Properties

Label 161.4.k.a
Level $161$
Weight $4$
Character orbit 161.k
Analytic conductor $9.499$
Analytic rank $0$
Dimension $20$
CM discriminant -7
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [161,4,Mod(20,161)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(161, base_ring=CyclotomicField(22))
 
chi = DirichletCharacter(H, H._module([11, 5]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("161.20");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 161 = 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 161.k (of order \(22\), degree \(10\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.49930751092\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(2\) over \(\Q(\zeta_{22})\)
Coefficient field: 20.0.1570539027548129147161113769.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - x^{19} - x^{18} + 3 x^{17} - x^{16} - 5 x^{15} + 7 x^{14} + 3 x^{13} - 17 x^{12} + 11 x^{11} + \cdots + 1024 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{22}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{19}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - 3 \beta_{17} + 3 \beta_{16} + \cdots - 3) q^{2} + ( - 5 \beta_{19} - 8 \beta_{15} + \cdots + 5 \beta_1) q^{4} + ( - 7 \beta_{17} - 14 \beta_{12}) q^{7} + (8 \beta_{19} - 8 \beta_{18} + \cdots - 8) q^{8}+ \cdots + (270 \beta_{14} - 783 \beta_{6} + \cdots + 270 \beta_{4}) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 10 q^{2} - 34 q^{4} - 90 q^{8} - 54 q^{9} + 614 q^{16} - 270 q^{18} + 40 q^{23} + 250 q^{25} + 332 q^{29} + 270 q^{32} + 1755 q^{36} + 1441 q^{44} + 200 q^{46} + 686 q^{49} - 5625 q^{50} + 945 q^{58}+ \cdots - 15435 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{20} - x^{19} - x^{18} + 3 x^{17} - x^{16} - 5 x^{15} + 7 x^{14} + 3 x^{13} - 17 x^{12} + 11 x^{11} + \cdots + 1024 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -\nu^{15} + 93\nu^{4} ) / 368 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{14} + 91\nu^{3} ) / 184 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -\nu^{13} - 91\nu^{2} ) / 92 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( \nu^{16} - 93\nu^{5} ) / 736 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( -\nu^{13} + \nu^{2} ) / 92 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( -\nu^{11} - 45 ) / 23 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( -\nu^{12} - 45\nu ) / 46 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( -\nu^{17} + 93\nu^{6} ) / 736 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( -3\nu^{19} - 457\nu^{8} ) / 5888 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( 3\nu^{18} + 457\nu^{7} ) / 2944 \) Copy content Toggle raw display
\(\beta_{12}\)\(=\) \( ( - 3 \nu^{19} - 3 \nu^{18} + 9 \nu^{17} - 3 \nu^{16} - 15 \nu^{15} + 21 \nu^{14} + 9 \nu^{13} + \cdots + 3072 ) / 5888 \) Copy content Toggle raw display
\(\beta_{13}\)\(=\) \( ( 3\nu^{15} + 89\nu^{4} ) / 368 \) Copy content Toggle raw display
\(\beta_{14}\)\(=\) \( ( -5\nu^{16} - 271\nu^{5} ) / 736 \) Copy content Toggle raw display
\(\beta_{15}\)\(=\) \( ( 11 \nu^{19} - 11 \nu^{18} - 11 \nu^{17} + 33 \nu^{16} - 11 \nu^{15} - 55 \nu^{14} + 77 \nu^{13} + \cdots - 5632 ) / 11776 \) Copy content Toggle raw display
\(\beta_{16}\)\(=\) \( ( 7\nu^{18} + 85\nu^{7} ) / 2944 \) Copy content Toggle raw display
\(\beta_{17}\)\(=\) \( ( 17 \nu^{19} + 17 \nu^{18} - 51 \nu^{17} + 17 \nu^{16} + 85 \nu^{15} - 119 \nu^{14} - 51 \nu^{13} + \cdots - 17408 ) / 11776 \) Copy content Toggle raw display
\(\beta_{18}\)\(=\) \( ( - \nu^{19} + \nu^{18} + \nu^{17} - 3 \nu^{16} + \nu^{15} + 5 \nu^{14} - 7 \nu^{13} - 3 \nu^{12} + \cdots + 512 ) / 512 \) Copy content Toggle raw display
\(\beta_{19}\)\(=\) \( ( -17\nu^{19} - 627\nu^{8} ) / 5888 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{6} - \beta_{4} \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{19} - \beta_{18} + \beta_{16} + \beta_{15} + \beta_{14} + \beta_{13} + \beta_{12} + \beta_{11} + \cdots - 1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{13} + 3\beta_{2} \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( -\beta_{14} - 5\beta_{5} \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( - 2 \beta_{17} + 2 \beta_{16} + 2 \beta_{15} + 2 \beta_{13} - 2 \beta_{10} + 5 \beta_{9} - 2 \beta_{8} + \cdots - 2 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( -3\beta_{16} + 7\beta_{11} \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( 3\beta_{19} - 17\beta_{10} \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( -6\beta_{17} - 17\beta_{12} \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( -11\beta_{18} - 23\beta_{15} \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( -23\beta_{7} - 45 \) Copy content Toggle raw display
\(\nu^{12}\)\(=\) \( -46\beta_{8} - 45\beta_1 \) Copy content Toggle raw display
\(\nu^{13}\)\(=\) \( -91\beta_{6} - \beta_{4} \) Copy content Toggle raw display
\(\nu^{14}\)\(=\) \( - 91 \beta_{19} + 91 \beta_{18} - 91 \beta_{16} - 91 \beta_{15} - 91 \beta_{14} - 91 \beta_{13} + \cdots + 91 \) Copy content Toggle raw display
\(\nu^{15}\)\(=\) \( 93\beta_{13} - 89\beta_{2} \) Copy content Toggle raw display
\(\nu^{16}\)\(=\) \( -93\beta_{14} + 271\beta_{5} \) Copy content Toggle raw display
\(\nu^{17}\)\(=\) \( - 186 \beta_{17} + 186 \beta_{16} + 186 \beta_{15} + 186 \beta_{13} - 186 \beta_{10} - 271 \beta_{9} + \cdots - 186 \) Copy content Toggle raw display
\(\nu^{18}\)\(=\) \( 457\beta_{16} - 85\beta_{11} \) Copy content Toggle raw display
\(\nu^{19}\)\(=\) \( -457\beta_{19} + 627\beta_{10} \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/161\mathbb{Z}\right)^\times\).

\(n\) \(24\) \(120\)
\(\chi(n)\) \(-1\) \(-\beta_{5}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
20.1
0.852444 1.12842i
0.107049 + 1.41016i
−1.41104 + 0.0947264i
0.995623 1.00436i
1.38057 0.306646i
−1.23825 0.683176i
0.294574 1.38319i
−1.13583 + 0.842553i
−1.41104 0.0947264i
0.995623 + 1.00436i
0.294574 + 1.38319i
−1.13583 0.842553i
−0.672332 + 1.24417i
1.32719 0.488425i
1.38057 + 0.306646i
−1.23825 + 0.683176i
−0.672332 1.24417i
1.32719 + 0.488425i
0.852444 + 1.12842i
0.107049 1.41016i
0.576670 + 4.01083i 0 −8.07824 + 2.37198i 0 0 −10.0128 15.5802i −0.705764 1.54541i −17.6812 20.4052i 0
20.2 0.788831 + 5.48644i 0 −21.8028 + 6.40189i 0 0 10.0128 + 15.5802i −33.9016 74.2343i −17.6812 20.4052i 0
34.1 −0.277265 + 0.178187i 0 −3.27820 + 7.17825i 0 0 −13.9967 + 12.1282i −0.745382 5.18425i −25.9063 7.60678i 0
34.2 3.77196 2.42409i 0 5.02813 11.0101i 0 0 13.9967 12.1282i −2.61869 18.2134i −25.9063 7.60678i 0
76.1 −1.24898 + 1.44140i 0 0.620835 + 4.31801i 0 0 −5.21776 17.7701i −19.8352 12.7473i 11.2162 24.5601i 0
76.2 2.18095 2.51695i 0 −0.439971 3.06007i 0 0 5.21776 + 17.7701i 13.7521 + 8.83793i 11.2162 24.5601i 0
83.1 −5.40834 + 1.58803i 0 19.9983 12.8521i 0 0 16.8466 + 7.69359i −58.2183 + 67.1875i −3.84250 + 26.7252i 0
83.2 −2.66342 + 0.782052i 0 −0.247804 + 0.159254i 0 0 −16.8466 7.69359i 15.0779 17.4008i −3.84250 + 26.7252i 0
90.1 −0.277265 0.178187i 0 −3.27820 7.17825i 0 0 −13.9967 12.1282i −0.745382 + 5.18425i −25.9063 + 7.60678i 0
90.2 3.77196 + 2.42409i 0 5.02813 + 11.0101i 0 0 13.9967 + 12.1282i −2.61869 + 18.2134i −25.9063 + 7.60678i 0
97.1 −5.40834 1.58803i 0 19.9983 + 12.8521i 0 0 16.8466 7.69359i −58.2183 67.1875i −3.84250 26.7252i 0
97.2 −2.66342 0.782052i 0 −0.247804 0.159254i 0 0 −16.8466 + 7.69359i 15.0779 + 17.4008i −3.84250 26.7252i 0
111.1 −2.19083 4.79724i 0 −12.9749 + 14.9739i 0 0 18.3317 2.63571i 59.7775 + 17.5523i 22.7138 14.5973i 0
111.2 −0.529562 1.15958i 0 4.17470 4.81786i 0 0 −18.3317 + 2.63571i −17.5826 5.16271i 22.7138 14.5973i 0
125.1 −1.24898 1.44140i 0 0.620835 4.31801i 0 0 −5.21776 + 17.7701i −19.8352 + 12.7473i 11.2162 + 24.5601i 0
125.2 2.18095 + 2.51695i 0 −0.439971 + 3.06007i 0 0 5.21776 17.7701i 13.7521 8.83793i 11.2162 + 24.5601i 0
132.1 −2.19083 + 4.79724i 0 −12.9749 14.9739i 0 0 18.3317 + 2.63571i 59.7775 17.5523i 22.7138 + 14.5973i 0
132.2 −0.529562 + 1.15958i 0 4.17470 + 4.81786i 0 0 −18.3317 2.63571i −17.5826 + 5.16271i 22.7138 + 14.5973i 0
153.1 0.576670 4.01083i 0 −8.07824 2.37198i 0 0 −10.0128 + 15.5802i −0.705764 + 1.54541i −17.6812 + 20.4052i 0
153.2 0.788831 5.48644i 0 −21.8028 6.40189i 0 0 10.0128 15.5802i −33.9016 + 74.2343i −17.6812 + 20.4052i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 20.2
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.b odd 2 1 CM by \(\Q(\sqrt{-7}) \)
23.d odd 22 1 inner
161.k even 22 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 161.4.k.a 20
7.b odd 2 1 CM 161.4.k.a 20
23.d odd 22 1 inner 161.4.k.a 20
161.k even 22 1 inner 161.4.k.a 20
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
161.4.k.a 20 1.a even 1 1 trivial
161.4.k.a 20 7.b odd 2 1 CM
161.4.k.a 20 23.d odd 22 1 inner
161.4.k.a 20 161.k even 22 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{20} + 10 T_{2}^{19} + 75 T_{2}^{18} + 500 T_{2}^{17} + 2333 T_{2}^{16} + 10390 T_{2}^{15} + \cdots + 491819329 \) acting on \(S_{4}^{\mathrm{new}}(161, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{20} + \cdots + 491819329 \) Copy content Toggle raw display
$3$ \( T^{20} \) Copy content Toggle raw display
$5$ \( T^{20} \) Copy content Toggle raw display
$7$ \( T^{20} + \cdots + 22\!\cdots\!49 \) Copy content Toggle raw display
$11$ \( T^{20} + \cdots + 86\!\cdots\!21 \) Copy content Toggle raw display
$13$ \( T^{20} \) Copy content Toggle raw display
$17$ \( T^{20} \) Copy content Toggle raw display
$19$ \( T^{20} \) Copy content Toggle raw display
$23$ \( T^{20} + \cdots + 71\!\cdots\!49 \) Copy content Toggle raw display
$29$ \( T^{20} + \cdots + 37\!\cdots\!01 \) Copy content Toggle raw display
$31$ \( T^{20} \) Copy content Toggle raw display
$37$ \( T^{20} + \cdots + 13\!\cdots\!49 \) Copy content Toggle raw display
$41$ \( T^{20} \) Copy content Toggle raw display
$43$ \( T^{20} + \cdots + 92\!\cdots\!49 \) Copy content Toggle raw display
$47$ \( T^{20} \) Copy content Toggle raw display
$53$ \( T^{20} + \cdots + 12\!\cdots\!49 \) Copy content Toggle raw display
$59$ \( T^{20} \) Copy content Toggle raw display
$61$ \( T^{20} \) Copy content Toggle raw display
$67$ \( T^{20} + \cdots + 91\!\cdots\!49 \) Copy content Toggle raw display
$71$ \( T^{20} + \cdots + 20\!\cdots\!01 \) Copy content Toggle raw display
$73$ \( T^{20} \) Copy content Toggle raw display
$79$ \( T^{20} + \cdots + 26\!\cdots\!21 \) Copy content Toggle raw display
$83$ \( T^{20} \) Copy content Toggle raw display
$89$ \( T^{20} \) Copy content Toggle raw display
$97$ \( T^{20} \) Copy content Toggle raw display
show more
show less