Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [161,4,Mod(93,161)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(161, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([2, 0]))
N = Newforms(chi, 4, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("161.93");
S:= CuspForms(chi, 4);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 161 = 7 \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 161.e (of order \(3\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(9.49930751092\) |
Analytic rank: | \(0\) |
Dimension: | \(44\) |
Relative dimension: | \(22\) over \(\Q(\zeta_{3})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{3}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
93.1 | −2.74905 | + | 4.76150i | −0.108392 | − | 0.187741i | −11.1146 | − | 19.2510i | 3.87133 | − | 6.70534i | 1.19191 | −3.00557 | + | 18.2748i | 78.2332 | 13.4765 | − | 23.3420i | 21.2850 | + | 36.8666i | ||||
93.2 | −2.50376 | + | 4.33663i | 3.33221 | + | 5.77156i | −8.53760 | − | 14.7876i | 6.94437 | − | 12.0280i | −33.3722 | −11.6755 | − | 14.3765i | 45.4442 | −8.70730 | + | 15.0815i | 34.7740 | + | 60.2303i | ||||
93.3 | −2.24392 | + | 3.88659i | 4.45090 | + | 7.70919i | −6.07039 | − | 10.5142i | −1.04214 | + | 1.80505i | −39.9500 | 17.8722 | + | 4.85657i | 18.5832 | −26.1211 | + | 45.2431i | −4.67699 | − | 8.10078i | ||||
93.4 | −2.08967 | + | 3.61941i | −0.0901550 | − | 0.156153i | −4.73340 | − | 8.19849i | −6.23886 | + | 10.8060i | 0.753575 | 1.04212 | − | 18.4909i | 6.13025 | 13.4837 | − | 23.3545i | −26.0742 | − | 45.1619i | ||||
93.5 | −1.91224 | + | 3.31210i | −3.77771 | − | 6.54318i | −3.31333 | − | 5.73885i | 9.23546 | − | 15.9963i | 28.8955 | 17.3800 | + | 6.39809i | −5.25234 | −15.0422 | + | 26.0538i | 35.3208 | + | 61.1775i | ||||
93.6 | −1.68180 | + | 2.91297i | −2.66618 | − | 4.61796i | −1.65692 | − | 2.86987i | 1.69468 | − | 2.93527i | 17.9360 | −18.5039 | − | 0.777724i | −15.7624 | −0.717036 | + | 1.24194i | 5.70022 | + | 9.87308i | ||||
93.7 | −1.19240 | + | 2.06529i | −0.833094 | − | 1.44296i | 1.15638 | + | 2.00290i | −7.27589 | + | 12.6022i | 3.97352 | 7.15265 | + | 17.0833i | −24.5938 | 12.1119 | − | 20.9784i | −17.3515 | − | 30.0537i | ||||
93.8 | −1.09145 | + | 1.89045i | 3.24856 | + | 5.62667i | 1.61746 | + | 2.80153i | −5.29818 | + | 9.17672i | −14.1826 | 4.63307 | + | 17.9314i | −24.5248 | −7.60630 | + | 13.1745i | −11.5654 | − | 20.0319i | ||||
93.9 | −0.904891 | + | 1.56732i | 4.25067 | + | 7.36238i | 2.36235 | + | 4.09170i | 10.8661 | − | 18.8206i | −15.3856 | −11.8667 | + | 14.2190i | −23.0289 | −22.6364 | + | 39.2075i | 19.6653 | + | 34.0613i | ||||
93.10 | −0.646697 | + | 1.12011i | 0.748479 | + | 1.29640i | 3.16357 | + | 5.47946i | 6.70559 | − | 11.6144i | −1.93616 | 8.99941 | − | 16.1867i | −18.5306 | 12.3796 | − | 21.4420i | 8.67296 | + | 15.0220i | ||||
93.11 | 0.248608 | − | 0.430602i | −2.90835 | − | 5.03742i | 3.87639 | + | 6.71410i | 0.0115248 | − | 0.0199615i | −2.89216 | −12.3503 | + | 13.8011i | 7.83254 | −3.41704 | + | 5.91848i | −0.00573031 | − | 0.00992519i | ||||
93.12 | 0.319148 | − | 0.552781i | 2.55230 | + | 4.42071i | 3.79629 | + | 6.57537i | −2.96147 | + | 5.12941i | 3.25824 | −15.8891 | + | 9.51503i | 9.95268 | 0.471554 | − | 0.816755i | 1.89029 | + | 3.27409i | ||||
93.13 | 0.331592 | − | 0.574335i | 0.441679 | + | 0.765010i | 3.78009 | + | 6.54731i | −0.460024 | + | 0.796786i | 0.585829 | −6.62409 | − | 17.2951i | 10.3193 | 13.1098 | − | 22.7069i | 0.305081 | + | 0.528416i | ||||
93.14 | 1.02001 | − | 1.76671i | −2.44043 | − | 4.22696i | 1.91915 | + | 3.32406i | −2.20595 | + | 3.82082i | −9.95709 | 18.4927 | − | 1.00908i | 24.1504 | 1.58857 | − | 2.75148i | 4.50019 | + | 7.79456i | ||||
93.15 | 1.11997 | − | 1.93985i | −4.51048 | − | 7.81238i | 1.49133 | + | 2.58306i | −7.56441 | + | 13.1019i | −20.2064 | −11.3350 | − | 14.6464i | 24.6005 | −27.1888 | + | 47.0924i | 16.9438 | + | 29.3476i | ||||
93.16 | 1.25818 | − | 2.17923i | 3.59738 | + | 6.23085i | 0.833966 | + | 1.44447i | 6.85867 | − | 11.8796i | 18.1046 | 7.12391 | − | 17.0953i | 24.3280 | −12.3823 | + | 21.4468i | −17.2589 | − | 29.8932i | ||||
93.17 | 1.46890 | − | 2.54421i | −1.64566 | − | 2.85037i | −0.315335 | − | 0.546176i | 9.62172 | − | 16.6653i | −9.66926 | 15.8074 | + | 9.65013i | 21.6496 | 8.08358 | − | 14.0012i | −28.2667 | − | 48.9593i | ||||
93.18 | 1.56576 | − | 2.71198i | 4.73453 | + | 8.20044i | −0.903236 | − | 1.56445i | −6.67323 | + | 11.5584i | 29.6526 | −18.0608 | − | 4.09965i | 19.3952 | −31.3315 | + | 54.2678i | 20.8974 | + | 36.1954i | ||||
93.19 | 2.16079 | − | 3.74260i | 2.14374 | + | 3.71307i | −5.33806 | − | 9.24579i | −4.70179 | + | 8.14373i | 18.5287 | 16.6938 | − | 8.01969i | −11.5651 | 4.30873 | − | 7.46295i | 20.3192 | + | 35.1938i | ||||
93.20 | 2.26824 | − | 3.92871i | −3.43053 | − | 5.94186i | −6.28983 | − | 10.8943i | 3.43720 | − | 5.95341i | −31.1251 | −17.2896 | + | 6.63846i | −20.7755 | −10.0371 | + | 17.3848i | −15.5928 | − | 27.0075i | ||||
See all 44 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
7.c | even | 3 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 161.4.e.b | ✓ | 44 |
7.c | even | 3 | 1 | inner | 161.4.e.b | ✓ | 44 |
7.c | even | 3 | 1 | 1127.4.a.j | 22 | ||
7.d | odd | 6 | 1 | 1127.4.a.m | 22 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
161.4.e.b | ✓ | 44 | 1.a | even | 1 | 1 | trivial |
161.4.e.b | ✓ | 44 | 7.c | even | 3 | 1 | inner |
1127.4.a.j | 22 | 7.c | even | 3 | 1 | ||
1127.4.a.m | 22 | 7.d | odd | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{44} + 132 T_{2}^{42} - 14 T_{2}^{41} + 10025 T_{2}^{40} - 1811 T_{2}^{39} + 515489 T_{2}^{38} + \cdots + 94\!\cdots\!00 \)
acting on \(S_{4}^{\mathrm{new}}(161, [\chi])\).