Properties

Label 161.4.g
Level $161$
Weight $4$
Character orbit 161.g
Rep. character $\chi_{161}(45,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $92$
Newform subspaces $1$
Sturm bound $64$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 161 = 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 161.g (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 161 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 1 \)
Sturm bound: \(64\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(161, [\chi])\).

Total New Old
Modular forms 100 100 0
Cusp forms 92 92 0
Eisenstein series 8 8 0

Trace form

\( 92 q - 6 q^{3} - 168 q^{4} + 60 q^{8} + 348 q^{9} + 42 q^{12} - 728 q^{16} - 102 q^{18} - q^{23} + 504 q^{24} - 928 q^{25} + 576 q^{26} + 304 q^{29} - 138 q^{31} - 490 q^{32} + 442 q^{35} + 552 q^{36}+ \cdots + 4310 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(161, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
161.4.g.a 161.g 161.g $92$ $9.499$ None 161.4.g.a \(0\) \(-6\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$