.0 −1.38697 −0.693486 0.720470i \(-0.743926\pi\)
−0.693486 + 0.720470i \(0.743926\pi\)
\(524\) 336.000 0.0280119
\(525\) 0 0
\(526\) −2542.00 −0.210716
\(527\) −308.000 −0.0254586
\(528\) −528.000 −0.0435194
\(529\) −4423.00 −0.363524
\(530\) −1344.00 −0.110150
\(531\) 4221.00 0.344964
\(532\) 0 0
\(533\) −2660.00 −0.216168
\(534\) −4932.00 −0.399679
\(535\) −219.000 −0.0176976
\(536\) −3336.00 −0.268831
\(537\) 4392.00 0.352940
\(538\) 7364.00 0.590120
\(539\) 0 0
\(540\) −108.000 −0.00860663
\(541\) 3232.00 0.256848 0.128424 0.991719i \(-0.459008\pi\)
0.128424 + 0.991719i \(0.459008\pi\)
\(542\) 8254.00 0.654132
\(543\) 4296.00 0.339519
\(544\) −2240.00 −0.176543
\(545\) −1426.00 −0.112079
\(546\) 0 0
\(547\) −16468.0 −1.28724 −0.643621 0.765345i \(-0.722568\pi\)
−0.643621 + 0.765345i \(0.722568\pi\)
\(548\) 7336.00 0.571858
\(549\) 3078.00 0.239282
\(550\) −2728.00 −0.211495
\(551\) −3105.00 −0.240068
\(552\) 6336.00 0.488547
\(553\) 0 0
\(554\) 88.0000 0.00674867
\(555\) 171.000 0.0130785
\(556\) 9664.00 0.737131
\(557\) 14143.0 1.07587 0.537934 0.842987i \(-0.319205\pi\)
0.537934 + 0.842987i \(0.319205\pi\)
\(558\) 396.000 0.0300430
\(559\) −336.000 −0.0254227
\(560\) 0 0
\(561\) 462.000 0.0347694
\(562\) 1122.00 0.0842148
\(563\) 22916.0 1.71544 0.857721 0.514115i \(-0.171879\pi\)
0.857721 + 0.514115i \(0.171879\pi\)
\(564\) 4620.00 0.344924
\(565\) −882.000 −0.0656744
\(566\) −7690.00 −0.571086
\(567\) 0 0
\(568\) 3168.00 0.234025
\(569\) −294.000 −0.0216610 −0.0108305 0.999941i \(-0.503448\pi\)
−0.0108305 + 0.999941i \(0.503448\pi\)
\(570\) −270.000 −0.0198404
\(571\) 13292.0 0.974173 0.487087 0.873354i \(-0.338060\pi\)
0.487087 + 0.873354i \(0.338060\pi\)
\(572\) −308.000 −0.0225142
\(573\) 3990.00 0.290898
\(574\) 0 0
\(575\) 10912.0 0.791412
\(576\) 4032.00 0.291667
\(577\) −9630.00 −0.694804 −0.347402 0.937716i \(-0.612936\pi\)
−0.347402 + 0.937716i \(0.612936\pi\)
\(578\) 9434.00 0.678897
\(579\) 7620.00 0.546937
\(580\) −276.000 −0.0197591
\(581\) 0 0
\(582\) −1632.00 −0.116235
\(583\) 7392.00 0.525121
\(584\) −3480.00 −0.246581
\(585\) 63.0000 0.00445253
\(586\) 1824.00 0.128581
\(587\) 17015.0 1.19640 0.598198 0.801348i \(-0.295884\pi\)
0.598198 + 0.801348i \(0.295884\pi\)
\(588\) 0 0
\(589\) −990.000 −0.0692568
\(590\) 938.000 0.0654523
\(591\) −4818.00 −0.335340
\(592\) −912.000 −0.0633158
\(593\) 12028.0 0.832936 0.416468 0.909150i \(-0.363268\pi\)
0.416468 + 0.909150i \(0.363268\pi\)
\(594\) −594.000 −0.0410305
\(595\) 0 0
\(596\) −7580.00 −0.520955
\(597\) 864.000 0.0592314
\(598\) −1232.00 −0.0842479
\(599\) 1252.00 0.0854012 0.0427006 0.999088i \(-0.486404\pi\)
0.0427006 + 0.999088i \(0.486404\pi\)
\(600\) 8928.00 0.607473
\(601\) 19699.0 1.33700 0.668502 0.743711i \(-0.266936\pi\)
0.668502 + 0.743711i \(0.266936\pi\)
\(602\) 0 0
\(603\) −1251.00 −0.0844853
\(604\) 13912.0 0.937204
\(605\) −121.000 −0.00813116
\(606\) 5244.00 0.351523
\(607\) −29855.0 −1.99634 −0.998169 0.0604881i \(-0.980734\pi\)
−0.998169 + 0.0604881i \(0.980734\pi\)
\(608\) −7200.00 −0.480261
\(609\) 0 0
\(610\) 684.000 0.0454006
\(611\) −2695.00 −0.178442
\(612\) −504.000 −0.0332892
\(613\) −3178.00 −0.209393 −0.104697 0.994504i \(-0.533387\pi\)
−0.104697 + 0.994504i \(0.533387\pi\)
\(614\) 13720.0 0.901782
\(615\) 1140.00 0.0747467
\(616\) 0 0
\(617\) −14394.0 −0.939191 −0.469595 0.882882i \(-0.655600\pi\)
−0.469595 + 0.882882i \(0.655600\pi\)
\(618\) 4956.00 0.322588
\(619\) −3878.00 −0.251809 −0.125905 0.992042i \(-0.540183\pi\)
−0.125905 + 0.992042i \(0.540183\pi\)
\(620\) −88.0000 −0.00570027
\(621\) 2376.00 0.153536
\(622\) 10944.0 0.705489
\(623\) 0 0
\(624\) −336.000 −0.0215557
\(625\) 15251.0 0.976064
\(626\) 12844.0 0.820047
\(627\) 1485.00 0.0945856
\(628\) −3808.00 −0.241968
\(629\) 798.000 0.0505856
\(630\) 0 0
\(631\) 18100.0 1.14192 0.570958 0.820979i \(-0.306572\pi\)
0.570958 + 0.820979i \(0.306572\pi\)
\(632\) 29856.0 1.87913
\(633\) −4446.00 −0.279167
\(634\) 12952.0 0.811340
\(635\) −1826.00 −0.114114
\(636\) −8064.00 −0.502765
\(637\) 0 0
\(638\) −1518.00 −0.0941978
\(639\) 1188.00 0.0735470
\(640\) −384.000 −0.0237171
\(641\) −7470.00 −0.460292 −0.230146 0.973156i \(-0.573920\pi\)
−0.230146 + 0.973156i \(0.573920\pi\)
\(642\) 1314.00 0.0807779
\(643\) −25400.0 −1.55782 −0.778910 0.627136i \(-0.784227\pi\)
−0.778910 + 0.627136i \(0.784227\pi\)
\(644\) 0 0
\(645\) 144.000 0.00879069
\(646\) −1260.00 −0.0767400
\(647\) −25061.0 −1.52280 −0.761398 0.648284i \(-0.775487\pi\)
−0.761398 + 0.648284i \(0.775487\pi\)
\(648\) 1944.00 0.117851
\(649\) −5159.00 −0.312032
\(650\) −1736.00 −0.104756
\(651\) 0 0
\(652\) 9932.00 0.596575
\(653\) −1832.00 −0.109788 −0.0548941 0.998492i \(-0.517482\pi\)
−0.0548941 + 0.998492i \(0.517482\pi\)
\(654\) 8556.00 0.511569
\(655\) 84.0000 0.00501092
\(656\) −6080.00 −0.361866
\(657\) −1305.00 −0.0774930
\(658\) 0 0
\(659\) −27809.0 −1.64383 −0.821916 0.569609i \(-0.807095\pi\)
−0.821916 + 0.569609i \(0.807095\pi\)
\(660\) 132.000 0.00778499
\(661\) 29612.0 1.74247 0.871235 0.490865i \(-0.163319\pi\)
0.871235 + 0.490865i \(0.163319\pi\)
\(662\) 23680.0 1.39026
\(663\) 294.000 0.0172217
\(664\) −12528.0 −0.732200
\(665\) 0 0
\(666\) −1026.00 −0.0596947
\(667\) 6072.00 0.352487
\(668\) 1872.00 0.108428
\(669\) 10506.0 0.607153
\(670\) −278.000 −0.0160300
\(671\) −3762.00 −0.216439
\(672\) 0 0
\(673\) −3892.00 −0.222921 −0.111460 0.993769i \(-0.535553\pi\)
−0.111460 + 0.993769i \(0.535553\pi\)
\(674\) −3280.00 −0.187449
\(675\) 3348.00 0.190910
\(676\) 8592.00 0.488848
\(677\) −10518.0 −0.597104 −0.298552 0.954393i \(-0.596504\pi\)
−0.298552 + 0.954393i \(0.596504\pi\)
\(678\) 5292.00 0.299761
\(679\) 0 0
\(680\) −336.000 −0.0189485
\(681\) 5490.00 0.308924
\(682\) −484.000 −0.0271750
\(683\) 12902.0 0.722813 0.361407 0.932408i \(-0.382297\pi\)
0.361407 + 0.932408i \(0.382297\pi\)
\(684\) −1620.00 −0.0905588
\(685\) 1834.00 0.102297
\(686\) 0 0
\(687\) −6804.00 −0.377859
\(688\) −768.000 −0.0425577
\(689\) 4704.00 0.260099
\(690\) 528.000 0.0291313
\(691\) −30386.0 −1.67285 −0.836424 0.548083i \(-0.815358\pi\)
−0.836424 + 0.548083i \(0.815358\pi\)
\(692\) −8592.00 −0.471993
\(693\) 0 0
\(694\) −4064.00 −0.222287
\(695\) 2416.00 0.131862
\(696\) 4968.00 0.270563
\(697\) 5320.00 0.289110
\(698\) 3510.00 0.190337
\(699\) −7290.00 −0.394468
\(700\) 0 0
\(701\) −26842.0 −1.44623 −0.723116 0.690727i \(-0.757291\pi\)
−0.723116 + 0.690727i \(0.757291\pi\)
\(702\) −378.000 −0.0203229
\(703\) 2565.00 0.137611
\(704\) −4928.00 −0.263822
\(705\) 1155.00 0.0617019
\(706\) −2202.00 −0.117384
\(707\) 0 0
\(708\) 5628.00 0.298747
\(709\) −5701.00 −0.301982 −0.150991 0.988535i \(-0.548247\pi\)
−0.150991 + 0.988535i \(0.548247\pi\)
\(710\) 264.000 0.0139546
\(711\) 11196.0 0.590552
\(712\) −19728.0 −1.03840
\(713\) 1936.00 0.101688
\(714\) 0 0
\(715\) −77.0000 −0.00402746
\(716\) 5856.00 0.305655
\(717\) 6453.00 0.336111
\(718\) −10040.0 −0.521852
\(719\) 23919.0 1.24065 0.620326 0.784344i \(-0.287000\pi\)
0.620326 + 0.784344i \(0.287000\pi\)
\(720\) 144.000 0.00745356
\(721\) 0 0
\(722\) 9668.00 0.498346
\(723\) 8409.00 0.432551
\(724\) 5728.00 0.294032
\(725\) 8556.00 0.438292
\(726\) 726.000 0.0371135
\(727\) −19188.0 −0.978877 −0.489438 0.872038i \(-0.662798\pi\)
−0.489438 + 0.872038i \(0.662798\pi\)
\(728\) 0 0
\(729\) 729.000 0.0370370
\(730\) −290.000 −0.0147033
\(731\) 672.000 0.0340011
\(732\) 4104.00 0.207224
\(733\) 5670.00 0.285711 0.142856 0.989744i \(-0.454372\pi\)
0.142856 + 0.989744i \(0.454372\pi\)
\(734\) 23276.0 1.17048
\(735\) 0 0
\(736\) 14080.0 0.705157
\(737\) 1529.00 0.0764199
\(738\) −6840.00 −0.341171
\(739\) 17276.0 0.859957 0.429978 0.902839i \(-0.358521\pi\)
0.429978 + 0.902839i \(0.358521\pi\)
\(740\) 228.000 0.0113263
\(741\) 945.000 0.0468494
\(742\) 0 0
\(743\) 15367.0 0.758763 0.379381 0.925240i \(-0.376137\pi\)
0.379381 + 0.925240i \(0.376137\pi\)
\(744\) 1584.00 0.0780541
\(745\) −1895.00 −0.0931912
\(746\) 17668.0 0.867120
\(747\) −4698.00 −0.230108
\(748\) 616.000 0.0301112
\(749\) 0 0
\(750\) 1494.00 0.0727376
\(751\) −38123.0 −1.85237 −0.926184 0.377072i \(-0.876931\pi\)
−0.926184 + 0.377072i \(0.876931\pi\)
\(752\) −6160.00 −0.298713
\(753\) −16017.0 −0.775155
\(754\) −966.000 −0.0466574
\(755\) 3478.00 0.167652
\(756\) 0 0
\(757\) 23417.0 1.12431 0.562157 0.827031i \(-0.309972\pi\)
0.562157 + 0.827031i \(0.309972\pi\)
\(758\) −15014.0 −0.719437
\(759\) −2904.00 −0.138878
\(760\) −1080.00 −0.0515470
\(761\) 16332.0 0.777969 0.388985 0.921244i \(-0.372826\pi\)
0.388985 + 0.921244i \(0.372826\pi\)
\(762\) 10956.0 0.520858
\(763\) 0 0
\(764\) 5320.00 0.251925
\(765\) −126.000 −0.00595495
\(766\) 7216.00 0.340372
\(767\) −3283.00 −0.154553
\(768\) 13056.0 0.613435
\(769\) −19523.0 −0.915497 −0.457749 0.889082i \(-0.651344\pi\)
−0.457749 + 0.889082i \(0.651344\pi\)
\(770\) 0 0
\(771\) −13317.0 −0.622049
\(772\) 10160.0 0.473661
\(773\) −21525.0 −1.00155 −0.500776 0.865577i \(-0.666952\pi\)
−0.500776 + 0.865577i \(0.666952\pi\)
\(774\) −864.000 −0.0401238
\(775\) 2728.00 0.126442
\(776\) −6528.00 −0.301987
\(777\) 0 0
\(778\) 15792.0 0.727726
\(779\) 17100.0 0.786484
\(780\) 84.0000 0.00385600
\(781\) −1452.00 −0.0665258
\(782\) 2464.00 0.112676
\(783\) 1863.00 0.0850296
\(784\) 0 0
\(785\) −952.000 −0.0432845
\(786\) −504.000 −0.0228716
\(787\) 3707.00 0.167904 0.0839519 0.996470i \(-0.473246\pi\)
0.0839519 + 0.996470i \(0.473246\pi\)
\(788\) −6424.00 −0.290413
\(789\) −3813.00 −0.172049
\(790\) 2488.00 0.112049
\(791\) 0 0
\(792\) −2376.00 −0.106600
\(793\) −2394.00 −0.107205
\(794\) 13868.0 0.619845
\(795\) −2016.00 −0.0899373
\(796\) 1152.00 0.0512959
\(797\) 7621.00 0.338707 0.169354 0.985555i \(-0.445832\pi\)
0.169354 + 0.985555i \(0.445832\pi\)
\(798\) 0 0
\(799\) 5390.00 0.238654
\(800\) 19840.0 0.876812
\(801\) −7398.00 −0.326336
\(802\) 1400.00 0.0616405
\(803\) 1595.00 0.0700951
\(804\) −1668.00 −0.0731664
\(805\) 0 0
\(806\) −308.000 −0.0134601
\(807\) 11046.0 0.481831
\(808\) 20976.0 0.913284
\(809\) 23451.0 1.01915 0.509576 0.860426i \(-0.329802\pi\)
0.509576 + 0.860426i \(0.329802\pi\)
\(810\) 162.000 0.00702728
\(811\) 4499.00 0.194798 0.0973990 0.995245i \(-0.468948\pi\)
0.0973990 + 0.995245i \(0.468948\pi\)
\(812\) 0 0
\(813\) 12381.0 0.534097
\(814\) 1254.00 0.0539959
\(815\) 2483.00 0.106719
\(816\) 672.000 0.0288293
\(817\) 2160.00 0.0924955
\(818\) −23100.0 −0.987375
\(819\) 0 0
\(820\) 1520.00 0.0647326
\(821\) −30215.0 −1.28442 −0.642211 0.766528i \(-0.721983\pi\)
−0.642211 + 0.766528i \(0.721983\pi\)
\(822\) −11004.0 −0.466920
\(823\) −19947.0 −0.844847 −0.422423 0.906399i \(-0.638820\pi\)
−0.422423 + 0.906399i \(0.638820\pi\)
\(824\) 19824.0 0.838109
\(825\) −4092.00 −0.172685
\(826\) 0 0
\(827\) −20341.0 −0.855291 −0.427646 0.903946i \(-0.640657\pi\)
−0.427646 + 0.903946i \(0.640657\pi\)
\(828\) 3168.00 0.132966
\(829\) 14024.0 0.587544 0.293772 0.955876i \(-0.405089\pi\)
0.293772 + 0.955876i \(0.405089\pi\)
\(830\) −1044.00 −0.0436600
\(831\) 132.000 0.00551026
\(832\) −3136.00 −0.130675
\(833\) 0 0
\(834\) −14496.0 −0.601865
\(835\) 468.000 0.0193962
\(836\) 1980.00 0.0819136
\(837\) 594.000 0.0245300
\(838\) −9110.00 −0.375537
\(839\) 37193.0 1.53045 0.765223 0.643765i \(-0.222628\pi\)
0.765223 + 0.643765i \(0.222628\pi\)
\(840\) 0 0
\(841\) −19628.0 −0.804789
\(842\) 322.000 0.0131792
\(843\) 1683.00 0.0687611
\(844\) −5928.00 −0.241766
\(845\) 2148.00 0.0874479
\(846\) −6930.00 −0.281629
\(847\) 0 0
\(848\) 10752.0 0.435407
\(849\) −11535.0 −0.466290
\(850\) 3472.00 0.140104
\(851\) −5016.00 −0.202052
\(852\) 1584.00 0.0636936
\(853\) 37042.0 1.48686 0.743431 0.668812i \(-0.233197\pi\)
0.743431 + 0.668812i \(0.233197\pi\)
\(854\) 0 0
\(855\) −405.000 −0.0161997
\(856\) 5256.00 0.209867
\(857\) 41962.0 1.67257 0.836286 0.548293i \(-0.184722\pi\)
0.836286 + 0.548293i \(0.184722\pi\)
\(858\) 462.000 0.0183828
\(859\) 9372.00 0.372257 0.186128 0.982525i \(-0.440406\pi\)
0.186128 + 0.982525i \(0.440406\pi\)
\(860\) 192.000 0.00761296
\(861\) 0 0
\(862\) 6498.00 0.256755
\(863\) 18096.0 0.713783 0.356892 0.934146i \(-0.383837\pi\)
0.356892 + 0.934146i \(0.383837\pi\)
\(864\) 4320.00 0.170103
\(865\) −2148.00 −0.0844326
\(866\) 3584.00 0.140634
\(867\) 14151.0 0.554317
\(868\) 0 0
\(869\) −13684.0 −0.534175
\(870\) 414.000 0.0161332
\(871\) 973.000 0.0378517
\(872\) 34224.0 1.32910
\(873\) −2448.00 −0.0949052
\(874\) 7920.00 0.306519
\(875\) 0 0
\(876\) −1740.00 −0.0671109
\(877\) −28848.0 −1.11075 −0.555375 0.831600i \(-0.687425\pi\)
−0.555375 + 0.831600i \(0.687425\pi\)
\(878\) 18638.0 0.716403
\(879\) 2736.00 0.104986
\(880\) −176.000 −0.00674200
\(881\) −26273.0 −1.00472 −0.502361 0.864658i \(-0.667535\pi\)
−0.502361 + 0.864658i \(0.667535\pi\)
\(882\) 0 0
\(883\) −33821.0 −1.28898 −0.644489 0.764614i \(-0.722930\pi\)
−0.644489 + 0.764614i \(0.722930\pi\)
\(884\) 392.000 0.0149145
\(885\) 1407.00 0.0534416
\(886\) −11216.0 −0.425292
\(887\) 14134.0 0.535032 0.267516 0.963553i \(-0.413797\pi\)
0.267516 + 0.963553i \(0.413797\pi\)
\(888\) −4104.00 −0.155091
\(889\) 0 0
\(890\) −1644.00 −0.0619180
\(891\) −891.000 −0.0335013
\(892\) 14008.0 0.525810
\(893\) 17325.0 0.649226
\(894\) 11370.0 0.425358
\(895\) 1464.00 0.0546772
\(896\) 0 0
\(897\) −1848.00 −0.0687881
\(898\) 8768.00 0.325826
\(899\) 1518.00 0.0563161
\(900\) 4464.00 0.165333
\(901\) −9408.00 −0.347865
\(902\) 8360.00 0.308600
\(903\) 0 0
\(904\) 21168.0 0.778802
\(905\) 1432.00 0.0525981
\(906\) −20868.0 −0.765224
\(907\) −35748.0 −1.30870 −0.654351 0.756191i \(-0.727058\pi\)
−0.654351 + 0.756191i \(0.727058\pi\)
\(908\) 7320.00 0.267536
\(909\) 7866.00 0.287017
\(910\) 0 0
\(911\) −9522.00 −0.346299 −0.173149 0.984896i \(-0.555394\pi\)
−0.173149 + 0.984896i \(0.555394\pi\)
\(912\) 2160.00 0.0784263
\(913\) 5742.00 0.208141
\(914\) −648.000 −0.0234507
\(915\) 1026.00 0.0370694
\(916\) −9072.00 −0.327235
\(917\) 0 0
\(918\) 756.000 0.0271805
\(919\) −33260.0 −1.19385 −0.596924 0.802298i \(-0.703611\pi\)
−0.596924 + 0.802298i \(0.703611\pi\)
\(920\) 2112.00 0.0756854
\(921\) 20580.0 0.736302
\(922\) −36720.0 −1.31161
\(923\) −924.000 −0.0329511
\(924\) 0 0
\(925\) −7068.00 −0.251237
\(926\) 3334.00 0.118318
\(927\) 7434.00 0.263392
\(928\) 11040.0 0.390523
\(929\) 55101.0 1.94597 0.972984 0.230871i \(-0.0741574\pi\)
0.972984 + 0.230871i \(0.0741574\pi\)
\(930\) 132.000 0.00465425
\(931\) 0 0
\(932\) −9720.00 −0.341619
\(933\) 16416.0 0.576030
\(934\) 21678.0 0.759449
\(935\) 154.000 0.00538646
\(936\) −1512.00 −0.0528005
\(937\) 19474.0 0.678962 0.339481 0.940613i \(-0.389748\pi\)
0.339481 + 0.940613i \(0.389748\pi\)
\(938\) 0 0
\(939\) 19266.0 0.669566
\(940\) 1540.00 0.0534354
\(941\) −52104.0 −1.80504 −0.902520 0.430649i \(-0.858285\pi\)
−0.902520 + 0.430649i \(0.858285\pi\)
\(942\) 5712.00 0.197566
\(943\) −33440.0 −1.15478
\(944\) −7504.00 −0.258723
\(945\) 0 0
\(946\) 1056.00 0.0362934
\(947\) 16830.0 0.577510 0.288755 0.957403i \(-0.406759\pi\)
0.288755 + 0.957403i \(0.406759\pi\)
\(948\) 14928.0 0.511433
\(949\) 1015.00 0.0347190
\(950\) 11160.0 0.381135
\(951\) 19428.0 0.662456
\(952\) 0 0
\(953\) −13997.0 −0.475768 −0.237884 0.971294i \(-0.576454\pi\)
−0.237884 + 0.971294i \(0.576454\pi\)
\(954\) 12096.0 0.410506
\(955\) 1330.00 0.0450657
\(956\) 8604.00 0.291081
\(957\) −2277.00 −0.0769122
\(958\) −1820.00 −0.0613795
\(959\) 0 0
\(960\) 1344.00 0.0451848
\(961\) −29307.0 −0.983753
\(962\) 798.000 0.0267449
\(963\) 1971.00 0.0659549
\(964\) 11212.0 0.374600
\(965\) 2540.00 0.0847311
\(966\) 0 0
\(967\) 9574.00 0.318386 0.159193 0.987247i \(-0.449111\pi\)
0.159193 + 0.987247i \(0.449111\pi\)
\(968\) 2904.00 0.0964237
\(969\) −1890.00 −0.0626579
\(970\) −544.000 −0.0180070
\(971\) −32585.0 −1.07693 −0.538467 0.842647i \(-0.680996\pi\)
−0.538467 + 0.842647i \(0.680996\pi\)
\(972\) 972.000 0.0320750
\(973\) 0 0
\(974\) −24064.0 −0.791643
\(975\) −2604.00 −0.0855331
\(976\) −5472.00 −0.179462
\(977\) 42036.0 1.37651 0.688255 0.725469i \(-0.258377\pi\)
0.688255 + 0.725469i \(0.258377\pi\)
\(978\) −14898.0 −0.487102
\(979\) 9042.00 0.295182
\(980\) 0 0
\(981\) 12834.0 0.417694
\(982\) −8486.00 −0.275763
\(983\) −42336.0 −1.37366 −0.686830 0.726818i \(-0.740999\pi\)
−0.686830 + 0.726818i \(0.740999\pi\)
\(984\) −27360.0 −0.886387
\(985\) −1606.00 −0.0519507
\(986\) 1932.00 0.0624010
\(987\) 0 0
\(988\) 1260.00 0.0405728
\(989\) −4224.00 −0.135809
\(990\) −198.000 −0.00635642
\(991\) −4691.00 −0.150368 −0.0751839 0.997170i \(-0.523954\pi\)
−0.0751839 + 0.997170i \(0.523954\pi\)
\(992\) 3520.00 0.112661
\(993\) 35520.0 1.13514
\(994\) 0 0
\(995\) 288.000 0.00917609
\(996\) −6264.00 −0.199280
\(997\) −18518.0 −0.588236 −0.294118 0.955769i \(-0.595026\pi\)
−0.294118 + 0.955769i \(0.595026\pi\)
\(998\) 11738.0 0.372305
\(999\) −1539.00 −0.0487405
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1617.4.a.c.1.1 1
7.6 odd 2 231.4.a.b.1.1 1
21.20 even 2 693.4.a.e.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
231.4.a.b.1.1 1 7.6 odd 2
693.4.a.e.1.1 1 21.20 even 2
1617.4.a.c.1.1 1 1.1 even 1 trivial