Properties

Label 1617.2.a.n.1.1
Level $1617$
Weight $2$
Character 1617.1
Self dual yes
Analytic conductor $12.912$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1617 = 3 \cdot 7^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1617.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(12.9118100068\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{8})^+\)
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 231)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.41421\) of defining polynomial
Character \(\chi\) \(=\) 1617.1

$q$-expansion

\(f(q)\) \(=\) \(q-2.41421 q^{2} +1.00000 q^{3} +3.82843 q^{4} -2.00000 q^{5} -2.41421 q^{6} -4.41421 q^{8} +1.00000 q^{9} +O(q^{10})\) \(q-2.41421 q^{2} +1.00000 q^{3} +3.82843 q^{4} -2.00000 q^{5} -2.41421 q^{6} -4.41421 q^{8} +1.00000 q^{9} +4.82843 q^{10} +1.00000 q^{11} +3.82843 q^{12} -0.828427 q^{13} -2.00000 q^{15} +3.00000 q^{16} -4.41421 q^{17} -2.41421 q^{18} +7.24264 q^{19} -7.65685 q^{20} -2.41421 q^{22} -7.00000 q^{23} -4.41421 q^{24} -1.00000 q^{25} +2.00000 q^{26} +1.00000 q^{27} +3.24264 q^{29} +4.82843 q^{30} +5.65685 q^{31} +1.58579 q^{32} +1.00000 q^{33} +10.6569 q^{34} +3.82843 q^{36} -9.48528 q^{37} -17.4853 q^{38} -0.828427 q^{39} +8.82843 q^{40} -1.17157 q^{41} -2.75736 q^{43} +3.82843 q^{44} -2.00000 q^{45} +16.8995 q^{46} +9.82843 q^{47} +3.00000 q^{48} +2.41421 q^{50} -4.41421 q^{51} -3.17157 q^{52} -7.17157 q^{53} -2.41421 q^{54} -2.00000 q^{55} +7.24264 q^{57} -7.82843 q^{58} -8.65685 q^{59} -7.65685 q^{60} -4.00000 q^{61} -13.6569 q^{62} -9.82843 q^{64} +1.65685 q^{65} -2.41421 q^{66} -3.17157 q^{67} -16.8995 q^{68} -7.00000 q^{69} -4.17157 q^{71} -4.41421 q^{72} +0.343146 q^{73} +22.8995 q^{74} -1.00000 q^{75} +27.7279 q^{76} +2.00000 q^{78} +13.3137 q^{79} -6.00000 q^{80} +1.00000 q^{81} +2.82843 q^{82} -2.82843 q^{83} +8.82843 q^{85} +6.65685 q^{86} +3.24264 q^{87} -4.41421 q^{88} -14.1421 q^{89} +4.82843 q^{90} -26.7990 q^{92} +5.65685 q^{93} -23.7279 q^{94} -14.4853 q^{95} +1.58579 q^{96} -11.4853 q^{97} +1.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} + 2 q^{3} + 2 q^{4} - 4 q^{5} - 2 q^{6} - 6 q^{8} + 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 2 q^{2} + 2 q^{3} + 2 q^{4} - 4 q^{5} - 2 q^{6} - 6 q^{8} + 2 q^{9} + 4 q^{10} + 2 q^{11} + 2 q^{12} + 4 q^{13} - 4 q^{15} + 6 q^{16} - 6 q^{17} - 2 q^{18} + 6 q^{19} - 4 q^{20} - 2 q^{22} - 14 q^{23} - 6 q^{24} - 2 q^{25} + 4 q^{26} + 2 q^{27} - 2 q^{29} + 4 q^{30} + 6 q^{32} + 2 q^{33} + 10 q^{34} + 2 q^{36} - 2 q^{37} - 18 q^{38} + 4 q^{39} + 12 q^{40} - 8 q^{41} - 14 q^{43} + 2 q^{44} - 4 q^{45} + 14 q^{46} + 14 q^{47} + 6 q^{48} + 2 q^{50} - 6 q^{51} - 12 q^{52} - 20 q^{53} - 2 q^{54} - 4 q^{55} + 6 q^{57} - 10 q^{58} - 6 q^{59} - 4 q^{60} - 8 q^{61} - 16 q^{62} - 14 q^{64} - 8 q^{65} - 2 q^{66} - 12 q^{67} - 14 q^{68} - 14 q^{69} - 14 q^{71} - 6 q^{72} + 12 q^{73} + 26 q^{74} - 2 q^{75} + 30 q^{76} + 4 q^{78} + 4 q^{79} - 12 q^{80} + 2 q^{81} + 12 q^{85} + 2 q^{86} - 2 q^{87} - 6 q^{88} + 4 q^{90} - 14 q^{92} - 22 q^{94} - 12 q^{95} + 6 q^{96} - 6 q^{97} + 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.41421 −1.70711 −0.853553 0.521005i \(-0.825557\pi\)
−0.853553 + 0.521005i \(0.825557\pi\)
\(3\) 1.00000 0.577350
\(4\) 3.82843 1.91421
\(5\) −2.00000 −0.894427 −0.447214 0.894427i \(-0.647584\pi\)
−0.447214 + 0.894427i \(0.647584\pi\)
\(6\) −2.41421 −0.985599
\(7\) 0 0
\(8\) −4.41421 −1.56066
\(9\) 1.00000 0.333333
\(10\) 4.82843 1.52688
\(11\) 1.00000 0.301511
\(12\) 3.82843 1.10517
\(13\) −0.828427 −0.229764 −0.114882 0.993379i \(-0.536649\pi\)
−0.114882 + 0.993379i \(0.536649\pi\)
\(14\) 0 0
\(15\) −2.00000 −0.516398
\(16\) 3.00000 0.750000
\(17\) −4.41421 −1.07060 −0.535302 0.844661i \(-0.679802\pi\)
−0.535302 + 0.844661i \(0.679802\pi\)
\(18\) −2.41421 −0.569036
\(19\) 7.24264 1.66158 0.830788 0.556589i \(-0.187890\pi\)
0.830788 + 0.556589i \(0.187890\pi\)
\(20\) −7.65685 −1.71212
\(21\) 0 0
\(22\) −2.41421 −0.514712
\(23\) −7.00000 −1.45960 −0.729800 0.683660i \(-0.760387\pi\)
−0.729800 + 0.683660i \(0.760387\pi\)
\(24\) −4.41421 −0.901048
\(25\) −1.00000 −0.200000
\(26\) 2.00000 0.392232
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) 3.24264 0.602143 0.301072 0.953602i \(-0.402656\pi\)
0.301072 + 0.953602i \(0.402656\pi\)
\(30\) 4.82843 0.881546
\(31\) 5.65685 1.01600 0.508001 0.861357i \(-0.330385\pi\)
0.508001 + 0.861357i \(0.330385\pi\)
\(32\) 1.58579 0.280330
\(33\) 1.00000 0.174078
\(34\) 10.6569 1.82764
\(35\) 0 0
\(36\) 3.82843 0.638071
\(37\) −9.48528 −1.55937 −0.779685 0.626172i \(-0.784621\pi\)
−0.779685 + 0.626172i \(0.784621\pi\)
\(38\) −17.4853 −2.83649
\(39\) −0.828427 −0.132655
\(40\) 8.82843 1.39590
\(41\) −1.17157 −0.182969 −0.0914845 0.995807i \(-0.529161\pi\)
−0.0914845 + 0.995807i \(0.529161\pi\)
\(42\) 0 0
\(43\) −2.75736 −0.420493 −0.210247 0.977648i \(-0.567427\pi\)
−0.210247 + 0.977648i \(0.567427\pi\)
\(44\) 3.82843 0.577157
\(45\) −2.00000 −0.298142
\(46\) 16.8995 2.49169
\(47\) 9.82843 1.43362 0.716812 0.697267i \(-0.245601\pi\)
0.716812 + 0.697267i \(0.245601\pi\)
\(48\) 3.00000 0.433013
\(49\) 0 0
\(50\) 2.41421 0.341421
\(51\) −4.41421 −0.618114
\(52\) −3.17157 −0.439818
\(53\) −7.17157 −0.985091 −0.492546 0.870287i \(-0.663934\pi\)
−0.492546 + 0.870287i \(0.663934\pi\)
\(54\) −2.41421 −0.328533
\(55\) −2.00000 −0.269680
\(56\) 0 0
\(57\) 7.24264 0.959311
\(58\) −7.82843 −1.02792
\(59\) −8.65685 −1.12703 −0.563513 0.826107i \(-0.690551\pi\)
−0.563513 + 0.826107i \(0.690551\pi\)
\(60\) −7.65685 −0.988496
\(61\) −4.00000 −0.512148 −0.256074 0.966657i \(-0.582429\pi\)
−0.256074 + 0.966657i \(0.582429\pi\)
\(62\) −13.6569 −1.73442
\(63\) 0 0
\(64\) −9.82843 −1.22855
\(65\) 1.65685 0.205507
\(66\) −2.41421 −0.297169
\(67\) −3.17157 −0.387469 −0.193735 0.981054i \(-0.562060\pi\)
−0.193735 + 0.981054i \(0.562060\pi\)
\(68\) −16.8995 −2.04936
\(69\) −7.00000 −0.842701
\(70\) 0 0
\(71\) −4.17157 −0.495075 −0.247537 0.968878i \(-0.579621\pi\)
−0.247537 + 0.968878i \(0.579621\pi\)
\(72\) −4.41421 −0.520220
\(73\) 0.343146 0.0401622 0.0200811 0.999798i \(-0.493608\pi\)
0.0200811 + 0.999798i \(0.493608\pi\)
\(74\) 22.8995 2.66201
\(75\) −1.00000 −0.115470
\(76\) 27.7279 3.18061
\(77\) 0 0
\(78\) 2.00000 0.226455
\(79\) 13.3137 1.49791 0.748955 0.662621i \(-0.230556\pi\)
0.748955 + 0.662621i \(0.230556\pi\)
\(80\) −6.00000 −0.670820
\(81\) 1.00000 0.111111
\(82\) 2.82843 0.312348
\(83\) −2.82843 −0.310460 −0.155230 0.987878i \(-0.549612\pi\)
−0.155230 + 0.987878i \(0.549612\pi\)
\(84\) 0 0
\(85\) 8.82843 0.957577
\(86\) 6.65685 0.717827
\(87\) 3.24264 0.347648
\(88\) −4.41421 −0.470557
\(89\) −14.1421 −1.49906 −0.749532 0.661968i \(-0.769721\pi\)
−0.749532 + 0.661968i \(0.769721\pi\)
\(90\) 4.82843 0.508961
\(91\) 0 0
\(92\) −26.7990 −2.79399
\(93\) 5.65685 0.586588
\(94\) −23.7279 −2.44735
\(95\) −14.4853 −1.48616
\(96\) 1.58579 0.161849
\(97\) −11.4853 −1.16615 −0.583077 0.812417i \(-0.698151\pi\)
−0.583077 + 0.812417i \(0.698151\pi\)
\(98\) 0 0
\(99\) 1.00000 0.100504
\(100\) −3.82843 −0.382843
\(101\) 4.89949 0.487518 0.243759 0.969836i \(-0.421619\pi\)
0.243759 + 0.969836i \(0.421619\pi\)
\(102\) 10.6569 1.05519
\(103\) 12.4853 1.23021 0.615106 0.788445i \(-0.289113\pi\)
0.615106 + 0.788445i \(0.289113\pi\)
\(104\) 3.65685 0.358584
\(105\) 0 0
\(106\) 17.3137 1.68166
\(107\) 9.65685 0.933563 0.466782 0.884373i \(-0.345413\pi\)
0.466782 + 0.884373i \(0.345413\pi\)
\(108\) 3.82843 0.368391
\(109\) −6.82843 −0.654045 −0.327022 0.945017i \(-0.606045\pi\)
−0.327022 + 0.945017i \(0.606045\pi\)
\(110\) 4.82843 0.460372
\(111\) −9.48528 −0.900303
\(112\) 0 0
\(113\) −7.65685 −0.720296 −0.360148 0.932895i \(-0.617274\pi\)
−0.360148 + 0.932895i \(0.617274\pi\)
\(114\) −17.4853 −1.63765
\(115\) 14.0000 1.30551
\(116\) 12.4142 1.15263
\(117\) −0.828427 −0.0765881
\(118\) 20.8995 1.92395
\(119\) 0 0
\(120\) 8.82843 0.805921
\(121\) 1.00000 0.0909091
\(122\) 9.65685 0.874291
\(123\) −1.17157 −0.105637
\(124\) 21.6569 1.94484
\(125\) 12.0000 1.07331
\(126\) 0 0
\(127\) −16.0711 −1.42608 −0.713038 0.701125i \(-0.752681\pi\)
−0.713038 + 0.701125i \(0.752681\pi\)
\(128\) 20.5563 1.81694
\(129\) −2.75736 −0.242772
\(130\) −4.00000 −0.350823
\(131\) −5.17157 −0.451842 −0.225921 0.974146i \(-0.572539\pi\)
−0.225921 + 0.974146i \(0.572539\pi\)
\(132\) 3.82843 0.333222
\(133\) 0 0
\(134\) 7.65685 0.661451
\(135\) −2.00000 −0.172133
\(136\) 19.4853 1.67085
\(137\) 0.485281 0.0414604 0.0207302 0.999785i \(-0.493401\pi\)
0.0207302 + 0.999785i \(0.493401\pi\)
\(138\) 16.8995 1.43858
\(139\) 8.41421 0.713684 0.356842 0.934165i \(-0.383853\pi\)
0.356842 + 0.934165i \(0.383853\pi\)
\(140\) 0 0
\(141\) 9.82843 0.827703
\(142\) 10.0711 0.845145
\(143\) −0.828427 −0.0692766
\(144\) 3.00000 0.250000
\(145\) −6.48528 −0.538573
\(146\) −0.828427 −0.0685611
\(147\) 0 0
\(148\) −36.3137 −2.98497
\(149\) −22.2132 −1.81978 −0.909888 0.414853i \(-0.863833\pi\)
−0.909888 + 0.414853i \(0.863833\pi\)
\(150\) 2.41421 0.197120
\(151\) −18.8995 −1.53802 −0.769010 0.639237i \(-0.779250\pi\)
−0.769010 + 0.639237i \(0.779250\pi\)
\(152\) −31.9706 −2.59316
\(153\) −4.41421 −0.356868
\(154\) 0 0
\(155\) −11.3137 −0.908739
\(156\) −3.17157 −0.253929
\(157\) 7.00000 0.558661 0.279330 0.960195i \(-0.409888\pi\)
0.279330 + 0.960195i \(0.409888\pi\)
\(158\) −32.1421 −2.55709
\(159\) −7.17157 −0.568743
\(160\) −3.17157 −0.250735
\(161\) 0 0
\(162\) −2.41421 −0.189679
\(163\) −20.9706 −1.64254 −0.821271 0.570539i \(-0.806734\pi\)
−0.821271 + 0.570539i \(0.806734\pi\)
\(164\) −4.48528 −0.350242
\(165\) −2.00000 −0.155700
\(166\) 6.82843 0.529989
\(167\) 5.17157 0.400188 0.200094 0.979777i \(-0.435875\pi\)
0.200094 + 0.979777i \(0.435875\pi\)
\(168\) 0 0
\(169\) −12.3137 −0.947208
\(170\) −21.3137 −1.63469
\(171\) 7.24264 0.553859
\(172\) −10.5563 −0.804914
\(173\) −14.8284 −1.12738 −0.563692 0.825985i \(-0.690620\pi\)
−0.563692 + 0.825985i \(0.690620\pi\)
\(174\) −7.82843 −0.593472
\(175\) 0 0
\(176\) 3.00000 0.226134
\(177\) −8.65685 −0.650689
\(178\) 34.1421 2.55906
\(179\) 17.8284 1.33256 0.666280 0.745702i \(-0.267886\pi\)
0.666280 + 0.745702i \(0.267886\pi\)
\(180\) −7.65685 −0.570708
\(181\) −11.6569 −0.866447 −0.433224 0.901286i \(-0.642624\pi\)
−0.433224 + 0.901286i \(0.642624\pi\)
\(182\) 0 0
\(183\) −4.00000 −0.295689
\(184\) 30.8995 2.27794
\(185\) 18.9706 1.39474
\(186\) −13.6569 −1.00137
\(187\) −4.41421 −0.322799
\(188\) 37.6274 2.74426
\(189\) 0 0
\(190\) 34.9706 2.53703
\(191\) −21.6569 −1.56703 −0.783517 0.621370i \(-0.786577\pi\)
−0.783517 + 0.621370i \(0.786577\pi\)
\(192\) −9.82843 −0.709306
\(193\) −12.1421 −0.874010 −0.437005 0.899459i \(-0.643961\pi\)
−0.437005 + 0.899459i \(0.643961\pi\)
\(194\) 27.7279 1.99075
\(195\) 1.65685 0.118650
\(196\) 0 0
\(197\) −16.4142 −1.16946 −0.584732 0.811226i \(-0.698800\pi\)
−0.584732 + 0.811226i \(0.698800\pi\)
\(198\) −2.41421 −0.171571
\(199\) −19.7990 −1.40351 −0.701757 0.712417i \(-0.747601\pi\)
−0.701757 + 0.712417i \(0.747601\pi\)
\(200\) 4.41421 0.312132
\(201\) −3.17157 −0.223706
\(202\) −11.8284 −0.832245
\(203\) 0 0
\(204\) −16.8995 −1.18320
\(205\) 2.34315 0.163652
\(206\) −30.1421 −2.10010
\(207\) −7.00000 −0.486534
\(208\) −2.48528 −0.172323
\(209\) 7.24264 0.500984
\(210\) 0 0
\(211\) 14.9706 1.03062 0.515308 0.857005i \(-0.327678\pi\)
0.515308 + 0.857005i \(0.327678\pi\)
\(212\) −27.4558 −1.88568
\(213\) −4.17157 −0.285831
\(214\) −23.3137 −1.59369
\(215\) 5.51472 0.376101
\(216\) −4.41421 −0.300349
\(217\) 0 0
\(218\) 16.4853 1.11652
\(219\) 0.343146 0.0231876
\(220\) −7.65685 −0.516225
\(221\) 3.65685 0.245987
\(222\) 22.8995 1.53691
\(223\) −22.9706 −1.53822 −0.769111 0.639115i \(-0.779301\pi\)
−0.769111 + 0.639115i \(0.779301\pi\)
\(224\) 0 0
\(225\) −1.00000 −0.0666667
\(226\) 18.4853 1.22962
\(227\) 14.9706 0.993631 0.496816 0.867856i \(-0.334503\pi\)
0.496816 + 0.867856i \(0.334503\pi\)
\(228\) 27.7279 1.83633
\(229\) −15.6569 −1.03463 −0.517317 0.855794i \(-0.673069\pi\)
−0.517317 + 0.855794i \(0.673069\pi\)
\(230\) −33.7990 −2.22864
\(231\) 0 0
\(232\) −14.3137 −0.939741
\(233\) 10.4142 0.682258 0.341129 0.940017i \(-0.389191\pi\)
0.341129 + 0.940017i \(0.389191\pi\)
\(234\) 2.00000 0.130744
\(235\) −19.6569 −1.28227
\(236\) −33.1421 −2.15737
\(237\) 13.3137 0.864818
\(238\) 0 0
\(239\) −6.48528 −0.419498 −0.209749 0.977755i \(-0.567265\pi\)
−0.209749 + 0.977755i \(0.567265\pi\)
\(240\) −6.00000 −0.387298
\(241\) 7.31371 0.471117 0.235559 0.971860i \(-0.424308\pi\)
0.235559 + 0.971860i \(0.424308\pi\)
\(242\) −2.41421 −0.155192
\(243\) 1.00000 0.0641500
\(244\) −15.3137 −0.980360
\(245\) 0 0
\(246\) 2.82843 0.180334
\(247\) −6.00000 −0.381771
\(248\) −24.9706 −1.58563
\(249\) −2.82843 −0.179244
\(250\) −28.9706 −1.83226
\(251\) −2.51472 −0.158728 −0.0793638 0.996846i \(-0.525289\pi\)
−0.0793638 + 0.996846i \(0.525289\pi\)
\(252\) 0 0
\(253\) −7.00000 −0.440086
\(254\) 38.7990 2.43447
\(255\) 8.82843 0.552858
\(256\) −29.9706 −1.87316
\(257\) 21.4558 1.33838 0.669189 0.743092i \(-0.266641\pi\)
0.669189 + 0.743092i \(0.266641\pi\)
\(258\) 6.65685 0.414438
\(259\) 0 0
\(260\) 6.34315 0.393385
\(261\) 3.24264 0.200714
\(262\) 12.4853 0.771343
\(263\) 18.0000 1.10993 0.554964 0.831875i \(-0.312732\pi\)
0.554964 + 0.831875i \(0.312732\pi\)
\(264\) −4.41421 −0.271676
\(265\) 14.3431 0.881092
\(266\) 0 0
\(267\) −14.1421 −0.865485
\(268\) −12.1421 −0.741699
\(269\) −27.7990 −1.69493 −0.847467 0.530848i \(-0.821874\pi\)
−0.847467 + 0.530848i \(0.821874\pi\)
\(270\) 4.82843 0.293849
\(271\) −22.9706 −1.39536 −0.697681 0.716408i \(-0.745785\pi\)
−0.697681 + 0.716408i \(0.745785\pi\)
\(272\) −13.2426 −0.802953
\(273\) 0 0
\(274\) −1.17157 −0.0707773
\(275\) −1.00000 −0.0603023
\(276\) −26.7990 −1.61311
\(277\) −25.6569 −1.54157 −0.770785 0.637095i \(-0.780136\pi\)
−0.770785 + 0.637095i \(0.780136\pi\)
\(278\) −20.3137 −1.21834
\(279\) 5.65685 0.338667
\(280\) 0 0
\(281\) 14.4142 0.859880 0.429940 0.902857i \(-0.358535\pi\)
0.429940 + 0.902857i \(0.358535\pi\)
\(282\) −23.7279 −1.41298
\(283\) 20.3431 1.20927 0.604637 0.796501i \(-0.293318\pi\)
0.604637 + 0.796501i \(0.293318\pi\)
\(284\) −15.9706 −0.947679
\(285\) −14.4853 −0.858034
\(286\) 2.00000 0.118262
\(287\) 0 0
\(288\) 1.58579 0.0934434
\(289\) 2.48528 0.146193
\(290\) 15.6569 0.919402
\(291\) −11.4853 −0.673279
\(292\) 1.31371 0.0768790
\(293\) 5.72792 0.334629 0.167314 0.985904i \(-0.446491\pi\)
0.167314 + 0.985904i \(0.446491\pi\)
\(294\) 0 0
\(295\) 17.3137 1.00804
\(296\) 41.8701 2.43365
\(297\) 1.00000 0.0580259
\(298\) 53.6274 3.10655
\(299\) 5.79899 0.335364
\(300\) −3.82843 −0.221034
\(301\) 0 0
\(302\) 45.6274 2.62556
\(303\) 4.89949 0.281469
\(304\) 21.7279 1.24618
\(305\) 8.00000 0.458079
\(306\) 10.6569 0.609212
\(307\) −17.3137 −0.988146 −0.494073 0.869421i \(-0.664492\pi\)
−0.494073 + 0.869421i \(0.664492\pi\)
\(308\) 0 0
\(309\) 12.4853 0.710263
\(310\) 27.3137 1.55131
\(311\) 29.6274 1.68002 0.840008 0.542573i \(-0.182550\pi\)
0.840008 + 0.542573i \(0.182550\pi\)
\(312\) 3.65685 0.207029
\(313\) 4.79899 0.271255 0.135627 0.990760i \(-0.456695\pi\)
0.135627 + 0.990760i \(0.456695\pi\)
\(314\) −16.8995 −0.953694
\(315\) 0 0
\(316\) 50.9706 2.86732
\(317\) −25.3137 −1.42176 −0.710880 0.703314i \(-0.751703\pi\)
−0.710880 + 0.703314i \(0.751703\pi\)
\(318\) 17.3137 0.970905
\(319\) 3.24264 0.181553
\(320\) 19.6569 1.09885
\(321\) 9.65685 0.538993
\(322\) 0 0
\(323\) −31.9706 −1.77889
\(324\) 3.82843 0.212690
\(325\) 0.828427 0.0459529
\(326\) 50.6274 2.80399
\(327\) −6.82843 −0.377613
\(328\) 5.17157 0.285552
\(329\) 0 0
\(330\) 4.82843 0.265796
\(331\) 22.4853 1.23590 0.617951 0.786216i \(-0.287963\pi\)
0.617951 + 0.786216i \(0.287963\pi\)
\(332\) −10.8284 −0.594287
\(333\) −9.48528 −0.519790
\(334\) −12.4853 −0.683164
\(335\) 6.34315 0.346563
\(336\) 0 0
\(337\) 3.85786 0.210151 0.105076 0.994464i \(-0.466492\pi\)
0.105076 + 0.994464i \(0.466492\pi\)
\(338\) 29.7279 1.61699
\(339\) −7.65685 −0.415863
\(340\) 33.7990 1.83301
\(341\) 5.65685 0.306336
\(342\) −17.4853 −0.945496
\(343\) 0 0
\(344\) 12.1716 0.656247
\(345\) 14.0000 0.753735
\(346\) 35.7990 1.92457
\(347\) 14.9706 0.803662 0.401831 0.915714i \(-0.368374\pi\)
0.401831 + 0.915714i \(0.368374\pi\)
\(348\) 12.4142 0.665472
\(349\) 10.9706 0.587241 0.293620 0.955922i \(-0.405140\pi\)
0.293620 + 0.955922i \(0.405140\pi\)
\(350\) 0 0
\(351\) −0.828427 −0.0442182
\(352\) 1.58579 0.0845227
\(353\) 13.3137 0.708617 0.354309 0.935129i \(-0.384716\pi\)
0.354309 + 0.935129i \(0.384716\pi\)
\(354\) 20.8995 1.11080
\(355\) 8.34315 0.442808
\(356\) −54.1421 −2.86953
\(357\) 0 0
\(358\) −43.0416 −2.27482
\(359\) −8.00000 −0.422224 −0.211112 0.977462i \(-0.567708\pi\)
−0.211112 + 0.977462i \(0.567708\pi\)
\(360\) 8.82843 0.465299
\(361\) 33.4558 1.76083
\(362\) 28.1421 1.47912
\(363\) 1.00000 0.0524864
\(364\) 0 0
\(365\) −0.686292 −0.0359221
\(366\) 9.65685 0.504772
\(367\) −4.14214 −0.216218 −0.108109 0.994139i \(-0.534480\pi\)
−0.108109 + 0.994139i \(0.534480\pi\)
\(368\) −21.0000 −1.09470
\(369\) −1.17157 −0.0609896
\(370\) −45.7990 −2.38098
\(371\) 0 0
\(372\) 21.6569 1.12286
\(373\) −1.65685 −0.0857887 −0.0428943 0.999080i \(-0.513658\pi\)
−0.0428943 + 0.999080i \(0.513658\pi\)
\(374\) 10.6569 0.551053
\(375\) 12.0000 0.619677
\(376\) −43.3848 −2.23740
\(377\) −2.68629 −0.138351
\(378\) 0 0
\(379\) 18.8284 0.967151 0.483576 0.875303i \(-0.339338\pi\)
0.483576 + 0.875303i \(0.339338\pi\)
\(380\) −55.4558 −2.84482
\(381\) −16.0711 −0.823346
\(382\) 52.2843 2.67510
\(383\) 2.31371 0.118225 0.0591125 0.998251i \(-0.481173\pi\)
0.0591125 + 0.998251i \(0.481173\pi\)
\(384\) 20.5563 1.04901
\(385\) 0 0
\(386\) 29.3137 1.49203
\(387\) −2.75736 −0.140164
\(388\) −43.9706 −2.23227
\(389\) −11.7990 −0.598233 −0.299116 0.954217i \(-0.596692\pi\)
−0.299116 + 0.954217i \(0.596692\pi\)
\(390\) −4.00000 −0.202548
\(391\) 30.8995 1.56265
\(392\) 0 0
\(393\) −5.17157 −0.260871
\(394\) 39.6274 1.99640
\(395\) −26.6274 −1.33977
\(396\) 3.82843 0.192386
\(397\) 17.4853 0.877561 0.438781 0.898594i \(-0.355411\pi\)
0.438781 + 0.898594i \(0.355411\pi\)
\(398\) 47.7990 2.39595
\(399\) 0 0
\(400\) −3.00000 −0.150000
\(401\) 7.51472 0.375267 0.187634 0.982239i \(-0.439918\pi\)
0.187634 + 0.982239i \(0.439918\pi\)
\(402\) 7.65685 0.381889
\(403\) −4.68629 −0.233441
\(404\) 18.7574 0.933214
\(405\) −2.00000 −0.0993808
\(406\) 0 0
\(407\) −9.48528 −0.470168
\(408\) 19.4853 0.964665
\(409\) −7.79899 −0.385635 −0.192818 0.981235i \(-0.561763\pi\)
−0.192818 + 0.981235i \(0.561763\pi\)
\(410\) −5.65685 −0.279372
\(411\) 0.485281 0.0239372
\(412\) 47.7990 2.35489
\(413\) 0 0
\(414\) 16.8995 0.830565
\(415\) 5.65685 0.277684
\(416\) −1.31371 −0.0644099
\(417\) 8.41421 0.412046
\(418\) −17.4853 −0.855233
\(419\) 14.7990 0.722978 0.361489 0.932376i \(-0.382269\pi\)
0.361489 + 0.932376i \(0.382269\pi\)
\(420\) 0 0
\(421\) −7.00000 −0.341159 −0.170580 0.985344i \(-0.554564\pi\)
−0.170580 + 0.985344i \(0.554564\pi\)
\(422\) −36.1421 −1.75937
\(423\) 9.82843 0.477874
\(424\) 31.6569 1.53739
\(425\) 4.41421 0.214121
\(426\) 10.0711 0.487945
\(427\) 0 0
\(428\) 36.9706 1.78704
\(429\) −0.828427 −0.0399968
\(430\) −13.3137 −0.642044
\(431\) 6.97056 0.335760 0.167880 0.985807i \(-0.446308\pi\)
0.167880 + 0.985807i \(0.446308\pi\)
\(432\) 3.00000 0.144338
\(433\) 0.857864 0.0412263 0.0206132 0.999788i \(-0.493438\pi\)
0.0206132 + 0.999788i \(0.493438\pi\)
\(434\) 0 0
\(435\) −6.48528 −0.310945
\(436\) −26.1421 −1.25198
\(437\) −50.6985 −2.42524
\(438\) −0.828427 −0.0395838
\(439\) 30.8995 1.47475 0.737376 0.675482i \(-0.236065\pi\)
0.737376 + 0.675482i \(0.236065\pi\)
\(440\) 8.82843 0.420879
\(441\) 0 0
\(442\) −8.82843 −0.419925
\(443\) 33.6274 1.59769 0.798843 0.601539i \(-0.205446\pi\)
0.798843 + 0.601539i \(0.205446\pi\)
\(444\) −36.3137 −1.72337
\(445\) 28.2843 1.34080
\(446\) 55.4558 2.62591
\(447\) −22.2132 −1.05065
\(448\) 0 0
\(449\) −4.00000 −0.188772 −0.0943858 0.995536i \(-0.530089\pi\)
−0.0943858 + 0.995536i \(0.530089\pi\)
\(450\) 2.41421 0.113807
\(451\) −1.17157 −0.0551672
\(452\) −29.3137 −1.37880
\(453\) −18.8995 −0.887976
\(454\) −36.1421 −1.69623
\(455\) 0 0
\(456\) −31.9706 −1.49716
\(457\) 18.8284 0.880757 0.440378 0.897812i \(-0.354844\pi\)
0.440378 + 0.897812i \(0.354844\pi\)
\(458\) 37.7990 1.76623
\(459\) −4.41421 −0.206038
\(460\) 53.5980 2.49902
\(461\) 6.75736 0.314722 0.157361 0.987541i \(-0.449701\pi\)
0.157361 + 0.987541i \(0.449701\pi\)
\(462\) 0 0
\(463\) 18.6274 0.865689 0.432845 0.901468i \(-0.357510\pi\)
0.432845 + 0.901468i \(0.357510\pi\)
\(464\) 9.72792 0.451607
\(465\) −11.3137 −0.524661
\(466\) −25.1421 −1.16469
\(467\) −8.31371 −0.384713 −0.192356 0.981325i \(-0.561613\pi\)
−0.192356 + 0.981325i \(0.561613\pi\)
\(468\) −3.17157 −0.146606
\(469\) 0 0
\(470\) 47.4558 2.18897
\(471\) 7.00000 0.322543
\(472\) 38.2132 1.75891
\(473\) −2.75736 −0.126784
\(474\) −32.1421 −1.47634
\(475\) −7.24264 −0.332315
\(476\) 0 0
\(477\) −7.17157 −0.328364
\(478\) 15.6569 0.716128
\(479\) 14.0000 0.639676 0.319838 0.947472i \(-0.396371\pi\)
0.319838 + 0.947472i \(0.396371\pi\)
\(480\) −3.17157 −0.144762
\(481\) 7.85786 0.358288
\(482\) −17.6569 −0.804248
\(483\) 0 0
\(484\) 3.82843 0.174019
\(485\) 22.9706 1.04304
\(486\) −2.41421 −0.109511
\(487\) −32.6274 −1.47849 −0.739245 0.673437i \(-0.764817\pi\)
−0.739245 + 0.673437i \(0.764817\pi\)
\(488\) 17.6569 0.799288
\(489\) −20.9706 −0.948322
\(490\) 0 0
\(491\) −1.51472 −0.0683583 −0.0341791 0.999416i \(-0.510882\pi\)
−0.0341791 + 0.999416i \(0.510882\pi\)
\(492\) −4.48528 −0.202212
\(493\) −14.3137 −0.644657
\(494\) 14.4853 0.651724
\(495\) −2.00000 −0.0898933
\(496\) 16.9706 0.762001
\(497\) 0 0
\(498\) 6.82843 0.305989
\(499\) −31.7990 −1.42352 −0.711759 0.702424i \(-0.752101\pi\)
−0.711759 + 0.702424i \(0.752101\pi\)
\(500\) 45.9411 2.05455
\(501\) 5.17157 0.231049
\(502\) 6.07107 0.270965
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) 0 0
\(505\) −9.79899 −0.436049
\(506\) 16.8995 0.751274
\(507\) −12.3137 −0.546871
\(508\) −61.5269 −2.72982
\(509\) −12.0000 −0.531891 −0.265945 0.963988i \(-0.585684\pi\)
−0.265945 + 0.963988i \(0.585684\pi\)
\(510\) −21.3137 −0.943787
\(511\) 0 0
\(512\) 31.2426 1.38074
\(513\) 7.24264 0.319770
\(514\) −51.7990 −2.28476
\(515\) −24.9706 −1.10033
\(516\) −10.5563 −0.464717
\(517\) 9.82843 0.432254
\(518\) 0 0
\(519\) −14.8284 −0.650896
\(520\) −7.31371 −0.320727
\(521\) 31.1716 1.36565 0.682826 0.730581i \(-0.260751\pi\)
0.682826 + 0.730581i \(0.260751\pi\)
\(522\) −7.82843 −0.342641
\(523\) −22.2843 −0.974423 −0.487212 0.873284i \(-0.661986\pi\)
−0.487212 + 0.873284i \(0.661986\pi\)
\(524\) −19.7990 −0.864923
\(525\) 0 0
\(526\) −43.4558 −1.89476
\(527\) −24.9706 −1.08773
\(528\) 3.00000 0.130558
\(529\) 26.0000 1.13043
\(530\) −34.6274 −1.50412
\(531\) −8.65685 −0.375675
\(532\) 0 0
\(533\) 0.970563 0.0420397
\(534\) 34.1421 1.47747
\(535\) −19.3137 −0.835004
\(536\) 14.0000 0.604708
\(537\) 17.8284 0.769353
\(538\) 67.1127 2.89343
\(539\) 0 0
\(540\) −7.65685 −0.329499
\(541\) 19.6569 0.845114 0.422557 0.906336i \(-0.361133\pi\)
0.422557 + 0.906336i \(0.361133\pi\)
\(542\) 55.4558 2.38203
\(543\) −11.6569 −0.500243
\(544\) −7.00000 −0.300123
\(545\) 13.6569 0.584995
\(546\) 0 0
\(547\) −24.2132 −1.03528 −0.517641 0.855598i \(-0.673190\pi\)
−0.517641 + 0.855598i \(0.673190\pi\)
\(548\) 1.85786 0.0793640
\(549\) −4.00000 −0.170716
\(550\) 2.41421 0.102942
\(551\) 23.4853 1.00051
\(552\) 30.8995 1.31517
\(553\) 0 0
\(554\) 61.9411 2.63163
\(555\) 18.9706 0.805256
\(556\) 32.2132 1.36614
\(557\) −8.55635 −0.362544 −0.181272 0.983433i \(-0.558021\pi\)
−0.181272 + 0.983433i \(0.558021\pi\)
\(558\) −13.6569 −0.578141
\(559\) 2.28427 0.0966144
\(560\) 0 0
\(561\) −4.41421 −0.186368
\(562\) −34.7990 −1.46791
\(563\) 24.8284 1.04639 0.523197 0.852212i \(-0.324739\pi\)
0.523197 + 0.852212i \(0.324739\pi\)
\(564\) 37.6274 1.58440
\(565\) 15.3137 0.644253
\(566\) −49.1127 −2.06436
\(567\) 0 0
\(568\) 18.4142 0.772643
\(569\) 1.24264 0.0520942 0.0260471 0.999661i \(-0.491708\pi\)
0.0260471 + 0.999661i \(0.491708\pi\)
\(570\) 34.9706 1.46476
\(571\) −3.92893 −0.164421 −0.0822103 0.996615i \(-0.526198\pi\)
−0.0822103 + 0.996615i \(0.526198\pi\)
\(572\) −3.17157 −0.132610
\(573\) −21.6569 −0.904728
\(574\) 0 0
\(575\) 7.00000 0.291920
\(576\) −9.82843 −0.409518
\(577\) 7.65685 0.318759 0.159380 0.987217i \(-0.449051\pi\)
0.159380 + 0.987217i \(0.449051\pi\)
\(578\) −6.00000 −0.249567
\(579\) −12.1421 −0.504610
\(580\) −24.8284 −1.03094
\(581\) 0 0
\(582\) 27.7279 1.14936
\(583\) −7.17157 −0.297016
\(584\) −1.51472 −0.0626795
\(585\) 1.65685 0.0685025
\(586\) −13.8284 −0.571247
\(587\) 8.68629 0.358522 0.179261 0.983802i \(-0.442629\pi\)
0.179261 + 0.983802i \(0.442629\pi\)
\(588\) 0 0
\(589\) 40.9706 1.68816
\(590\) −41.7990 −1.72084
\(591\) −16.4142 −0.675191
\(592\) −28.4558 −1.16953
\(593\) −22.2721 −0.914605 −0.457302 0.889311i \(-0.651184\pi\)
−0.457302 + 0.889311i \(0.651184\pi\)
\(594\) −2.41421 −0.0990564
\(595\) 0 0
\(596\) −85.0416 −3.48344
\(597\) −19.7990 −0.810319
\(598\) −14.0000 −0.572503
\(599\) −1.37258 −0.0560822 −0.0280411 0.999607i \(-0.508927\pi\)
−0.0280411 + 0.999607i \(0.508927\pi\)
\(600\) 4.41421 0.180210
\(601\) −14.4853 −0.590867 −0.295433 0.955363i \(-0.595464\pi\)
−0.295433 + 0.955363i \(0.595464\pi\)
\(602\) 0 0
\(603\) −3.17157 −0.129156
\(604\) −72.3553 −2.94410
\(605\) −2.00000 −0.0813116
\(606\) −11.8284 −0.480497
\(607\) −18.6863 −0.758453 −0.379227 0.925304i \(-0.623810\pi\)
−0.379227 + 0.925304i \(0.623810\pi\)
\(608\) 11.4853 0.465790
\(609\) 0 0
\(610\) −19.3137 −0.781989
\(611\) −8.14214 −0.329396
\(612\) −16.8995 −0.683122
\(613\) 25.1716 1.01667 0.508335 0.861159i \(-0.330261\pi\)
0.508335 + 0.861159i \(0.330261\pi\)
\(614\) 41.7990 1.68687
\(615\) 2.34315 0.0944848
\(616\) 0 0
\(617\) 13.1716 0.530268 0.265134 0.964212i \(-0.414584\pi\)
0.265134 + 0.964212i \(0.414584\pi\)
\(618\) −30.1421 −1.21249
\(619\) 34.6274 1.39179 0.695897 0.718142i \(-0.255007\pi\)
0.695897 + 0.718142i \(0.255007\pi\)
\(620\) −43.3137 −1.73952
\(621\) −7.00000 −0.280900
\(622\) −71.5269 −2.86797
\(623\) 0 0
\(624\) −2.48528 −0.0994909
\(625\) −19.0000 −0.760000
\(626\) −11.5858 −0.463061
\(627\) 7.24264 0.289243
\(628\) 26.7990 1.06940
\(629\) 41.8701 1.66947
\(630\) 0 0
\(631\) 26.2843 1.04636 0.523180 0.852222i \(-0.324745\pi\)
0.523180 + 0.852222i \(0.324745\pi\)
\(632\) −58.7696 −2.33773
\(633\) 14.9706 0.595026
\(634\) 61.1127 2.42710
\(635\) 32.1421 1.27552
\(636\) −27.4558 −1.08870
\(637\) 0 0
\(638\) −7.82843 −0.309930
\(639\) −4.17157 −0.165025
\(640\) −41.1127 −1.62512
\(641\) −12.4853 −0.493139 −0.246569 0.969125i \(-0.579303\pi\)
−0.246569 + 0.969125i \(0.579303\pi\)
\(642\) −23.3137 −0.920119
\(643\) 2.00000 0.0788723 0.0394362 0.999222i \(-0.487444\pi\)
0.0394362 + 0.999222i \(0.487444\pi\)
\(644\) 0 0
\(645\) 5.51472 0.217142
\(646\) 77.1838 3.03675
\(647\) −19.3137 −0.759300 −0.379650 0.925130i \(-0.623956\pi\)
−0.379650 + 0.925130i \(0.623956\pi\)
\(648\) −4.41421 −0.173407
\(649\) −8.65685 −0.339811
\(650\) −2.00000 −0.0784465
\(651\) 0 0
\(652\) −80.2843 −3.14417
\(653\) 31.1127 1.21753 0.608767 0.793349i \(-0.291664\pi\)
0.608767 + 0.793349i \(0.291664\pi\)
\(654\) 16.4853 0.644626
\(655\) 10.3431 0.404140
\(656\) −3.51472 −0.137227
\(657\) 0.343146 0.0133874
\(658\) 0 0
\(659\) 34.4853 1.34336 0.671678 0.740843i \(-0.265574\pi\)
0.671678 + 0.740843i \(0.265574\pi\)
\(660\) −7.65685 −0.298043
\(661\) 11.9706 0.465601 0.232800 0.972525i \(-0.425211\pi\)
0.232800 + 0.972525i \(0.425211\pi\)
\(662\) −54.2843 −2.10982
\(663\) 3.65685 0.142020
\(664\) 12.4853 0.484523
\(665\) 0 0
\(666\) 22.8995 0.887337
\(667\) −22.6985 −0.878889
\(668\) 19.7990 0.766046
\(669\) −22.9706 −0.888093
\(670\) −15.3137 −0.591620
\(671\) −4.00000 −0.154418
\(672\) 0 0
\(673\) 27.1716 1.04739 0.523694 0.851907i \(-0.324554\pi\)
0.523694 + 0.851907i \(0.324554\pi\)
\(674\) −9.31371 −0.358751
\(675\) −1.00000 −0.0384900
\(676\) −47.1421 −1.81316
\(677\) −32.0122 −1.23033 −0.615164 0.788399i \(-0.710910\pi\)
−0.615164 + 0.788399i \(0.710910\pi\)
\(678\) 18.4853 0.709923
\(679\) 0 0
\(680\) −38.9706 −1.49445
\(681\) 14.9706 0.573673
\(682\) −13.6569 −0.522948
\(683\) 3.20101 0.122483 0.0612416 0.998123i \(-0.480494\pi\)
0.0612416 + 0.998123i \(0.480494\pi\)
\(684\) 27.7279 1.06020
\(685\) −0.970563 −0.0370833
\(686\) 0 0
\(687\) −15.6569 −0.597346
\(688\) −8.27208 −0.315370
\(689\) 5.94113 0.226339
\(690\) −33.7990 −1.28671
\(691\) −11.4558 −0.435801 −0.217900 0.975971i \(-0.569921\pi\)
−0.217900 + 0.975971i \(0.569921\pi\)
\(692\) −56.7696 −2.15805
\(693\) 0 0
\(694\) −36.1421 −1.37194
\(695\) −16.8284 −0.638339
\(696\) −14.3137 −0.542560
\(697\) 5.17157 0.195887
\(698\) −26.4853 −1.00248
\(699\) 10.4142 0.393902
\(700\) 0 0
\(701\) −2.89949 −0.109512 −0.0547562 0.998500i \(-0.517438\pi\)
−0.0547562 + 0.998500i \(0.517438\pi\)
\(702\) 2.00000 0.0754851
\(703\) −68.6985 −2.59101
\(704\) −9.82843 −0.370423
\(705\) −19.6569 −0.740320
\(706\) −32.1421 −1.20969
\(707\) 0 0
\(708\) −33.1421 −1.24556
\(709\) 25.7696 0.967796 0.483898 0.875124i \(-0.339221\pi\)
0.483898 + 0.875124i \(0.339221\pi\)
\(710\) −20.1421 −0.755921
\(711\) 13.3137 0.499303
\(712\) 62.4264 2.33953
\(713\) −39.5980 −1.48296
\(714\) 0 0
\(715\) 1.65685 0.0619628
\(716\) 68.2548 2.55080
\(717\) −6.48528 −0.242197
\(718\) 19.3137 0.720781
\(719\) 11.2010 0.417727 0.208864 0.977945i \(-0.433024\pi\)
0.208864 + 0.977945i \(0.433024\pi\)
\(720\) −6.00000 −0.223607
\(721\) 0 0
\(722\) −80.7696 −3.00593
\(723\) 7.31371 0.272000
\(724\) −44.6274 −1.65856
\(725\) −3.24264 −0.120429
\(726\) −2.41421 −0.0895999
\(727\) 46.0833 1.70913 0.854567 0.519342i \(-0.173823\pi\)
0.854567 + 0.519342i \(0.173823\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 1.65685 0.0613229
\(731\) 12.1716 0.450182
\(732\) −15.3137 −0.566011
\(733\) 9.65685 0.356684 0.178342 0.983969i \(-0.442927\pi\)
0.178342 + 0.983969i \(0.442927\pi\)
\(734\) 10.0000 0.369107
\(735\) 0 0
\(736\) −11.1005 −0.409170
\(737\) −3.17157 −0.116826
\(738\) 2.82843 0.104116
\(739\) −39.6569 −1.45880 −0.729400 0.684087i \(-0.760201\pi\)
−0.729400 + 0.684087i \(0.760201\pi\)
\(740\) 72.6274 2.66984
\(741\) −6.00000 −0.220416
\(742\) 0 0
\(743\) 33.7990 1.23996 0.619982 0.784616i \(-0.287140\pi\)
0.619982 + 0.784616i \(0.287140\pi\)
\(744\) −24.9706 −0.915465
\(745\) 44.4264 1.62766
\(746\) 4.00000 0.146450
\(747\) −2.82843 −0.103487
\(748\) −16.8995 −0.617907
\(749\) 0 0
\(750\) −28.9706 −1.05786
\(751\) −29.3137 −1.06967 −0.534836 0.844956i \(-0.679627\pi\)
−0.534836 + 0.844956i \(0.679627\pi\)
\(752\) 29.4853 1.07522
\(753\) −2.51472 −0.0916414
\(754\) 6.48528 0.236180
\(755\) 37.7990 1.37565
\(756\) 0 0
\(757\) −7.68629 −0.279363 −0.139682 0.990196i \(-0.544608\pi\)
−0.139682 + 0.990196i \(0.544608\pi\)
\(758\) −45.4558 −1.65103
\(759\) −7.00000 −0.254084
\(760\) 63.9411 2.31939
\(761\) −0.201010 −0.00728661 −0.00364331 0.999993i \(-0.501160\pi\)
−0.00364331 + 0.999993i \(0.501160\pi\)
\(762\) 38.7990 1.40554
\(763\) 0 0
\(764\) −82.9117 −2.99964
\(765\) 8.82843 0.319192
\(766\) −5.58579 −0.201823
\(767\) 7.17157 0.258950
\(768\) −29.9706 −1.08147
\(769\) 33.7990 1.21882 0.609411 0.792854i \(-0.291406\pi\)
0.609411 + 0.792854i \(0.291406\pi\)
\(770\) 0 0
\(771\) 21.4558 0.772713
\(772\) −46.4853 −1.67304
\(773\) −51.6569 −1.85797 −0.928984 0.370120i \(-0.879317\pi\)
−0.928984 + 0.370120i \(0.879317\pi\)
\(774\) 6.65685 0.239276
\(775\) −5.65685 −0.203200
\(776\) 50.6985 1.81997
\(777\) 0 0
\(778\) 28.4853 1.02125
\(779\) −8.48528 −0.304017
\(780\) 6.34315 0.227121
\(781\) −4.17157 −0.149271
\(782\) −74.5980 −2.66762
\(783\) 3.24264 0.115883
\(784\) 0 0
\(785\) −14.0000 −0.499681
\(786\) 12.4853 0.445335
\(787\) 29.5269 1.05252 0.526260 0.850323i \(-0.323594\pi\)
0.526260 + 0.850323i \(0.323594\pi\)
\(788\) −62.8406 −2.23860
\(789\) 18.0000 0.640817
\(790\) 64.2843 2.28713
\(791\) 0 0
\(792\) −4.41421 −0.156852
\(793\) 3.31371 0.117673
\(794\) −42.2132 −1.49809
\(795\) 14.3431 0.508699
\(796\) −75.7990 −2.68662
\(797\) 11.1716 0.395717 0.197859 0.980231i \(-0.436601\pi\)
0.197859 + 0.980231i \(0.436601\pi\)
\(798\) 0 0
\(799\) −43.3848 −1.53484
\(800\) −1.58579 −0.0560660
\(801\) −14.1421 −0.499688
\(802\) −18.1421 −0.640621
\(803\) 0.343146 0.0121094
\(804\) −12.1421 −0.428220
\(805\) 0 0
\(806\) 11.3137 0.398508
\(807\) −27.7990 −0.978571
\(808\) −21.6274 −0.760850
\(809\) 10.8284 0.380707 0.190354 0.981716i \(-0.439037\pi\)
0.190354 + 0.981716i \(0.439037\pi\)
\(810\) 4.82843 0.169654
\(811\) 14.9706 0.525688 0.262844 0.964838i \(-0.415340\pi\)
0.262844 + 0.964838i \(0.415340\pi\)
\(812\) 0 0
\(813\) −22.9706 −0.805613
\(814\) 22.8995 0.802627
\(815\) 41.9411 1.46913
\(816\) −13.2426 −0.463585
\(817\) −19.9706 −0.698682
\(818\) 18.8284 0.658321
\(819\) 0 0
\(820\) 8.97056 0.313266
\(821\) 38.8284 1.35512 0.677561 0.735467i \(-0.263037\pi\)
0.677561 + 0.735467i \(0.263037\pi\)
\(822\) −1.17157 −0.0408633
\(823\) −33.1716 −1.15629 −0.578144 0.815935i \(-0.696223\pi\)
−0.578144 + 0.815935i \(0.696223\pi\)
\(824\) −55.1127 −1.91994
\(825\) −1.00000 −0.0348155
\(826\) 0 0
\(827\) −37.3137 −1.29752 −0.648762 0.760991i \(-0.724713\pi\)
−0.648762 + 0.760991i \(0.724713\pi\)
\(828\) −26.7990 −0.931329
\(829\) −6.17157 −0.214348 −0.107174 0.994240i \(-0.534180\pi\)
−0.107174 + 0.994240i \(0.534180\pi\)
\(830\) −13.6569 −0.474036
\(831\) −25.6569 −0.890026
\(832\) 8.14214 0.282278
\(833\) 0 0
\(834\) −20.3137 −0.703406
\(835\) −10.3431 −0.357939
\(836\) 27.7279 0.958990
\(837\) 5.65685 0.195529
\(838\) −35.7279 −1.23420
\(839\) 8.97056 0.309698 0.154849 0.987938i \(-0.450511\pi\)
0.154849 + 0.987938i \(0.450511\pi\)
\(840\) 0 0
\(841\) −18.4853 −0.637423
\(842\) 16.8995 0.582395
\(843\) 14.4142 0.496452
\(844\) 57.3137 1.97282
\(845\) 24.6274 0.847209
\(846\) −23.7279 −0.815783
\(847\) 0 0
\(848\) −21.5147 −0.738818
\(849\) 20.3431 0.698175
\(850\) −10.6569 −0.365527
\(851\) 66.3970 2.27606
\(852\) −15.9706 −0.547142
\(853\) −12.4853 −0.427488 −0.213744 0.976890i \(-0.568566\pi\)
−0.213744 + 0.976890i \(0.568566\pi\)
\(854\) 0 0
\(855\) −14.4853 −0.495386
\(856\) −42.6274 −1.45698
\(857\) −44.3553 −1.51515 −0.757575 0.652748i \(-0.773616\pi\)
−0.757575 + 0.652748i \(0.773616\pi\)
\(858\) 2.00000 0.0682789
\(859\) −24.4853 −0.835427 −0.417714 0.908579i \(-0.637168\pi\)
−0.417714 + 0.908579i \(0.637168\pi\)
\(860\) 21.1127 0.719937
\(861\) 0 0
\(862\) −16.8284 −0.573179
\(863\) 2.62742 0.0894383 0.0447192 0.999000i \(-0.485761\pi\)
0.0447192 + 0.999000i \(0.485761\pi\)
\(864\) 1.58579 0.0539496
\(865\) 29.6569 1.00836
\(866\) −2.07107 −0.0703777
\(867\) 2.48528 0.0844046
\(868\) 0 0
\(869\) 13.3137 0.451637
\(870\) 15.6569 0.530817
\(871\) 2.62742 0.0890266
\(872\) 30.1421 1.02074
\(873\) −11.4853 −0.388718
\(874\) 122.397 4.14014
\(875\) 0 0
\(876\) 1.31371 0.0443861
\(877\) 2.48528 0.0839220 0.0419610 0.999119i \(-0.486639\pi\)
0.0419610 + 0.999119i \(0.486639\pi\)
\(878\) −74.5980 −2.51756
\(879\) 5.72792 0.193198
\(880\) −6.00000 −0.202260
\(881\) 16.6863 0.562175 0.281088 0.959682i \(-0.409305\pi\)
0.281088 + 0.959682i \(0.409305\pi\)
\(882\) 0 0
\(883\) 39.6569 1.33456 0.667280 0.744807i \(-0.267459\pi\)
0.667280 + 0.744807i \(0.267459\pi\)
\(884\) 14.0000 0.470871
\(885\) 17.3137 0.581994
\(886\) −81.1838 −2.72742
\(887\) −13.3137 −0.447031 −0.223515 0.974700i \(-0.571753\pi\)
−0.223515 + 0.974700i \(0.571753\pi\)
\(888\) 41.8701 1.40507
\(889\) 0 0
\(890\) −68.2843 −2.28889
\(891\) 1.00000 0.0335013
\(892\) −87.9411 −2.94449
\(893\) 71.1838 2.38207
\(894\) 53.6274 1.79357
\(895\) −35.6569 −1.19188
\(896\) 0 0
\(897\) 5.79899 0.193623
\(898\) 9.65685 0.322253
\(899\) 18.3431 0.611778
\(900\) −3.82843 −0.127614
\(901\) 31.6569 1.05464
\(902\) 2.82843 0.0941763
\(903\) 0 0
\(904\) 33.7990 1.12414
\(905\) 23.3137 0.774974
\(906\) 45.6274 1.51587
\(907\) −17.5147 −0.581567 −0.290783 0.956789i \(-0.593916\pi\)
−0.290783 + 0.956789i \(0.593916\pi\)
\(908\) 57.3137 1.90202
\(909\) 4.89949 0.162506
\(910\) 0 0
\(911\) −4.51472 −0.149579 −0.0747897 0.997199i \(-0.523829\pi\)
−0.0747897 + 0.997199i \(0.523829\pi\)
\(912\) 21.7279 0.719483
\(913\) −2.82843 −0.0936073
\(914\) −45.4558 −1.50355
\(915\) 8.00000 0.264472
\(916\) −59.9411 −1.98051
\(917\) 0 0
\(918\) 10.6569 0.351729
\(919\) 56.3553 1.85899 0.929496 0.368833i \(-0.120243\pi\)
0.929496 + 0.368833i \(0.120243\pi\)
\(920\) −61.7990 −2.03745
\(921\) −17.3137 −0.570506
\(922\) −16.3137 −0.537263
\(923\) 3.45584 0.113750
\(924\) 0 0
\(925\) 9.48528 0.311874
\(926\) −44.9706 −1.47782
\(927\) 12.4853 0.410070
\(928\) 5.14214 0.168799
\(929\) −22.8284 −0.748976 −0.374488 0.927232i \(-0.622182\pi\)
−0.374488 + 0.927232i \(0.622182\pi\)
\(930\) 27.3137 0.895652
\(931\) 0 0
\(932\) 39.8701 1.30599
\(933\) 29.6274 0.969958
\(934\) 20.0711 0.656745
\(935\) 8.82843 0.288720
\(936\) 3.65685 0.119528
\(937\) 5.85786 0.191368 0.0956840 0.995412i \(-0.469496\pi\)
0.0956840 + 0.995412i \(0.469496\pi\)
\(938\) 0 0
\(939\) 4.79899 0.156609
\(940\) −75.2548 −2.45454
\(941\) −12.0711 −0.393506 −0.196753 0.980453i \(-0.563040\pi\)
−0.196753 + 0.980453i \(0.563040\pi\)
\(942\) −16.8995 −0.550615
\(943\) 8.20101 0.267062
\(944\) −25.9706 −0.845270
\(945\) 0 0
\(946\) 6.65685 0.216433
\(947\) 37.4853 1.21811 0.609054 0.793129i \(-0.291549\pi\)
0.609054 + 0.793129i \(0.291549\pi\)
\(948\) 50.9706 1.65545
\(949\) −0.284271 −0.00922784
\(950\) 17.4853 0.567297
\(951\) −25.3137 −0.820853
\(952\) 0 0
\(953\) −14.1421 −0.458109 −0.229054 0.973414i \(-0.573563\pi\)
−0.229054 + 0.973414i \(0.573563\pi\)
\(954\) 17.3137 0.560552
\(955\) 43.3137 1.40160
\(956\) −24.8284 −0.803009
\(957\) 3.24264 0.104820
\(958\) −33.7990 −1.09200
\(959\) 0 0
\(960\) 19.6569 0.634422
\(961\) 1.00000 0.0322581
\(962\) −18.9706 −0.611635
\(963\) 9.65685 0.311188
\(964\) 28.0000 0.901819
\(965\) 24.2843 0.781738
\(966\) 0 0
\(967\) −21.0416 −0.676653 −0.338327 0.941029i \(-0.609861\pi\)
−0.338327 + 0.941029i \(0.609861\pi\)
\(968\) −4.41421 −0.141878
\(969\) −31.9706 −1.02704
\(970\) −55.4558 −1.78058
\(971\) 4.97056 0.159513 0.0797565 0.996814i \(-0.474586\pi\)
0.0797565 + 0.996814i \(0.474586\pi\)
\(972\) 3.82843 0.122797
\(973\) 0 0
\(974\) 78.7696 2.52394
\(975\) 0.828427 0.0265309
\(976\) −12.0000 −0.384111
\(977\) −12.8284 −0.410418 −0.205209 0.978718i \(-0.565787\pi\)
−0.205209 + 0.978718i \(0.565787\pi\)
\(978\) 50.6274 1.61889
\(979\) −14.1421 −0.451985
\(980\) 0 0
\(981\) −6.82843 −0.218015
\(982\) 3.65685 0.116695
\(983\) −2.02944 −0.0647290 −0.0323645 0.999476i \(-0.510304\pi\)
−0.0323645 + 0.999476i \(0.510304\pi\)
\(984\) 5.17157 0.164864
\(985\) 32.8284 1.04600
\(986\) 34.5563 1.10050
\(987\) 0 0
\(988\) −22.9706 −0.730791
\(989\) 19.3015 0.613752
\(990\) 4.82843 0.153457
\(991\) −24.6863 −0.784186 −0.392093 0.919926i \(-0.628249\pi\)
−0.392093 + 0.919926i \(0.628249\pi\)
\(992\) 8.97056 0.284816
\(993\) 22.4853 0.713549
\(994\) 0 0
\(995\) 39.5980 1.25534
\(996\) −10.8284 −0.343112
\(997\) 9.85786 0.312202 0.156101 0.987741i \(-0.450108\pi\)
0.156101 + 0.987741i \(0.450108\pi\)
\(998\) 76.7696 2.43010
\(999\) −9.48528 −0.300101
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1617.2.a.n.1.1 2
3.2 odd 2 4851.2.a.be.1.2 2
7.2 even 3 231.2.i.d.67.2 4
7.4 even 3 231.2.i.d.100.2 yes 4
7.6 odd 2 1617.2.a.m.1.1 2
21.2 odd 6 693.2.i.f.298.1 4
21.11 odd 6 693.2.i.f.100.1 4
21.20 even 2 4851.2.a.bd.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
231.2.i.d.67.2 4 7.2 even 3
231.2.i.d.100.2 yes 4 7.4 even 3
693.2.i.f.100.1 4 21.11 odd 6
693.2.i.f.298.1 4 21.2 odd 6
1617.2.a.m.1.1 2 7.6 odd 2
1617.2.a.n.1.1 2 1.1 even 1 trivial
4851.2.a.bd.1.2 2 21.20 even 2
4851.2.a.be.1.2 2 3.2 odd 2