Properties

Label 161.4.i
Level $161$
Weight $4$
Character orbit 161.i
Rep. character $\chi_{161}(8,\cdot)$
Character field $\Q(\zeta_{11})$
Dimension $360$
Newform subspaces $2$
Sturm bound $64$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 161 = 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 161.i (of order \(11\) and degree \(10\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 23 \)
Character field: \(\Q(\zeta_{11})\)
Newform subspaces: \( 2 \)
Sturm bound: \(64\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(161, [\chi])\).

Total New Old
Modular forms 500 360 140
Cusp forms 460 360 100
Eisenstein series 40 0 40

Trace form

\( 360 q + 2 q^{2} + 8 q^{3} - 130 q^{4} - 16 q^{5} + 6 q^{6} + 14 q^{7} - 24 q^{8} - 388 q^{9} - 120 q^{10} + 108 q^{11} + 50 q^{12} + 112 q^{13} - 14 q^{14} + 852 q^{15} - 138 q^{16} + 208 q^{17} - 168 q^{18}+ \cdots + 516 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(161, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
161.4.i.a 161.i 23.c $170$ $9.499$ None 161.4.i.a \(0\) \(10\) \(10\) \(-119\) $\mathrm{SU}(2)[C_{11}]$
161.4.i.b 161.i 23.c $190$ $9.499$ None 161.4.i.b \(2\) \(-2\) \(-26\) \(133\) $\mathrm{SU}(2)[C_{11}]$

Decomposition of \(S_{4}^{\mathrm{old}}(161, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(161, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(23, [\chi])\)\(^{\oplus 2}\)