Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [161,4,Mod(2,161)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(161, base_ring=CyclotomicField(66))
chi = DirichletCharacter(H, H._module([22, 6]))
N = Newforms(chi, 4, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("161.2");
S:= CuspForms(chi, 4);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 161 = 7 \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 161.m (of order \(33\), degree \(20\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(9.49930751092\) |
Analytic rank: | \(0\) |
Dimension: | \(920\) |
Relative dimension: | \(46\) over \(\Q(\zeta_{33})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{33}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2.1 | −4.85520 | + | 2.50303i | −6.56184 | + | 5.16029i | 12.6674 | − | 17.7888i | 12.2615 | − | 11.6913i | 18.9427 | − | 41.4787i | −0.325027 | − | 18.5174i | −10.7575 | + | 74.8203i | 10.0637 | − | 41.4832i | −30.2682 | + | 87.4543i |
2.2 | −4.80405 | + | 2.47666i | 5.12364 | − | 4.02927i | 12.3046 | − | 17.2794i | 11.5320 | − | 10.9957i | −14.6351 | + | 32.0463i | 16.2574 | + | 8.87112i | −10.1632 | + | 70.6863i | 3.65114 | − | 15.0502i | −28.1675 | + | 81.3846i |
2.3 | −4.65056 | + | 2.39753i | 0.936935 | − | 0.736814i | 11.2391 | − | 15.7831i | −12.4464 | + | 11.8677i | −2.59074 | + | 5.67293i | 10.5941 | − | 15.1910i | −8.47071 | + | 58.9151i | −6.03054 | + | 24.8582i | 29.4299 | − | 85.0320i |
2.4 | −4.47175 | + | 2.30535i | −2.87636 | + | 2.26200i | 10.0415 | − | 14.1013i | −2.66271 | + | 2.53889i | 7.64769 | − | 16.7461i | −4.66951 | + | 17.9219i | −6.66670 | + | 46.3679i | −3.20866 | + | 13.2263i | 6.05396 | − | 17.4918i |
2.5 | −4.34018 | + | 2.23752i | 2.80876 | − | 2.20883i | 9.19019 | − | 12.9058i | 1.41622 | − | 1.35036i | −7.24821 | + | 15.8714i | −18.4754 | − | 1.28782i | −5.45069 | + | 37.9104i | −3.35530 | + | 13.8307i | −3.12518 | + | 9.02963i |
2.6 | −4.06577 | + | 2.09605i | 7.36412 | − | 5.79121i | 7.49662 | − | 10.5275i | −10.5890 | + | 10.0966i | −17.8022 | + | 38.9813i | −11.1382 | + | 14.7966i | −3.20542 | + | 22.2942i | 14.3267 | − | 59.0554i | 21.8896 | − | 63.2458i |
2.7 | −4.00732 | + | 2.06592i | −5.05989 | + | 3.97914i | 7.15013 | − | 10.0409i | −1.97159 | + | 1.87991i | 12.0560 | − | 26.3990i | 10.7443 | + | 15.0851i | −2.77606 | + | 19.3079i | 3.40342 | − | 14.0291i | 4.01705 | − | 11.6065i |
2.8 | −3.63328 | + | 1.87308i | −0.975873 | + | 0.767435i | 5.05179 | − | 7.09425i | 1.64575 | − | 1.56922i | 2.10815 | − | 4.61620i | −7.53074 | − | 16.9200i | −0.412531 | + | 2.86921i | −6.00212 | + | 24.7411i | −3.04019 | + | 8.78405i |
2.9 | −3.18997 | + | 1.64454i | 1.01302 | − | 0.796648i | 2.83092 | − | 3.97548i | 10.8076 | − | 10.3051i | −1.92138 | + | 4.20724i | 17.9683 | − | 4.48767i | 1.59335 | − | 11.0820i | −5.97393 | + | 24.6249i | −17.5289 | + | 50.6464i |
2.10 | −3.13367 | + | 1.61552i | 6.77618 | − | 5.32885i | 2.56951 | − | 3.60837i | 8.19577 | − | 7.81465i | −12.6254 | + | 27.6459i | −9.08513 | − | 16.1388i | 1.79135 | − | 12.4591i | 11.1545 | − | 45.9795i | −13.0581 | + | 37.7289i |
2.11 | −3.07645 | + | 1.58602i | −6.09210 | + | 4.79088i | 2.30861 | − | 3.24199i | −9.31482 | + | 8.88166i | 11.1436 | − | 24.4011i | 15.4357 | − | 10.2343i | 1.98019 | − | 13.7725i | 7.79564 | − | 32.1341i | 14.5701 | − | 42.0974i |
2.12 | −3.06140 | + | 1.57826i | 3.84012 | − | 3.01990i | 2.24082 | − | 3.14679i | −4.25064 | + | 4.05298i | −6.98995 | + | 15.3058i | 15.3839 | + | 10.3120i | 2.02779 | − | 14.1036i | −0.738799 | + | 3.04537i | 6.61626 | − | 19.1164i |
2.13 | −2.97661 | + | 1.53455i | −2.96858 | + | 2.33451i | 1.86489 | − | 2.61887i | 13.9057 | − | 13.2591i | 5.25386 | − | 11.5043i | −8.94313 | + | 16.2179i | 2.28050 | − | 15.8613i | −3.00301 | + | 12.3786i | −21.0452 | + | 60.8060i |
2.14 | −2.70406 | + | 1.39404i | −7.01556 | + | 5.51710i | 0.728138 | − | 1.02253i | −1.33033 | + | 1.26847i | 11.2794 | − | 24.6985i | −18.4474 | − | 1.64096i | 2.92017 | − | 20.3102i | 12.4142 | − | 51.1722i | 1.82900 | − | 5.28454i |
2.15 | −2.29786 | + | 1.18463i | −0.596175 | + | 0.468837i | −0.763631 | + | 1.07237i | −14.5434 | + | 13.8671i | 0.814530 | − | 1.78357i | −18.2947 | + | 2.88150i | 3.42771 | − | 23.8403i | −6.22987 | + | 25.6799i | 16.9914 | − | 49.0933i |
2.16 | −1.91000 | + | 0.984675i | 5.74622 | − | 4.51888i | −1.96193 | + | 2.75514i | −9.27838 | + | 8.84692i | −6.52568 | + | 14.2892i | 9.25410 | − | 16.0425i | 3.48091 | − | 24.2103i | 6.23330 | − | 25.6940i | 9.01040 | − | 26.0338i |
2.17 | −1.74505 | + | 0.899636i | 3.31948 | − | 2.61047i | −2.40460 | + | 3.37679i | 8.65609 | − | 8.25357i | −3.44419 | + | 7.54172i | −10.3067 | + | 15.3874i | 3.39352 | − | 23.6025i | −2.16109 | + | 8.90812i | −7.68011 | + | 22.1902i |
2.18 | −1.07511 | + | 0.554255i | −7.35523 | + | 5.78422i | −3.79180 | + | 5.32484i | 12.3247 | − | 11.7516i | 4.70171 | − | 10.2953i | 17.1659 | + | 6.95215i | 2.50238 | − | 17.4044i | 14.2767 | − | 58.8495i | −6.73700 | + | 19.4653i |
2.19 | −1.02687 | + | 0.529389i | −1.21057 | + | 0.952002i | −3.86624 | + | 5.42938i | 3.86419 | − | 3.68450i | 0.739119 | − | 1.61845i | 15.0072 | − | 10.8528i | 2.41121 | − | 16.7704i | −5.80632 | + | 23.9340i | −2.01750 | + | 5.82917i |
2.20 | −1.00046 | + | 0.515774i | −3.36024 | + | 2.64252i | −3.90555 | + | 5.48458i | 4.56107 | − | 4.34897i | 1.99885 | − | 4.37686i | −9.04432 | − | 16.1617i | 2.36006 | − | 16.4145i | −2.05721 | + | 8.47992i | −2.32009 | + | 6.70346i |
See next 80 embeddings (of 920 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
7.c | even | 3 | 1 | inner |
23.c | even | 11 | 1 | inner |
161.m | even | 33 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 161.4.m.a | ✓ | 920 |
7.c | even | 3 | 1 | inner | 161.4.m.a | ✓ | 920 |
23.c | even | 11 | 1 | inner | 161.4.m.a | ✓ | 920 |
161.m | even | 33 | 1 | inner | 161.4.m.a | ✓ | 920 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
161.4.m.a | ✓ | 920 | 1.a | even | 1 | 1 | trivial |
161.4.m.a | ✓ | 920 | 7.c | even | 3 | 1 | inner |
161.4.m.a | ✓ | 920 | 23.c | even | 11 | 1 | inner |
161.4.m.a | ✓ | 920 | 161.m | even | 33 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{4}^{\mathrm{new}}(161, [\chi])\).