Properties

Label 161.4.k
Level $161$
Weight $4$
Character orbit 161.k
Rep. character $\chi_{161}(20,\cdot)$
Character field $\Q(\zeta_{22})$
Dimension $460$
Newform subspaces $2$
Sturm bound $64$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 161 = 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 161.k (of order \(22\) and degree \(10\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 161 \)
Character field: \(\Q(\zeta_{22})\)
Newform subspaces: \( 2 \)
Sturm bound: \(64\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(161, [\chi])\).

Total New Old
Modular forms 500 500 0
Cusp forms 460 460 0
Eisenstein series 40 40 0

Trace form

\( 460 q - 16 q^{2} - 184 q^{4} - 11 q^{7} - 4 q^{8} + 416 q^{9} - 22 q^{11} - 11 q^{14} - 22 q^{15} - 1136 q^{16} - 32 q^{18} - 671 q^{21} + 422 q^{23} - 960 q^{25} + 341 q^{28} - 258 q^{29} - 1518 q^{30}+ \cdots - 23122 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(161, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
161.4.k.a 161.k 161.k $20$ $9.499$ 20.0.\(\cdots\).2 \(\Q(\sqrt{-7}) \) 161.4.k.a \(-10\) \(0\) \(0\) \(0\) $\mathrm{U}(1)[D_{22}]$ \(q+(-3-\beta _{2}-3\beta _{3}-3\beta _{5}+3\beta _{6}-3\beta _{8}+\cdots)q^{2}+\cdots\)
161.4.k.b 161.k 161.k $440$ $9.499$ None 161.4.k.b \(-6\) \(0\) \(0\) \(-11\) $\mathrm{SU}(2)[C_{22}]$