Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [161,4,Mod(5,161)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(161, base_ring=CyclotomicField(66))
chi = DirichletCharacter(H, H._module([55, 3]))
N = Newforms(chi, 4, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("161.5");
S:= CuspForms(chi, 4);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 161 = 7 \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 161.o (of order \(66\), degree \(20\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(9.49930751092\) |
Analytic rank: | \(0\) |
Dimension: | \(920\) |
Relative dimension: | \(46\) over \(\Q(\zeta_{66})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{66}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
5.1 | −4.01594 | + | 3.82919i | 0.670881 | − | 3.48086i | 1.08442 | − | 22.7647i | −3.02350 | − | 2.37771i | 10.6347 | + | 16.5479i | −4.17776 | − | 18.0429i | 53.7453 | + | 62.0253i | 13.3996 | + | 5.36440i | 21.2469 | − | 2.02883i |
5.2 | −3.96636 | + | 3.78192i | −1.39802 | + | 7.25362i | 1.04846 | − | 22.0100i | 14.2516 | + | 11.2076i | −21.8876 | − | 34.0577i | 18.0932 | + | 3.95415i | 50.3701 | + | 58.1302i | −25.5947 | − | 10.2466i | −98.9135 | + | 9.44509i |
5.3 | −3.63378 | + | 3.46481i | 1.69687 | − | 8.80421i | 0.818849 | − | 17.1898i | 5.19287 | + | 4.08372i | 24.3388 | + | 37.8719i | −2.37837 | + | 18.3669i | 30.2798 | + | 34.9448i | −49.5687 | − | 19.8443i | −33.0191 | + | 3.15294i |
5.4 | −3.49780 | + | 3.33514i | −1.40095 | + | 7.26882i | 0.730752 | − | 15.3404i | −6.73839 | − | 5.29912i | −19.3423 | − | 30.0972i | −15.8934 | + | 9.50796i | 23.2868 | + | 26.8744i | −25.8072 | − | 10.3316i | 41.2428 | − | 3.93821i |
5.5 | −3.31841 | + | 3.16409i | 0.136938 | − | 0.710501i | 0.619675 | − | 13.0086i | −1.58854 | − | 1.24924i | 1.79368 | + | 2.79102i | −2.21383 | + | 18.3875i | 15.0831 | + | 17.4068i | 24.5799 | + | 9.84030i | 9.22416 | − | 0.880801i |
5.6 | −3.25729 | + | 3.10582i | −0.129179 | + | 0.670244i | 0.583169 | − | 12.2422i | 14.7588 | + | 11.6065i | −1.66088 | − | 2.58439i | −16.8947 | − | 7.58743i | 12.5441 | + | 14.4766i | 24.6334 | + | 9.86172i | −84.1216 | + | 8.03264i |
5.7 | −3.24194 | + | 3.09119i | −0.982886 | + | 5.09970i | 0.574105 | − | 12.0520i | −12.2883 | − | 9.66364i | −12.5776 | − | 19.5712i | 9.38388 | − | 15.9669i | 11.9262 | + | 13.7636i | 0.0251004 | + | 0.0100487i | 69.7101 | − | 6.65651i |
5.8 | −2.96783 | + | 2.82982i | 1.06599 | − | 5.53086i | 0.419477 | − | 8.80592i | 8.09793 | + | 6.36828i | 12.4877 | + | 19.4312i | 15.1371 | − | 10.6709i | 2.19102 | + | 2.52857i | −4.38811 | − | 1.75673i | −42.0544 | + | 4.01571i |
5.9 | −2.85879 | + | 2.72585i | −0.426732 | + | 2.21410i | 0.361762 | − | 7.59433i | 1.05636 | + | 0.830727i | −4.81536 | − | 7.49285i | 17.9199 | + | 4.67723i | −1.02709 | − | 1.18532i | 20.3458 | + | 8.14523i | −5.28434 | + | 0.504593i |
5.10 | −2.83997 | + | 2.70790i | 1.53801 | − | 7.97996i | 0.352019 | − | 7.38979i | −16.5667 | − | 13.0282i | 17.2411 | + | 26.8276i | 18.4164 | + | 1.95822i | −1.54654 | − | 1.78480i | −36.2484 | − | 14.5117i | 82.3279 | − | 7.86136i |
5.11 | −2.69164 | + | 2.56647i | 0.850115 | − | 4.41082i | 0.277483 | − | 5.82509i | −12.7324 | − | 10.0129i | 9.03204 | + | 14.0541i | −18.2990 | − | 2.85403i | −5.28088 | − | 6.09446i | 6.33332 | + | 2.53548i | 59.9689 | − | 5.72633i |
5.12 | −2.18667 | + | 2.08499i | −0.825120 | + | 4.28113i | 0.0537055 | − | 1.12742i | 7.78943 | + | 6.12567i | −7.12183 | − | 11.0818i | −13.2313 | − | 12.9589i | −13.5954 | − | 15.6899i | 7.41869 | + | 2.97000i | −29.8048 | + | 2.84602i |
5.13 | −2.00341 | + | 1.91025i | −1.84003 | + | 9.54697i | −0.0160482 | + | 0.336894i | 2.35504 | + | 1.85203i | −14.5508 | − | 22.6414i | 11.5607 | − | 14.4689i | −15.1135 | − | 17.4419i | −62.6929 | − | 25.0985i | −8.25596 | + | 0.788348i |
5.14 | −1.79024 | + | 1.70699i | −1.61276 | + | 8.36780i | −0.0895119 | + | 1.87909i | 7.16920 | + | 5.63792i | −11.3965 | − | 17.7334i | −11.1422 | + | 14.7936i | −16.0063 | − | 18.4723i | −42.3532 | − | 16.9557i | −22.4585 | + | 2.14452i |
5.15 | −1.67621 | + | 1.59826i | 1.64234 | − | 8.52127i | −0.125421 | + | 2.63292i | 3.99249 | + | 3.13973i | 10.8663 | + | 16.9083i | −9.33068 | − | 15.9981i | −16.1314 | − | 18.6166i | −44.8488 | − | 17.9547i | −11.7104 | + | 1.11820i |
5.16 | −1.62148 | + | 1.54608i | 0.945638 | − | 4.90644i | −0.141816 | + | 2.97708i | 16.3400 | + | 12.8499i | 6.05239 | + | 9.41771i | −2.90032 | + | 18.2918i | −16.1102 | − | 18.5922i | 1.88704 | + | 0.755457i | −46.3618 | + | 4.42701i |
5.17 | −1.44983 | + | 1.38241i | 0.623641 | − | 3.23576i | −0.189705 | + | 3.98240i | −4.51835 | − | 3.55327i | 3.56898 | + | 5.55344i | −14.6712 | + | 11.3030i | −15.7252 | − | 18.1478i | 14.9847 | + | 5.99898i | 11.4629 | − | 1.09458i |
5.18 | −1.34276 | + | 1.28032i | −0.215084 | + | 1.11596i | −0.216868 | + | 4.55262i | −1.16338 | − | 0.914890i | −1.13998 | − | 1.77384i | 13.3347 | + | 12.8524i | −15.2574 | − | 17.6080i | 23.8668 | + | 9.55484i | 2.73348 | − | 0.261016i |
5.19 | −1.29091 | + | 1.23088i | −0.218672 | + | 1.13458i | −0.229273 | + | 4.81304i | −6.70162 | − | 5.27021i | −1.11424 | − | 1.73380i | −3.99105 | − | 18.0851i | −14.9728 | − | 17.2795i | 23.8265 | + | 9.53868i | 15.1382 | − | 1.44552i |
5.20 | −1.23458 | + | 1.17717i | −1.25565 | + | 6.51495i | −0.242196 | + | 5.08432i | −16.1878 | − | 12.7302i | −6.11899 | − | 9.52134i | 10.1554 | + | 15.4877i | −14.6228 | − | 16.8756i | −15.8019 | − | 6.32615i | 34.9708 | − | 3.33930i |
See next 80 embeddings (of 920 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
7.d | odd | 6 | 1 | inner |
23.d | odd | 22 | 1 | inner |
161.o | even | 66 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 161.4.o.a | ✓ | 920 |
7.d | odd | 6 | 1 | inner | 161.4.o.a | ✓ | 920 |
23.d | odd | 22 | 1 | inner | 161.4.o.a | ✓ | 920 |
161.o | even | 66 | 1 | inner | 161.4.o.a | ✓ | 920 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
161.4.o.a | ✓ | 920 | 1.a | even | 1 | 1 | trivial |
161.4.o.a | ✓ | 920 | 7.d | odd | 6 | 1 | inner |
161.4.o.a | ✓ | 920 | 23.d | odd | 22 | 1 | inner |
161.4.o.a | ✓ | 920 | 161.o | even | 66 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{4}^{\mathrm{new}}(161, [\chi])\).