Properties

Label 161.4.c.b.160.7
Level $161$
Weight $4$
Character 161.160
Analytic conductor $9.499$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [161,4,Mod(160,161)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(161, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("161.160");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 161 = 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 161.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.49930751092\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 16x^{6} - 2516x^{5} + 43236x^{4} + 20128x^{3} - 55968x^{2} - 6463604x + 23372755 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{23}]\)
Coefficient ring index: \( 2^{4}\cdot 7 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 160.7
Root \(3.79050 - 1.54876i\) of defining polynomial
Character \(\chi\) \(=\) 161.160
Dual form 161.4.c.b.160.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +5.83095i q^{3} -7.00000 q^{4} +7.58101 q^{5} -5.83095i q^{6} +(14.7738 + 11.1685i) q^{7} +15.0000 q^{8} -7.00000 q^{9} -7.58101 q^{10} +25.0705i q^{11} -40.8167i q^{12} +29.5884i q^{13} +(-14.7738 - 11.1685i) q^{14} +44.2045i q^{15} +41.0000 q^{16} -7.58101 q^{17} +7.00000 q^{18} -146.185 q^{19} -53.0670 q^{20} +(-65.1231 + 86.1451i) q^{21} -25.0705i q^{22} +(-110.264 - 2.96823i) q^{23} +87.4643i q^{24} -67.5284 q^{25} -29.5884i q^{26} +116.619i q^{27} +(-103.416 - 78.1796i) q^{28} +228.528 q^{29} -44.2045i q^{30} -282.921i q^{31} -161.000 q^{32} -146.185 q^{33} +7.58101 q^{34} +(112.000 + 84.6686i) q^{35} +49.0000 q^{36} +364.184i q^{37} +146.185 q^{38} -172.528 q^{39} +113.715 q^{40} +73.4403i q^{41} +(65.1231 - 86.1451i) q^{42} +370.121i q^{43} -175.493i q^{44} -53.0670 q^{45} +(110.264 + 2.96823i) q^{46} -446.188i q^{47} +239.069i q^{48} +(93.5284 + 330.002i) q^{49} +67.5284 q^{50} -44.2045i q^{51} -207.119i q^{52} +490.861i q^{53} -116.619i q^{54} +190.059i q^{55} +(221.606 + 167.528i) q^{56} -852.396i q^{57} -228.528 q^{58} +2.36207i q^{59} -309.431i q^{60} +421.246 q^{61} +282.921i q^{62} +(-103.416 - 78.1796i) q^{63} -167.000 q^{64} +224.310i q^{65} +146.185 q^{66} -478.988i q^{67} +53.0670 q^{68} +(17.3076 - 642.945i) q^{69} +(-112.000 - 84.6686i) q^{70} +620.528 q^{71} -105.000 q^{72} +134.351i q^{73} -364.184i q^{74} -393.755i q^{75} +1023.29 q^{76} +(-280.000 + 370.385i) q^{77} +172.528 q^{78} -1291.79i q^{79} +310.821 q^{80} -869.000 q^{81} -73.4403i q^{82} -821.896 q^{83} +(455.862 - 603.016i) q^{84} -57.4716 q^{85} -370.121i q^{86} +1332.54i q^{87} +376.057i q^{88} +97.4088 q^{89} +53.0670 q^{90} +(-330.458 + 437.132i) q^{91} +(771.849 + 20.7776i) q^{92} +1649.70 q^{93} +446.188i q^{94} -1108.23 q^{95} -938.783i q^{96} +1394.76 q^{97} +(-93.5284 - 330.002i) q^{98} -175.493i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{2} - 56 q^{4} + 120 q^{8} - 56 q^{9} + 328 q^{16} + 56 q^{18} - 124 q^{23} + 976 q^{25} + 312 q^{29} - 1288 q^{32} + 896 q^{35} + 392 q^{36} + 136 q^{39} + 124 q^{46} - 768 q^{49} - 976 q^{50}+ \cdots + 768 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/161\mathbb{Z}\right)^\times\).

\(n\) \(24\) \(120\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.353553 −0.176777 0.984251i \(-0.556567\pi\)
−0.176777 + 0.984251i \(0.556567\pi\)
\(3\) 5.83095i 1.12217i 0.827759 + 0.561084i \(0.189615\pi\)
−0.827759 + 0.561084i \(0.810385\pi\)
\(4\) −7.00000 −0.875000
\(5\) 7.58101 0.678066 0.339033 0.940775i \(-0.389900\pi\)
0.339033 + 0.940775i \(0.389900\pi\)
\(6\) 5.83095i 0.396746i
\(7\) 14.7738 + 11.1685i 0.797708 + 0.603043i
\(8\) 15.0000 0.662913
\(9\) −7.00000 −0.259259
\(10\) −7.58101 −0.239732
\(11\) 25.0705i 0.687185i 0.939119 + 0.343592i \(0.111644\pi\)
−0.939119 + 0.343592i \(0.888356\pi\)
\(12\) 40.8167i 0.981896i
\(13\) 29.5884i 0.631257i 0.948883 + 0.315628i \(0.102215\pi\)
−0.948883 + 0.315628i \(0.897785\pi\)
\(14\) −14.7738 11.1685i −0.282033 0.213208i
\(15\) 44.2045i 0.760903i
\(16\) 41.0000 0.640625
\(17\) −7.58101 −0.108157 −0.0540783 0.998537i \(-0.517222\pi\)
−0.0540783 + 0.998537i \(0.517222\pi\)
\(18\) 7.00000 0.0916620
\(19\) −146.185 −1.76511 −0.882554 0.470210i \(-0.844178\pi\)
−0.882554 + 0.470210i \(0.844178\pi\)
\(20\) −53.0670 −0.593307
\(21\) −65.1231 + 86.1451i −0.676715 + 0.895162i
\(22\) 25.0705i 0.242956i
\(23\) −110.264 2.96823i −0.999638 0.0269095i
\(24\) 87.4643i 0.743899i
\(25\) −67.5284 −0.540227
\(26\) 29.5884i 0.223183i
\(27\) 116.619i 0.831235i
\(28\) −103.416 78.1796i −0.697995 0.527663i
\(29\) 228.528 1.46333 0.731666 0.681663i \(-0.238743\pi\)
0.731666 + 0.681663i \(0.238743\pi\)
\(30\) 44.2045i 0.269020i
\(31\) 282.921i 1.63916i −0.572961 0.819582i \(-0.694206\pi\)
0.572961 0.819582i \(-0.305794\pi\)
\(32\) −161.000 −0.889408
\(33\) −146.185 −0.771136
\(34\) 7.58101 0.0382392
\(35\) 112.000 + 84.6686i 0.540899 + 0.408903i
\(36\) 49.0000 0.226852
\(37\) 364.184i 1.61815i 0.587706 + 0.809074i \(0.300031\pi\)
−0.587706 + 0.809074i \(0.699969\pi\)
\(38\) 146.185 0.624060
\(39\) −172.528 −0.708376
\(40\) 113.715 0.449498
\(41\) 73.4403i 0.279743i 0.990170 + 0.139871i \(0.0446689\pi\)
−0.990170 + 0.139871i \(0.955331\pi\)
\(42\) 65.1231 86.1451i 0.239255 0.316488i
\(43\) 370.121i 1.31262i 0.754489 + 0.656312i \(0.227885\pi\)
−0.754489 + 0.656312i \(0.772115\pi\)
\(44\) 175.493i 0.601287i
\(45\) −53.0670 −0.175795
\(46\) 110.264 + 2.96823i 0.353425 + 0.00951395i
\(47\) 446.188i 1.38475i −0.721539 0.692374i \(-0.756565\pi\)
0.721539 0.692374i \(-0.243435\pi\)
\(48\) 239.069i 0.718888i
\(49\) 93.5284 + 330.002i 0.272677 + 0.962106i
\(50\) 67.5284 0.190999
\(51\) 44.2045i 0.121370i
\(52\) 207.119i 0.552350i
\(53\) 490.861i 1.27217i 0.771619 + 0.636084i \(0.219447\pi\)
−0.771619 + 0.636084i \(0.780553\pi\)
\(54\) 116.619i 0.293886i
\(55\) 190.059i 0.465956i
\(56\) 221.606 + 167.528i 0.528811 + 0.399765i
\(57\) 852.396i 1.98075i
\(58\) −228.528 −0.517366
\(59\) 2.36207i 0.00521212i 0.999997 + 0.00260606i \(0.000829535\pi\)
−0.999997 + 0.00260606i \(0.999170\pi\)
\(60\) 309.431i 0.665790i
\(61\) 421.246 0.884182 0.442091 0.896970i \(-0.354237\pi\)
0.442091 + 0.896970i \(0.354237\pi\)
\(62\) 282.921i 0.579532i
\(63\) −103.416 78.1796i −0.206813 0.156345i
\(64\) −167.000 −0.326172
\(65\) 224.310i 0.428034i
\(66\) 146.185 0.272638
\(67\) 478.988i 0.873399i −0.899608 0.436699i \(-0.856147\pi\)
0.899608 0.436699i \(-0.143853\pi\)
\(68\) 53.0670 0.0946371
\(69\) 17.3076 642.945i 0.0301970 1.12176i
\(70\) −112.000 84.6686i −0.191237 0.144569i
\(71\) 620.528 1.03723 0.518614 0.855009i \(-0.326448\pi\)
0.518614 + 0.855009i \(0.326448\pi\)
\(72\) −105.000 −0.171866
\(73\) 134.351i 0.215406i 0.994183 + 0.107703i \(0.0343496\pi\)
−0.994183 + 0.107703i \(0.965650\pi\)
\(74\) 364.184i 0.572102i
\(75\) 393.755i 0.606225i
\(76\) 1023.29 1.54447
\(77\) −280.000 + 370.385i −0.414402 + 0.548173i
\(78\) 172.528 0.250449
\(79\) 1291.79i 1.83972i −0.392247 0.919860i \(-0.628302\pi\)
0.392247 0.919860i \(-0.371698\pi\)
\(80\) 310.821 0.434386
\(81\) −869.000 −1.19204
\(82\) 73.4403i 0.0989040i
\(83\) −821.896 −1.08692 −0.543462 0.839434i \(-0.682887\pi\)
−0.543462 + 0.839434i \(0.682887\pi\)
\(84\) 455.862 603.016i 0.592126 0.783267i
\(85\) −57.4716 −0.0733373
\(86\) 370.121i 0.464083i
\(87\) 1332.54i 1.64210i
\(88\) 376.057i 0.455543i
\(89\) 97.4088 0.116015 0.0580074 0.998316i \(-0.481525\pi\)
0.0580074 + 0.998316i \(0.481525\pi\)
\(90\) 53.0670 0.0621529
\(91\) −330.458 + 437.132i −0.380675 + 0.503559i
\(92\) 771.849 + 20.7776i 0.874683 + 0.0235458i
\(93\) 1649.70 1.83942
\(94\) 446.188i 0.489582i
\(95\) −1108.23 −1.19686
\(96\) 938.783i 0.998064i
\(97\) 1394.76 1.45997 0.729983 0.683466i \(-0.239528\pi\)
0.729983 + 0.683466i \(0.239528\pi\)
\(98\) −93.5284 330.002i −0.0964060 0.340156i
\(99\) 175.493i 0.178159i
\(100\) 472.699 0.472699
\(101\) 1219.10i 1.20104i −0.799609 0.600521i \(-0.794960\pi\)
0.799609 0.600521i \(-0.205040\pi\)
\(102\) 44.2045i 0.0429107i
\(103\) 66.0834 0.0632174 0.0316087 0.999500i \(-0.489937\pi\)
0.0316087 + 0.999500i \(0.489937\pi\)
\(104\) 443.826i 0.418468i
\(105\) −493.699 + 653.067i −0.458858 + 0.606979i
\(106\) 490.861i 0.449780i
\(107\) 1177.67i 1.06402i 0.846738 + 0.532010i \(0.178563\pi\)
−0.846738 + 0.532010i \(0.821437\pi\)
\(108\) 816.333i 0.727331i
\(109\) 13.1975i 0.0115972i −0.999983 0.00579860i \(-0.998154\pi\)
0.999983 0.00579860i \(-0.00184576\pi\)
\(110\) 190.059i 0.164740i
\(111\) −2123.54 −1.81583
\(112\) 605.724 + 457.909i 0.511032 + 0.386325i
\(113\) 2061.08i 1.71584i 0.513784 + 0.857919i \(0.328243\pi\)
−0.513784 + 0.857919i \(0.671757\pi\)
\(114\) 852.396i 0.700300i
\(115\) −835.913 22.5022i −0.677820 0.0182464i
\(116\) −1599.70 −1.28042
\(117\) 207.119i 0.163659i
\(118\) 2.36207i 0.00184276i
\(119\) −112.000 84.6686i −0.0862775 0.0652232i
\(120\) 663.067i 0.504412i
\(121\) 702.472 0.527777
\(122\) −421.246 −0.312605
\(123\) −428.227 −0.313918
\(124\) 1980.45i 1.43427i
\(125\) −1459.56 −1.04438
\(126\) 103.416 + 78.1796i 0.0731195 + 0.0552762i
\(127\) 1212.23 0.846990 0.423495 0.905898i \(-0.360803\pi\)
0.423495 + 0.905898i \(0.360803\pi\)
\(128\) 1455.00 1.00473
\(129\) −2158.16 −1.47298
\(130\) 224.310i 0.151333i
\(131\) 2309.78i 1.54050i 0.637740 + 0.770252i \(0.279870\pi\)
−0.637740 + 0.770252i \(0.720130\pi\)
\(132\) 1023.29 0.674744
\(133\) −2159.70 1632.67i −1.40804 1.06444i
\(134\) 478.988i 0.308793i
\(135\) 884.090i 0.563632i
\(136\) −113.715 −0.0716984
\(137\) 1802.42i 1.12403i 0.827129 + 0.562013i \(0.189973\pi\)
−0.827129 + 0.562013i \(0.810027\pi\)
\(138\) −17.3076 + 642.945i −0.0106762 + 0.396602i
\(139\) 1297.79i 0.791923i −0.918267 0.395961i \(-0.870411\pi\)
0.918267 0.395961i \(-0.129589\pi\)
\(140\) −784.000 592.680i −0.473286 0.357790i
\(141\) 2601.70 1.55392
\(142\) −620.528 −0.366715
\(143\) −741.794 −0.433790
\(144\) −287.000 −0.166088
\(145\) 1732.47 0.992236
\(146\) 134.351i 0.0761576i
\(147\) −1924.23 + 545.359i −1.07964 + 0.305990i
\(148\) 2549.29i 1.41588i
\(149\) 1467.28i 0.806743i −0.915036 0.403371i \(-0.867838\pi\)
0.915036 0.403371i \(-0.132162\pi\)
\(150\) 393.755i 0.214333i
\(151\) 191.699 0.103313 0.0516563 0.998665i \(-0.483550\pi\)
0.0516563 + 0.998665i \(0.483550\pi\)
\(152\) −2192.77 −1.17011
\(153\) 53.0670 0.0280406
\(154\) 280.000 370.385i 0.146513 0.193808i
\(155\) 2144.83i 1.11146i
\(156\) 1207.70 0.619829
\(157\) 3067.73 1.55944 0.779719 0.626130i \(-0.215362\pi\)
0.779719 + 0.626130i \(0.215362\pi\)
\(158\) 1291.79i 0.650439i
\(159\) −2862.19 −1.42759
\(160\) −1220.54 −0.603077
\(161\) −1595.87 1275.34i −0.781192 0.624291i
\(162\) 869.000 0.421451
\(163\) 468.000 0.224887 0.112444 0.993658i \(-0.464132\pi\)
0.112444 + 0.993658i \(0.464132\pi\)
\(164\) 514.082i 0.244775i
\(165\) −1108.23 −0.522881
\(166\) 821.896 0.384286
\(167\) 1729.00i 0.801161i −0.916262 0.400580i \(-0.868809\pi\)
0.916262 0.400580i \(-0.131191\pi\)
\(168\) −976.846 + 1292.18i −0.448603 + 0.593414i
\(169\) 1321.53 0.601515
\(170\) 57.4716 0.0259287
\(171\) 1023.29 0.457621
\(172\) 2590.84i 1.14855i
\(173\) 437.846i 0.192421i 0.995361 + 0.0962105i \(0.0306722\pi\)
−0.995361 + 0.0962105i \(0.969328\pi\)
\(174\) 1332.54i 0.580571i
\(175\) −997.648 754.192i −0.430944 0.325780i
\(176\) 1027.89i 0.440228i
\(177\) −13.7731 −0.00584887
\(178\) −97.4088 −0.0410174
\(179\) 860.000 0.359103 0.179551 0.983749i \(-0.442535\pi\)
0.179551 + 0.983749i \(0.442535\pi\)
\(180\) 371.469 0.153820
\(181\) 3139.25 1.28916 0.644582 0.764535i \(-0.277031\pi\)
0.644582 + 0.764535i \(0.277031\pi\)
\(182\) 330.458 437.132i 0.134589 0.178035i
\(183\) 2456.27i 0.992200i
\(184\) −1653.96 44.5234i −0.662673 0.0178387i
\(185\) 2760.88i 1.09721i
\(186\) −1649.70 −0.650332
\(187\) 190.059i 0.0743236i
\(188\) 3123.31i 1.21165i
\(189\) −1302.46 + 1722.90i −0.501271 + 0.663083i
\(190\) 1108.23 0.423154
\(191\) 2048.57i 0.776068i 0.921645 + 0.388034i \(0.126846\pi\)
−0.921645 + 0.388034i \(0.873154\pi\)
\(192\) 973.769i 0.366019i
\(193\) −1362.30 −0.508086 −0.254043 0.967193i \(-0.581760\pi\)
−0.254043 + 0.967193i \(0.581760\pi\)
\(194\) −1394.76 −0.516176
\(195\) −1307.94 −0.480325
\(196\) −654.699 2310.02i −0.238593 0.841842i
\(197\) 162.227 0.0586710 0.0293355 0.999570i \(-0.490661\pi\)
0.0293355 + 0.999570i \(0.490661\pi\)
\(198\) 175.493i 0.0629887i
\(199\) 3194.32 1.13789 0.568943 0.822377i \(-0.307352\pi\)
0.568943 + 0.822377i \(0.307352\pi\)
\(200\) −1012.93 −0.358123
\(201\) 2792.96 0.980099
\(202\) 1219.10i 0.424632i
\(203\) 3376.22 + 2552.32i 1.16731 + 0.882453i
\(204\) 309.431i 0.106199i
\(205\) 556.751i 0.189684i
\(206\) −66.0834 −0.0223507
\(207\) 771.849 + 20.7776i 0.259165 + 0.00697654i
\(208\) 1213.12i 0.404399i
\(209\) 3664.92i 1.21296i
\(210\) 493.699 653.067i 0.162231 0.214599i
\(211\) 611.397 0.199480 0.0997401 0.995014i \(-0.468199\pi\)
0.0997401 + 0.995014i \(0.468199\pi\)
\(212\) 3436.03i 1.11315i
\(213\) 3618.27i 1.16394i
\(214\) 1177.67i 0.376188i
\(215\) 2805.89i 0.890046i
\(216\) 1749.29i 0.551036i
\(217\) 3159.81 4179.81i 0.988487 1.30758i
\(218\) 13.1975i 0.00410023i
\(219\) −783.397 −0.241722
\(220\) 1330.42i 0.407712i
\(221\) 224.310i 0.0682746i
\(222\) 2123.54 0.641994
\(223\) 3794.11i 1.13934i −0.821874 0.569669i \(-0.807071\pi\)
0.821874 0.569669i \(-0.192929\pi\)
\(224\) −2378.58 1798.13i −0.709488 0.536351i
\(225\) 472.699 0.140059
\(226\) 2061.08i 0.606641i
\(227\) −1350.56 −0.394890 −0.197445 0.980314i \(-0.563264\pi\)
−0.197445 + 0.980314i \(0.563264\pi\)
\(228\) 5966.77i 1.73315i
\(229\) −915.013 −0.264043 −0.132021 0.991247i \(-0.542147\pi\)
−0.132021 + 0.991247i \(0.542147\pi\)
\(230\) 835.913 + 22.5022i 0.239646 + 0.00645108i
\(231\) −2159.70 1632.67i −0.615142 0.465028i
\(232\) 3427.93 0.970062
\(233\) −2132.30 −0.599535 −0.299768 0.954012i \(-0.596909\pi\)
−0.299768 + 0.954012i \(0.596909\pi\)
\(234\) 207.119i 0.0578622i
\(235\) 3382.55i 0.938950i
\(236\) 16.5345i 0.00456060i
\(237\) 7532.37 2.06447
\(238\) 112.000 + 84.6686i 0.0305037 + 0.0230599i
\(239\) 6507.93 1.76135 0.880675 0.473721i \(-0.157089\pi\)
0.880675 + 0.473721i \(0.157089\pi\)
\(240\) 1812.38i 0.487454i
\(241\) 1227.98 0.328221 0.164110 0.986442i \(-0.447525\pi\)
0.164110 + 0.986442i \(0.447525\pi\)
\(242\) −702.472 −0.186597
\(243\) 1918.38i 0.506438i
\(244\) −2948.73 −0.773659
\(245\) 709.039 + 2501.75i 0.184893 + 0.652371i
\(246\) 428.227 0.110987
\(247\) 4325.37i 1.11424i
\(248\) 4243.81i 1.08662i
\(249\) 4792.43i 1.21971i
\(250\) 1459.56 0.369242
\(251\) −5328.73 −1.34003 −0.670013 0.742349i \(-0.733712\pi\)
−0.670013 + 0.742349i \(0.733712\pi\)
\(252\) 723.915 + 547.257i 0.180962 + 0.136802i
\(253\) 74.4149 2764.37i 0.0184918 0.686936i
\(254\) −1212.23 −0.299456
\(255\) 335.114i 0.0822968i
\(256\) −119.000 −0.0290527
\(257\) 2865.15i 0.695422i −0.937602 0.347711i \(-0.886959\pi\)
0.937602 0.347711i \(-0.113041\pi\)
\(258\) 2158.16 0.520779
\(259\) −4067.40 + 5380.37i −0.975814 + 1.29081i
\(260\) 1570.17i 0.374529i
\(261\) −1599.70 −0.379383
\(262\) 2309.78i 0.544650i
\(263\) 2875.20i 0.674117i −0.941484 0.337058i \(-0.890568\pi\)
0.941484 0.337058i \(-0.109432\pi\)
\(264\) −2192.77 −0.511196
\(265\) 3721.22i 0.862614i
\(266\) 2159.70 + 1632.67i 0.497818 + 0.376335i
\(267\) 567.986i 0.130188i
\(268\) 3352.92i 0.764224i
\(269\) 474.863i 0.107632i −0.998551 0.0538158i \(-0.982862\pi\)
0.998551 0.0538158i \(-0.0171384\pi\)
\(270\) 884.090i 0.199274i
\(271\) 2582.92i 0.578971i 0.957182 + 0.289485i \(0.0934842\pi\)
−0.957182 + 0.289485i \(0.906516\pi\)
\(272\) −310.821 −0.0692879
\(273\) −2548.89 1926.89i −0.565077 0.427181i
\(274\) 1802.42i 0.397403i
\(275\) 1692.97i 0.371236i
\(276\) −121.153 + 4500.62i −0.0264223 + 0.981541i
\(277\) 1703.70 0.369550 0.184775 0.982781i \(-0.440844\pi\)
0.184775 + 0.982781i \(0.440844\pi\)
\(278\) 1297.79i 0.279987i
\(279\) 1980.45i 0.424969i
\(280\) 1680.00 + 1270.03i 0.358569 + 0.271067i
\(281\) 2425.21i 0.514861i −0.966297 0.257431i \(-0.917124\pi\)
0.966297 0.257431i \(-0.0828759\pi\)
\(282\) −2601.70 −0.549393
\(283\) 3520.73 0.739526 0.369763 0.929126i \(-0.379439\pi\)
0.369763 + 0.929126i \(0.379439\pi\)
\(284\) −4343.70 −0.907574
\(285\) 6462.02i 1.34308i
\(286\) 741.794 0.153368
\(287\) −820.219 + 1084.99i −0.168697 + 0.223153i
\(288\) 1127.00 0.230587
\(289\) −4855.53 −0.988302
\(290\) −1732.47 −0.350808
\(291\) 8132.79i 1.63833i
\(292\) 940.460i 0.188480i
\(293\) 3087.47 0.615604 0.307802 0.951450i \(-0.400407\pi\)
0.307802 + 0.951450i \(0.400407\pi\)
\(294\) 1924.23 545.359i 0.381712 0.108184i
\(295\) 17.9068i 0.00353416i
\(296\) 5462.76i 1.07269i
\(297\) −2923.69 −0.571212
\(298\) 1467.28i 0.285227i
\(299\) 87.8251 3262.54i 0.0169868 0.631028i
\(300\) 2756.28i 0.530447i
\(301\) −4133.70 + 5468.07i −0.791570 + 1.04709i
\(302\) −191.699 −0.0365265
\(303\) 7108.53 1.34777
\(304\) −5993.57 −1.13077
\(305\) 3193.47 0.599533
\(306\) −53.0670 −0.00991386
\(307\) 1207.49i 0.224478i −0.993681 0.112239i \(-0.964198\pi\)
0.993681 0.112239i \(-0.0358023\pi\)
\(308\) 1960.00 2592.70i 0.362602 0.479651i
\(309\) 385.329i 0.0709405i
\(310\) 2144.83i 0.392961i
\(311\) 4470.50i 0.815109i −0.913181 0.407555i \(-0.866382\pi\)
0.913181 0.407555i \(-0.133618\pi\)
\(312\) −2587.93 −0.469591
\(313\) −1780.39 −0.321513 −0.160757 0.986994i \(-0.551393\pi\)
−0.160757 + 0.986994i \(0.551393\pi\)
\(314\) −3067.73 −0.551345
\(315\) −784.000 592.680i −0.140233 0.106012i
\(316\) 9042.54i 1.60976i
\(317\) −3.92543 −0.000695502 −0.000347751 1.00000i \(-0.500111\pi\)
−0.000347751 1.00000i \(0.500111\pi\)
\(318\) 2862.19 0.504728
\(319\) 5729.31i 1.00558i
\(320\) −1266.03 −0.221166
\(321\) −6866.96 −1.19401
\(322\) 1595.87 + 1275.34i 0.276193 + 0.220720i
\(323\) 1108.23 0.190908
\(324\) 6083.00 1.04304
\(325\) 1998.05i 0.341022i
\(326\) −468.000 −0.0795096
\(327\) 76.9543 0.0130140
\(328\) 1101.60i 0.185445i
\(329\) 4983.25 6591.87i 0.835063 1.10463i
\(330\) 1108.23 0.184866
\(331\) −3907.40 −0.648852 −0.324426 0.945911i \(-0.605171\pi\)
−0.324426 + 0.945911i \(0.605171\pi\)
\(332\) 5753.27 0.951059
\(333\) 2549.29i 0.419520i
\(334\) 1729.00i 0.283253i
\(335\) 3631.21i 0.592222i
\(336\) −2670.05 + 3531.95i −0.433521 + 0.573463i
\(337\) 5863.94i 0.947861i −0.880562 0.473930i \(-0.842835\pi\)
0.880562 0.473930i \(-0.157165\pi\)
\(338\) −1321.53 −0.212668
\(339\) −12018.0 −1.92546
\(340\) 402.301 0.0641702
\(341\) 7092.96 1.12641
\(342\) −1023.29 −0.161793
\(343\) −2303.87 + 5919.95i −0.362674 + 0.931916i
\(344\) 5551.81i 0.870155i
\(345\) 131.209 4874.17i 0.0204755 0.760628i
\(346\) 437.846i 0.0680311i
\(347\) 413.964 0.0640426 0.0320213 0.999487i \(-0.489806\pi\)
0.0320213 + 0.999487i \(0.489806\pi\)
\(348\) 9327.77i 1.43684i
\(349\) 1650.11i 0.253090i 0.991961 + 0.126545i \(0.0403889\pi\)
−0.991961 + 0.126545i \(0.959611\pi\)
\(350\) 997.648 + 754.192i 0.152362 + 0.115181i
\(351\) −3450.57 −0.524723
\(352\) 4036.35i 0.611187i
\(353\) 10368.9i 1.56340i 0.623656 + 0.781699i \(0.285646\pi\)
−0.623656 + 0.781699i \(0.714354\pi\)
\(354\) 13.7731 0.00206789
\(355\) 4704.23 0.703309
\(356\) −681.862 −0.101513
\(357\) 493.699 653.067i 0.0731913 0.0968178i
\(358\) −860.000 −0.126962
\(359\) 13193.7i 1.93966i 0.243777 + 0.969831i \(0.421613\pi\)
−0.243777 + 0.969831i \(0.578387\pi\)
\(360\) −796.006 −0.116537
\(361\) 14511.0 2.11561
\(362\) −3139.25 −0.455788
\(363\) 4096.08i 0.592254i
\(364\) 2313.21 3059.92i 0.333091 0.440614i
\(365\) 1018.52i 0.146060i
\(366\) 2456.27i 0.350796i
\(367\) 880.826 0.125283 0.0626414 0.998036i \(-0.480048\pi\)
0.0626414 + 0.998036i \(0.480048\pi\)
\(368\) −4520.83 121.697i −0.640393 0.0172389i
\(369\) 514.082i 0.0725259i
\(370\) 2760.88i 0.387923i
\(371\) −5482.19 + 7251.87i −0.767173 + 1.01482i
\(372\) −11547.9 −1.60949
\(373\) 5673.82i 0.787613i 0.919193 + 0.393806i \(0.128842\pi\)
−0.919193 + 0.393806i \(0.871158\pi\)
\(374\) 190.059i 0.0262774i
\(375\) 8510.62i 1.17196i
\(376\) 6692.81i 0.917967i
\(377\) 6761.78i 0.923739i
\(378\) 1302.46 1722.90i 0.177226 0.234435i
\(379\) 4923.08i 0.667234i 0.942709 + 0.333617i \(0.108269\pi\)
−0.942709 + 0.333617i \(0.891731\pi\)
\(380\) 7757.59 1.04725
\(381\) 7068.44i 0.950465i
\(382\) 2048.57i 0.274382i
\(383\) −7135.01 −0.951912 −0.475956 0.879469i \(-0.657898\pi\)
−0.475956 + 0.879469i \(0.657898\pi\)
\(384\) 8484.04i 1.12747i
\(385\) −2122.68 + 2807.89i −0.280992 + 0.371697i
\(386\) 1362.30 0.179636
\(387\) 2590.84i 0.340310i
\(388\) −9763.33 −1.27747
\(389\) 944.681i 0.123129i 0.998103 + 0.0615646i \(0.0196090\pi\)
−0.998103 + 0.0615646i \(0.980391\pi\)
\(390\) 1307.94 0.169821
\(391\) 835.913 + 22.5022i 0.108118 + 0.00291044i
\(392\) 1402.93 + 4950.03i 0.180761 + 0.637792i
\(393\) −13468.2 −1.72870
\(394\) −162.227 −0.0207433
\(395\) 9793.08i 1.24745i
\(396\) 1228.45i 0.155889i
\(397\) 11701.1i 1.47925i −0.673019 0.739625i \(-0.735003\pi\)
0.673019 0.739625i \(-0.264997\pi\)
\(398\) −3194.32 −0.402304
\(399\) 9520.00 12593.1i 1.19448 1.58006i
\(400\) −2768.66 −0.346083
\(401\) 12453.4i 1.55086i −0.631436 0.775428i \(-0.717534\pi\)
0.631436 0.775428i \(-0.282466\pi\)
\(402\) −2792.96 −0.346517
\(403\) 8371.17 1.03473
\(404\) 8533.72i 1.05091i
\(405\) −6587.89 −0.808284
\(406\) −3376.22 2552.32i −0.412707 0.311994i
\(407\) −9130.27 −1.11197
\(408\) 663.067i 0.0804576i
\(409\) 8706.33i 1.05257i −0.850309 0.526284i \(-0.823585\pi\)
0.850309 0.526284i \(-0.176415\pi\)
\(410\) 556.751i 0.0670634i
\(411\) −10509.9 −1.26134
\(412\) −462.584 −0.0553153
\(413\) −26.3808 + 34.8966i −0.00314313 + 0.00415775i
\(414\) −771.849 20.7776i −0.0916288 0.00246658i
\(415\) −6230.79 −0.737006
\(416\) 4763.73i 0.561445i
\(417\) 7567.36 0.888670
\(418\) 3664.92i 0.428845i
\(419\) 5236.04 0.610495 0.305248 0.952273i \(-0.401261\pi\)
0.305248 + 0.952273i \(0.401261\pi\)
\(420\) 3455.89 4571.47i 0.401500 0.531106i
\(421\) 4164.30i 0.482080i −0.970515 0.241040i \(-0.922512\pi\)
0.970515 0.241040i \(-0.0774884\pi\)
\(422\) −611.397 −0.0705269
\(423\) 3123.31i 0.359009i
\(424\) 7362.92i 0.843337i
\(425\) 511.933 0.0584292
\(426\) 3618.27i 0.411516i
\(427\) 6223.40 + 4704.70i 0.705319 + 0.533200i
\(428\) 8243.72i 0.931017i
\(429\) 4325.37i 0.486785i
\(430\) 2805.89i 0.314679i
\(431\) 7842.44i 0.876467i 0.898861 + 0.438233i \(0.144396\pi\)
−0.898861 + 0.438233i \(0.855604\pi\)
\(432\) 4781.38i 0.532510i
\(433\) 11121.6 1.23434 0.617172 0.786828i \(-0.288278\pi\)
0.617172 + 0.786828i \(0.288278\pi\)
\(434\) −3159.81 + 4179.81i −0.349483 + 0.462298i
\(435\) 10102.0i 1.11345i
\(436\) 92.3828i 0.0101476i
\(437\) 16118.9 + 433.910i 1.76447 + 0.0474982i
\(438\) 783.397 0.0854616
\(439\) 12715.6i 1.38242i 0.722652 + 0.691212i \(0.242923\pi\)
−0.722652 + 0.691212i \(0.757077\pi\)
\(440\) 2850.89i 0.308888i
\(441\) −654.699 2310.02i −0.0706942 0.249435i
\(442\) 224.310i 0.0241387i
\(443\) 7266.19 0.779294 0.389647 0.920964i \(-0.372597\pi\)
0.389647 + 0.920964i \(0.372597\pi\)
\(444\) 14864.8 1.58885
\(445\) 738.457 0.0786657
\(446\) 3794.11i 0.402817i
\(447\) 8555.67 0.905300
\(448\) −2467.22 1865.14i −0.260190 0.196696i
\(449\) −12977.6 −1.36403 −0.682016 0.731337i \(-0.738897\pi\)
−0.682016 + 0.731337i \(0.738897\pi\)
\(450\) −472.699 −0.0495183
\(451\) −1841.18 −0.192235
\(452\) 14427.5i 1.50136i
\(453\) 1117.78i 0.115934i
\(454\) 1350.56 0.139615
\(455\) −2505.21 + 3313.90i −0.258123 + 0.341446i
\(456\) 12785.9i 1.31306i
\(457\) 4692.25i 0.480294i −0.970737 0.240147i \(-0.922804\pi\)
0.970737 0.240147i \(-0.0771956\pi\)
\(458\) 915.013 0.0933532
\(459\) 884.090i 0.0899036i
\(460\) 5851.39 + 157.515i 0.593093 + 0.0159656i
\(461\) 14205.6i 1.43519i −0.696463 0.717593i \(-0.745244\pi\)
0.696463 0.717593i \(-0.254756\pi\)
\(462\) 2159.70 + 1632.67i 0.217485 + 0.164412i
\(463\) −2991.10 −0.300233 −0.150117 0.988668i \(-0.547965\pi\)
−0.150117 + 0.988668i \(0.547965\pi\)
\(464\) 9369.66 0.937448
\(465\) 12506.4 1.24725
\(466\) 2132.30 0.211968
\(467\) 15997.6 1.58519 0.792594 0.609750i \(-0.208730\pi\)
0.792594 + 0.609750i \(0.208730\pi\)
\(468\) 1449.83i 0.143202i
\(469\) 5349.59 7076.46i 0.526697 0.696718i
\(470\) 3382.55i 0.331969i
\(471\) 17887.8i 1.74995i
\(472\) 35.4310i 0.00345518i
\(473\) −9279.10 −0.902015
\(474\) −7532.37 −0.729902
\(475\) 9871.61 0.953559
\(476\) 784.000 + 592.680i 0.0754928 + 0.0570703i
\(477\) 3436.03i 0.329822i
\(478\) −6507.93 −0.622731
\(479\) 4369.81 0.416830 0.208415 0.978040i \(-0.433170\pi\)
0.208415 + 0.978040i \(0.433170\pi\)
\(480\) 7116.92i 0.676753i
\(481\) −10775.6 −1.02147
\(482\) −1227.98 −0.116043
\(483\) 7436.44 9305.42i 0.700559 0.876628i
\(484\) −4917.30 −0.461805
\(485\) 10573.7 0.989952
\(486\) 1918.38i 0.179053i
\(487\) 1421.59 0.132276 0.0661379 0.997810i \(-0.478932\pi\)
0.0661379 + 0.997810i \(0.478932\pi\)
\(488\) 6318.70 0.586135
\(489\) 2728.89i 0.252361i
\(490\) −709.039 2501.75i −0.0653696 0.230648i
\(491\) −398.567 −0.0366336 −0.0183168 0.999832i \(-0.505831\pi\)
−0.0183168 + 0.999832i \(0.505831\pi\)
\(492\) 2997.59 0.274678
\(493\) −1732.47 −0.158269
\(494\) 4325.37i 0.393942i
\(495\) 1330.42i 0.120803i
\(496\) 11599.8i 1.05009i
\(497\) 9167.54 + 6930.38i 0.827405 + 0.625493i
\(498\) 4792.43i 0.431233i
\(499\) −16817.0 −1.50868 −0.754340 0.656484i \(-0.772043\pi\)
−0.754340 + 0.656484i \(0.772043\pi\)
\(500\) 10216.9 0.913828
\(501\) 10081.7 0.899036
\(502\) 5328.73 0.473771
\(503\) −16220.2 −1.43782 −0.718910 0.695103i \(-0.755359\pi\)
−0.718910 + 0.695103i \(0.755359\pi\)
\(504\) −1551.25 1172.69i −0.137099 0.103643i
\(505\) 9242.02i 0.814385i
\(506\) −74.4149 + 2764.37i −0.00653784 + 0.242868i
\(507\) 7705.77i 0.675000i
\(508\) −8485.59 −0.741116
\(509\) 10924.1i 0.951280i 0.879640 + 0.475640i \(0.157784\pi\)
−0.879640 + 0.475640i \(0.842216\pi\)
\(510\) 335.114i 0.0290963i
\(511\) −1500.51 + 1984.88i −0.129899 + 0.171831i
\(512\) −11521.0 −0.994455
\(513\) 17047.9i 1.46722i
\(514\) 2865.15i 0.245869i
\(515\) 500.979 0.0428656
\(516\) 15107.1 1.28886
\(517\) 11186.1 0.951577
\(518\) 4067.40 5380.37i 0.345002 0.456371i
\(519\) −2553.06 −0.215929
\(520\) 3364.64i 0.283749i
\(521\) −21961.9 −1.84677 −0.923386 0.383874i \(-0.874590\pi\)
−0.923386 + 0.383874i \(0.874590\pi\)
\(522\) 1599.70 0.134132
\(523\) 2025.70 0.169365 0.0846824 0.996408i \(-0.473012\pi\)
0.0846824 + 0.996408i \(0.473012\pi\)
\(524\) 16168.4i 1.34794i
\(525\) 4397.66 5817.24i 0.365580 0.483591i
\(526\) 2875.20i 0.238336i
\(527\) 2144.83i 0.177287i
\(528\) −5993.57 −0.494009
\(529\) 12149.4 + 654.579i 0.998552 + 0.0537995i
\(530\) 3721.22i 0.304980i
\(531\) 16.5345i 0.00135129i
\(532\) 15117.9 + 11428.7i 1.23204 + 0.931383i
\(533\) −2172.98 −0.176589
\(534\) 567.986i 0.0460284i
\(535\) 8927.95i 0.721475i
\(536\) 7184.82i 0.578987i
\(537\) 5014.62i 0.402973i
\(538\) 474.863i 0.0380535i
\(539\) −8273.31 + 2344.80i −0.661144 + 0.187380i
\(540\) 6188.63i 0.493178i
\(541\) −2406.49 −0.191244 −0.0956222 0.995418i \(-0.530484\pi\)
−0.0956222 + 0.995418i \(0.530484\pi\)
\(542\) 2582.92i 0.204697i
\(543\) 18304.8i 1.44666i
\(544\) 1220.54 0.0961954
\(545\) 100.051i 0.00786367i
\(546\) 2548.89 + 1926.89i 0.199785 + 0.151031i
\(547\) −5767.17 −0.450798 −0.225399 0.974267i \(-0.572369\pi\)
−0.225399 + 0.974267i \(0.572369\pi\)
\(548\) 12617.0i 0.983522i
\(549\) −2948.73 −0.229232
\(550\) 1692.97i 0.131252i
\(551\) −33407.3 −2.58294
\(552\) 259.614 9644.18i 0.0200180 0.743629i
\(553\) 14427.4 19084.6i 1.10943 1.46756i
\(554\) −1703.70 −0.130656
\(555\) −16098.6 −1.23125
\(556\) 9084.54i 0.692932i
\(557\) 4692.01i 0.356924i −0.983947 0.178462i \(-0.942888\pi\)
0.983947 0.178462i \(-0.0571122\pi\)
\(558\) 1980.45i 0.150249i
\(559\) −10951.3 −0.828603
\(560\) 4592.00 + 3471.41i 0.346513 + 0.261953i
\(561\) 1108.23 0.0834035
\(562\) 2425.21i 0.182031i
\(563\) −8023.56 −0.600627 −0.300313 0.953841i \(-0.597091\pi\)
−0.300313 + 0.953841i \(0.597091\pi\)
\(564\) −18211.9 −1.35968
\(565\) 15625.0i 1.16345i
\(566\) −3520.73 −0.261462
\(567\) −12838.4 9705.44i −0.950903 0.718854i
\(568\) 9307.93 0.687591
\(569\) 14820.7i 1.09195i 0.837803 + 0.545973i \(0.183840\pi\)
−0.837803 + 0.545973i \(0.816160\pi\)
\(570\) 6462.02i 0.474849i
\(571\) 18211.0i 1.33469i −0.744751 0.667343i \(-0.767432\pi\)
0.744751 0.667343i \(-0.232568\pi\)
\(572\) 5192.56 0.379566
\(573\) −11945.1 −0.870878
\(574\) 820.219 1084.99i 0.0596434 0.0788965i
\(575\) 7445.96 + 200.440i 0.540031 + 0.0145372i
\(576\) 1169.00 0.0845631
\(577\) 6462.45i 0.466266i −0.972445 0.233133i \(-0.925102\pi\)
0.972445 0.233133i \(-0.0748977\pi\)
\(578\) 4855.53 0.349418
\(579\) 7943.51i 0.570157i
\(580\) −12127.3 −0.868206
\(581\) −12142.5 9179.36i −0.867049 0.655463i
\(582\) 8132.79i 0.579235i
\(583\) −12306.1 −0.874215
\(584\) 2015.27i 0.142795i
\(585\) 1570.17i 0.110972i
\(586\) −3087.47 −0.217649
\(587\) 10364.3i 0.728755i 0.931251 + 0.364378i \(0.118718\pi\)
−0.931251 + 0.364378i \(0.881282\pi\)
\(588\) 13469.6 3817.52i 0.944688 0.267741i
\(589\) 41358.7i 2.89330i
\(590\) 17.9068i 0.00124951i
\(591\) 945.937i 0.0658387i
\(592\) 14931.5i 1.03663i
\(593\) 10090.1i 0.698740i 0.936985 + 0.349370i \(0.113604\pi\)
−0.936985 + 0.349370i \(0.886396\pi\)
\(594\) 2923.69 0.201954
\(595\) −849.073 641.873i −0.0585018 0.0442256i
\(596\) 10271.0i 0.705900i
\(597\) 18625.9i 1.27690i
\(598\) −87.8251 + 3262.54i −0.00600574 + 0.223102i
\(599\) 14449.4 0.985618 0.492809 0.870138i \(-0.335970\pi\)
0.492809 + 0.870138i \(0.335970\pi\)
\(600\) 5906.32i 0.401874i
\(601\) 6654.20i 0.451631i −0.974170 0.225816i \(-0.927495\pi\)
0.974170 0.225816i \(-0.0725047\pi\)
\(602\) 4133.70 5468.07i 0.279862 0.370203i
\(603\) 3352.92i 0.226437i
\(604\) −1341.89 −0.0903985
\(605\) 5325.44 0.357868
\(606\) −7108.53 −0.476509
\(607\) 9827.99i 0.657176i 0.944473 + 0.328588i \(0.106573\pi\)
−0.944473 + 0.328588i \(0.893427\pi\)
\(608\) 23535.7 1.56990
\(609\) −14882.5 + 19686.6i −0.990260 + 1.30992i
\(610\) −3193.47 −0.211967
\(611\) 13202.0 0.874131
\(612\) −371.469 −0.0245355
\(613\) 8922.39i 0.587882i −0.955824 0.293941i \(-0.905033\pi\)
0.955824 0.293941i \(-0.0949670\pi\)
\(614\) 1207.49i 0.0793651i
\(615\) −3246.39 −0.212857
\(616\) −4200.00 + 5555.78i −0.274712 + 0.363391i
\(617\) 4906.06i 0.320114i −0.987108 0.160057i \(-0.948832\pi\)
0.987108 0.160057i \(-0.0511678\pi\)
\(618\) 385.329i 0.0250813i
\(619\) −15023.8 −0.975540 −0.487770 0.872972i \(-0.662189\pi\)
−0.487770 + 0.872972i \(0.662189\pi\)
\(620\) 15013.8i 0.972529i
\(621\) 346.152 12858.9i 0.0223681 0.830934i
\(622\) 4470.50i 0.288185i
\(623\) 1439.10 + 1087.91i 0.0925460 + 0.0699620i
\(624\) −7073.66 −0.453803
\(625\) −2623.88 −0.167928
\(626\) 1780.39 0.113672
\(627\) 21370.0 1.36114
\(628\) −21474.1 −1.36451
\(629\) 2760.88i 0.175014i
\(630\) 784.000 + 592.680i 0.0495799 + 0.0374809i
\(631\) 10274.9i 0.648235i −0.946017 0.324117i \(-0.894933\pi\)
0.946017 0.324117i \(-0.105067\pi\)
\(632\) 19376.9i 1.21957i
\(633\) 3565.03i 0.223850i
\(634\) 3.92543 0.000245897
\(635\) 9189.90 0.574315
\(636\) 20035.3 1.24914
\(637\) −9764.23 + 2767.35i −0.607336 + 0.172129i
\(638\) 5729.31i 0.355526i
\(639\) −4343.70 −0.268911
\(640\) 11030.4 0.681271
\(641\) 327.338i 0.0201702i 0.999949 + 0.0100851i \(0.00321024\pi\)
−0.999949 + 0.0100851i \(0.996790\pi\)
\(642\) 6866.96 0.422145
\(643\) −29865.4 −1.83169 −0.915846 0.401529i \(-0.868479\pi\)
−0.915846 + 0.401529i \(0.868479\pi\)
\(644\) 11171.1 + 8927.38i 0.683543 + 0.546255i
\(645\) −16361.0 −0.998780
\(646\) −1108.23 −0.0674963
\(647\) 31588.3i 1.91942i −0.280998 0.959708i \(-0.590665\pi\)
0.280998 0.959708i \(-0.409335\pi\)
\(648\) −13035.0 −0.790221
\(649\) −59.2181 −0.00358169
\(650\) 1998.05i 0.120569i
\(651\) 24372.3 + 18424.7i 1.46732 + 1.10925i
\(652\) −3276.00 −0.196776
\(653\) −15080.2 −0.903727 −0.451863 0.892087i \(-0.649241\pi\)
−0.451863 + 0.892087i \(0.649241\pi\)
\(654\) −76.9543 −0.00460115
\(655\) 17510.4i 1.04456i
\(656\) 3011.05i 0.179210i
\(657\) 940.460i 0.0558461i
\(658\) −4983.25 + 6591.87i −0.295239 + 0.390544i
\(659\) 3803.45i 0.224828i −0.993661 0.112414i \(-0.964142\pi\)
0.993661 0.112414i \(-0.0358582\pi\)
\(660\) 7757.59 0.457521
\(661\) −4680.05 −0.275390 −0.137695 0.990475i \(-0.543969\pi\)
−0.137695 + 0.990475i \(0.543969\pi\)
\(662\) 3907.40 0.229404
\(663\) 1307.94 0.0766156
\(664\) −12328.4 −0.720536
\(665\) −16372.7 12377.3i −0.954745 0.721758i
\(666\) 2549.29i 0.148323i
\(667\) −25198.5 678.325i −1.46280 0.0393776i
\(668\) 12103.0i 0.701015i
\(669\) 22123.3 1.27853
\(670\) 3631.21i 0.209382i
\(671\) 10560.8i 0.607596i
\(672\) 10484.8 13869.4i 0.601876 0.796164i
\(673\) 11137.4 0.637915 0.318957 0.947769i \(-0.396667\pi\)
0.318957 + 0.947769i \(0.396667\pi\)
\(674\) 5863.94i 0.335119i
\(675\) 7875.09i 0.449055i
\(676\) −9250.70 −0.526326
\(677\) 12749.4 0.723780 0.361890 0.932221i \(-0.382132\pi\)
0.361890 + 0.932221i \(0.382132\pi\)
\(678\) 12018.0 0.680752
\(679\) 20605.9 + 15577.4i 1.16463 + 0.880422i
\(680\) −862.075 −0.0486163
\(681\) 7875.07i 0.443133i
\(682\) −7092.96 −0.398246
\(683\) 19985.6 1.11966 0.559830 0.828608i \(-0.310867\pi\)
0.559830 + 0.828608i \(0.310867\pi\)
\(684\) −7163.05 −0.400418
\(685\) 13664.2i 0.762163i
\(686\) 2303.87 5919.95i 0.128225 0.329482i
\(687\) 5335.40i 0.296300i
\(688\) 15174.9i 0.840900i
\(689\) −14523.8 −0.803065
\(690\) −131.209 + 4874.17i −0.00723919 + 0.268922i
\(691\) 8712.85i 0.479670i 0.970814 + 0.239835i \(0.0770934\pi\)
−0.970814 + 0.239835i \(0.922907\pi\)
\(692\) 3064.92i 0.168368i
\(693\) 1960.00 2592.70i 0.107438 0.142119i
\(694\) −413.964 −0.0226425
\(695\) 9838.57i 0.536976i
\(696\) 19988.1i 1.08857i
\(697\) 556.751i 0.0302560i
\(698\) 1650.11i 0.0894810i
\(699\) 12433.3i 0.672779i
\(700\) 6983.54 + 5279.34i 0.377076 + 0.285058i
\(701\) 11693.5i 0.630038i 0.949085 + 0.315019i \(0.102011\pi\)
−0.949085 + 0.315019i \(0.897989\pi\)
\(702\) 3450.57 0.185517
\(703\) 53238.1i 2.85621i
\(704\) 4186.77i 0.224140i
\(705\) 19723.5 1.05366
\(706\) 10368.9i 0.552744i
\(707\) 13615.6 18010.7i 0.724280 0.958081i
\(708\) 96.4117 0.00511776
\(709\) 12250.5i 0.648911i 0.945901 + 0.324456i \(0.105181\pi\)
−0.945901 + 0.324456i \(0.894819\pi\)
\(710\) −4704.23 −0.248657
\(711\) 9042.54i 0.476964i
\(712\) 1461.13 0.0769077
\(713\) −839.774 + 31196.0i −0.0441091 + 1.63857i
\(714\) −493.699 + 653.067i −0.0258770 + 0.0342303i
\(715\) −5623.55 −0.294138
\(716\) −6020.00 −0.314215
\(717\) 37947.4i 1.97653i
\(718\) 13193.7i 0.685774i
\(719\) 17012.4i 0.882416i −0.897405 0.441208i \(-0.854550\pi\)
0.897405 0.441208i \(-0.145450\pi\)
\(720\) −2175.75 −0.112619
\(721\) 976.301 + 738.054i 0.0504291 + 0.0381229i
\(722\) −14511.0 −0.747981
\(723\) 7160.29i 0.368318i
\(724\) −21974.8 −1.12802
\(725\) −15432.1 −0.790532
\(726\) 4096.08i 0.209394i
\(727\) −25516.2 −1.30171 −0.650856 0.759201i \(-0.725590\pi\)
−0.650856 + 0.759201i \(0.725590\pi\)
\(728\) −4956.87 + 6556.98i −0.252354 + 0.333815i
\(729\) −12277.0 −0.623736
\(730\) 1018.52i 0.0516399i
\(731\) 2805.89i 0.141969i
\(732\) 17193.9i 0.868175i
\(733\) −5141.78 −0.259094 −0.129547 0.991573i \(-0.541352\pi\)
−0.129547 + 0.991573i \(0.541352\pi\)
\(734\) −880.826 −0.0442941
\(735\) −14587.6 + 4134.37i −0.732069 + 0.207481i
\(736\) 17752.5 + 477.885i 0.889086 + 0.0239335i
\(737\) 12008.5 0.600186
\(738\) 514.082i 0.0256418i
\(739\) 8901.81 0.443110 0.221555 0.975148i \(-0.428887\pi\)
0.221555 + 0.975148i \(0.428887\pi\)
\(740\) 19326.2i 0.960060i
\(741\) 25221.0 1.25036
\(742\) 5482.19 7251.87i 0.271237 0.358793i
\(743\) 21134.6i 1.04354i −0.853086 0.521771i \(-0.825272\pi\)
0.853086 0.521771i \(-0.174728\pi\)
\(744\) 24745.5 1.21937
\(745\) 11123.5i 0.547024i
\(746\) 5673.82i 0.278463i
\(747\) 5753.27 0.281795
\(748\) 1330.42i 0.0650332i
\(749\) −13152.9 + 17398.7i −0.641650 + 0.848777i
\(750\) 8510.62i 0.414352i
\(751\) 25277.9i 1.22823i −0.789215 0.614117i \(-0.789512\pi\)
0.789215 0.614117i \(-0.210488\pi\)
\(752\) 18293.7i 0.887104i
\(753\) 31071.6i 1.50373i
\(754\) 6761.78i 0.326591i
\(755\) 1453.27 0.0700527
\(756\) 9117.23 12060.3i 0.438612 0.580198i
\(757\) 18322.8i 0.879726i −0.898065 0.439863i \(-0.855027\pi\)
0.898065 0.439863i \(-0.144973\pi\)
\(758\) 4923.08i 0.235903i
\(759\) 16118.9 + 433.910i 0.770857 + 0.0207509i
\(760\) −16623.4 −0.793413
\(761\) 21176.6i 1.00874i −0.863488 0.504369i \(-0.831725\pi\)
0.863488 0.504369i \(-0.168275\pi\)
\(762\) 7068.44i 0.336040i
\(763\) 147.397 194.977i 0.00699362 0.00925119i
\(764\) 14340.0i 0.679060i
\(765\) 402.301 0.0190134
\(766\) 7135.01 0.336552
\(767\) −69.8897 −0.00329019
\(768\) 693.883i 0.0326020i
\(769\) 3297.17 0.154615 0.0773074 0.997007i \(-0.475368\pi\)
0.0773074 + 0.997007i \(0.475368\pi\)
\(770\) 2122.68 2807.89i 0.0993456 0.131415i
\(771\) 16706.6 0.780379
\(772\) 9536.11 0.444575
\(773\) 10213.9 0.475250 0.237625 0.971357i \(-0.423631\pi\)
0.237625 + 0.971357i \(0.423631\pi\)
\(774\) 2590.84i 0.120318i
\(775\) 19105.2i 0.885521i
\(776\) 20921.4 0.967829
\(777\) −31372.7 23716.8i −1.44851 1.09503i
\(778\) 944.681i 0.0435327i
\(779\) 10735.8i 0.493776i
\(780\) 9155.57 0.420285
\(781\) 15556.9i 0.712767i
\(782\) −835.913 22.5022i −0.0382253 0.00102900i
\(783\) 26650.8i 1.21637i
\(784\) 3834.66 + 13530.1i 0.174684 + 0.616349i
\(785\) 23256.5 1.05740
\(786\) 13468.2 0.611189
\(787\) 32488.8 1.47154 0.735768 0.677233i \(-0.236821\pi\)
0.735768 + 0.677233i \(0.236821\pi\)
\(788\) −1135.59 −0.0513371
\(789\) 16765.2 0.756472
\(790\) 9793.08i 0.441041i
\(791\) −23019.2 + 30449.9i −1.03473 + 1.36874i
\(792\) 2632.40i 0.118104i
\(793\) 12464.0i 0.558146i
\(794\) 11701.1i 0.522994i
\(795\) −21698.3 −0.967997
\(796\) −22360.3 −0.995651
\(797\) 34071.5 1.51427 0.757135 0.653258i \(-0.226598\pi\)
0.757135 + 0.653258i \(0.226598\pi\)
\(798\) −9520.00 + 12593.1i −0.422311 + 0.558635i
\(799\) 3382.55i 0.149770i
\(800\) 10872.1 0.480482
\(801\) −681.862 −0.0300779
\(802\) 12453.4i 0.548310i
\(803\) −3368.25 −0.148024
\(804\) −19550.7 −0.857587
\(805\) −12098.3 9668.36i −0.529699 0.423310i
\(806\) −8371.17 −0.365834
\(807\) 2768.90 0.120781
\(808\) 18286.5i 0.796186i
\(809\) −32073.7 −1.39388 −0.696942 0.717128i \(-0.745456\pi\)
−0.696942 + 0.717128i \(0.745456\pi\)
\(810\) 6587.89 0.285772
\(811\) 6172.70i 0.267266i 0.991031 + 0.133633i \(0.0426643\pi\)
−0.991031 + 0.133633i \(0.957336\pi\)
\(812\) −23633.6 17866.3i −1.02140 0.772146i
\(813\) −15060.9 −0.649702
\(814\) 9130.27 0.393140
\(815\) 3547.91 0.152488
\(816\) 1812.38i 0.0777526i
\(817\) 54106.0i 2.31693i
\(818\) 8706.33i 0.372139i
\(819\) 2313.21 3059.92i 0.0986936 0.130552i
\(820\) 3897.26i 0.165973i
\(821\) 5920.46 0.251675 0.125838 0.992051i \(-0.459838\pi\)
0.125838 + 0.992051i \(0.459838\pi\)
\(822\) 10509.9 0.445953
\(823\) 24605.6 1.04216 0.521080 0.853508i \(-0.325529\pi\)
0.521080 + 0.853508i \(0.325529\pi\)
\(824\) 991.252 0.0419076
\(825\) 9871.61 0.416588
\(826\) 26.3808 34.8966i 0.00111127 0.00146999i
\(827\) 26331.2i 1.10716i 0.832795 + 0.553582i \(0.186739\pi\)
−0.832795 + 0.553582i \(0.813261\pi\)
\(828\) −5402.94 145.443i −0.226770 0.00610447i
\(829\) 25973.6i 1.08818i 0.839027 + 0.544089i \(0.183125\pi\)
−0.839027 + 0.544089i \(0.816875\pi\)
\(830\) 6230.79 0.260571
\(831\) 9934.18i 0.414697i
\(832\) 4941.26i 0.205898i
\(833\) −709.039 2501.75i −0.0294919 0.104058i
\(834\) −7567.36 −0.314192
\(835\) 13107.5i 0.543239i
\(836\) 25654.4i 1.06134i
\(837\) 32994.0 1.36253
\(838\) −5236.04 −0.215843
\(839\) 16769.5 0.690043 0.345022 0.938595i \(-0.387872\pi\)
0.345022 + 0.938595i \(0.387872\pi\)
\(840\) −7405.48 + 9796.00i −0.304182 + 0.402374i
\(841\) 27836.2 1.14134
\(842\) 4164.30i 0.170441i
\(843\) 14141.3 0.577761
\(844\) −4279.78 −0.174545
\(845\) 10018.5 0.407867
\(846\) 3123.31i 0.126929i
\(847\) 10378.2 + 7845.57i 0.421012 + 0.318273i
\(848\) 20125.3i 0.814983i
\(849\) 20529.2i 0.829872i
\(850\) −511.933 −0.0206578
\(851\) 1080.98 40156.5i 0.0435436 1.61756i
\(852\) 25327.9i 1.01845i
\(853\) 24892.5i 0.999182i 0.866261 + 0.499591i \(0.166516\pi\)
−0.866261 + 0.499591i \(0.833484\pi\)
\(854\) −6223.40 4704.70i −0.249368 0.188515i
\(855\) 7757.59 0.310297
\(856\) 17665.1i 0.705352i
\(857\) 33508.2i 1.33561i 0.744337 + 0.667805i \(0.232766\pi\)
−0.744337 + 0.667805i \(0.767234\pi\)
\(858\) 4325.37i 0.172104i
\(859\) 19113.9i 0.759208i −0.925149 0.379604i \(-0.876060\pi\)
0.925149 0.379604i \(-0.123940\pi\)
\(860\) 19641.2i 0.778790i
\(861\) −6326.52 4782.66i −0.250415 0.189306i
\(862\) 7842.44i 0.309878i
\(863\) −19584.8 −0.772507 −0.386253 0.922393i \(-0.626231\pi\)
−0.386253 + 0.922393i \(0.626231\pi\)
\(864\) 18775.7i 0.739307i
\(865\) 3319.31i 0.130474i
\(866\) −11121.6 −0.436407
\(867\) 28312.4i 1.10904i
\(868\) −22118.7 + 29258.7i −0.864926 + 1.14413i
\(869\) 32385.8 1.26423
\(870\) 10102.0i 0.393666i
\(871\) 14172.5 0.551339
\(872\) 197.963i 0.00768794i
\(873\) −9763.33 −0.378510
\(874\) −16118.9 433.910i −0.623834 0.0167932i
\(875\) −21563.2 16301.1i −0.833107 0.629803i
\(876\) 5483.78 0.211507
\(877\) −34485.1 −1.32780 −0.663900 0.747822i \(-0.731100\pi\)
−0.663900 + 0.747822i \(0.731100\pi\)
\(878\) 12715.6i 0.488760i
\(879\) 18002.9i 0.690811i
\(880\) 7792.43i 0.298503i
\(881\) −17772.3 −0.679642 −0.339821 0.940490i \(-0.610366\pi\)
−0.339821 + 0.940490i \(0.610366\pi\)
\(882\) 654.699 + 2310.02i 0.0249942 + 0.0881885i
\(883\) 22103.8 0.842414 0.421207 0.906965i \(-0.361607\pi\)
0.421207 + 0.906965i \(0.361607\pi\)
\(884\) 1570.17i 0.0597403i
\(885\) −104.414 −0.00396592
\(886\) −7266.19 −0.275522
\(887\) 28821.0i 1.09100i 0.838111 + 0.545499i \(0.183660\pi\)
−0.838111 + 0.545499i \(0.816340\pi\)
\(888\) −31853.1 −1.20374
\(889\) 17909.2 + 13538.8i 0.675651 + 0.510772i
\(890\) −738.457 −0.0278125
\(891\) 21786.2i 0.819154i
\(892\) 26558.8i 0.996921i
\(893\) 65225.8i 2.44423i
\(894\) −8555.67 −0.320072
\(895\) 6519.66 0.243495
\(896\) 21495.8 + 16250.2i 0.801479 + 0.605894i
\(897\) 19023.7 + 512.104i 0.708119 + 0.0190620i
\(898\) 12977.6 0.482258
\(899\) 64655.5i 2.39864i
\(900\) −3308.89 −0.122551
\(901\) 3721.22i 0.137594i
\(902\) 1841.18 0.0679653
\(903\) −31884.1 24103.4i −1.17501 0.888273i
\(904\) 30916.2i 1.13745i
\(905\) 23798.7 0.874138
\(906\) 1117.78i 0.0409889i
\(907\) 22509.0i 0.824033i −0.911176 0.412016i \(-0.864825\pi\)
0.911176 0.412016i \(-0.135175\pi\)
\(908\) 9453.94 0.345529
\(909\) 8533.72i 0.311381i
\(910\) 2505.21 3313.90i 0.0912602 0.120719i
\(911\) 29325.6i 1.06652i −0.845951 0.533260i \(-0.820967\pi\)
0.845951 0.533260i \(-0.179033\pi\)
\(912\) 34948.2i 1.26892i
\(913\) 20605.3i 0.746918i
\(914\) 4692.25i 0.169809i
\(915\) 18621.0i 0.672777i
\(916\) 6405.09 0.231037
\(917\) −25796.8 + 34124.1i −0.928991 + 1.22887i
\(918\) 884.090i 0.0317857i
\(919\) 14151.6i 0.507964i 0.967209 + 0.253982i \(0.0817404\pi\)
−0.967209 + 0.253982i \(0.918260\pi\)
\(920\) −12538.7 337.532i −0.449336 0.0120958i
\(921\) 7040.79 0.251902
\(922\) 14205.6i 0.507415i
\(923\) 18360.4i 0.654757i
\(924\) 15117.9 + 11428.7i 0.538249 + 0.406900i
\(925\) 24592.8i 0.874167i
\(926\) 2991.10 0.106148
\(927\) −462.584 −0.0163897
\(928\) −36793.1 −1.30150
\(929\) 8995.32i 0.317682i 0.987304 + 0.158841i \(0.0507758\pi\)
−0.987304 + 0.158841i \(0.949224\pi\)
\(930\) −12506.4 −0.440968
\(931\) −13672.4 48241.3i −0.481305 1.69822i
\(932\) 14926.1 0.524593
\(933\) 26067.3 0.914689
\(934\) −15997.6 −0.560448
\(935\) 1440.84i 0.0503963i
\(936\) 3106.78i 0.108492i
\(937\) 7536.52 0.262761 0.131381 0.991332i \(-0.458059\pi\)
0.131381 + 0.991332i \(0.458059\pi\)
\(938\) −5349.59 + 7076.46i −0.186216 + 0.246327i
\(939\) 10381.4i 0.360792i
\(940\) 23677.9i 0.821581i
\(941\) −23466.9 −0.812965 −0.406483 0.913659i \(-0.633245\pi\)
−0.406483 + 0.913659i \(0.633245\pi\)
\(942\) 17887.8i 0.618701i
\(943\) 217.988 8097.84i 0.00752774 0.279641i
\(944\) 96.8448i 0.00333901i
\(945\) −9873.97 + 13061.3i −0.339894 + 0.449614i
\(946\) 9279.10 0.318911
\(947\) 24319.8 0.834516 0.417258 0.908788i \(-0.362991\pi\)
0.417258 + 0.908788i \(0.362991\pi\)
\(948\) −52726.6 −1.80641
\(949\) −3975.24 −0.135977
\(950\) −9871.61 −0.337134
\(951\) 22.8890i 0.000780469i
\(952\) −1680.00 1270.03i −0.0571944 0.0432373i
\(953\) 6589.85i 0.223994i 0.993709 + 0.111997i \(0.0357247\pi\)
−0.993709 + 0.111997i \(0.964275\pi\)
\(954\) 3436.03i 0.116610i
\(955\) 15530.2i 0.526225i
\(956\) −45555.5 −1.54118
\(957\) −33407.3 −1.12843
\(958\) −4369.81 −0.147372
\(959\) −20130.4 + 26628.6i −0.677836 + 0.896645i
\(960\) 7382.15i 0.248185i
\(961\) −50253.3 −1.68686
\(962\) 10775.6 0.361143
\(963\) 8243.72i 0.275857i
\(964\) −8595.86 −0.287193
\(965\) −10327.6 −0.344516
\(966\) −7436.44 + 9305.42i −0.247685 + 0.309935i
\(967\) 20608.3 0.685335 0.342667 0.939457i \(-0.388670\pi\)
0.342667 + 0.939457i \(0.388670\pi\)
\(968\) 10537.1 0.349870
\(969\) 6462.02i 0.214231i
\(970\) −10573.7 −0.350001
\(971\) 28456.8 0.940497 0.470248 0.882534i \(-0.344164\pi\)
0.470248 + 0.882534i \(0.344164\pi\)
\(972\) 13428.7i 0.443133i
\(973\) 14494.4 19173.3i 0.477564 0.631723i
\(974\) −1421.59 −0.0467666
\(975\) 11650.6 0.382684
\(976\) 17271.1 0.566429
\(977\) 15554.4i 0.509344i −0.967028 0.254672i \(-0.918033\pi\)
0.967028 0.254672i \(-0.0819675\pi\)
\(978\) 2728.89i 0.0892230i
\(979\) 2442.09i 0.0797236i
\(980\) −4963.27 17512.2i −0.161782 0.570824i
\(981\) 92.3828i 0.00300668i
\(982\) 398.567 0.0129519
\(983\) −44671.9 −1.44945 −0.724726 0.689037i \(-0.758034\pi\)
−0.724726 + 0.689037i \(0.758034\pi\)
\(984\) −6423.40 −0.208100
\(985\) 1229.84 0.0397828
\(986\) 1732.47 0.0559566
\(987\) 38436.9 + 29057.1i 1.23957 + 0.937080i
\(988\) 30277.6i 0.974957i
\(989\) 1098.60 40811.0i 0.0353221 1.31215i
\(990\) 1330.42i 0.0427105i
\(991\) −59309.0 −1.90112 −0.950561 0.310537i \(-0.899491\pi\)
−0.950561 + 0.310537i \(0.899491\pi\)
\(992\) 45550.3i 1.45789i
\(993\) 22783.8i 0.728120i
\(994\) −9167.54 6930.38i −0.292532 0.221145i
\(995\) 24216.2 0.771562
\(996\) 33547.0i 1.06725i
\(997\) 23713.4i 0.753271i 0.926362 + 0.376635i \(0.122919\pi\)
−0.926362 + 0.376635i \(0.877081\pi\)
\(998\) 16817.0 0.533399
\(999\) −42470.8 −1.34506
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 161.4.c.b.160.7 yes 8
7.6 odd 2 inner 161.4.c.b.160.2 8
23.22 odd 2 inner 161.4.c.b.160.6 yes 8
161.160 even 2 inner 161.4.c.b.160.3 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
161.4.c.b.160.2 8 7.6 odd 2 inner
161.4.c.b.160.3 yes 8 161.160 even 2 inner
161.4.c.b.160.6 yes 8 23.22 odd 2 inner
161.4.c.b.160.7 yes 8 1.1 even 1 trivial