Properties

Label 161.4.c.b.160.1
Level $161$
Weight $4$
Character 161.160
Analytic conductor $9.499$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [161,4,Mod(160,161)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(161, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("161.160");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 161 = 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 161.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.49930751092\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 16x^{6} - 2516x^{5} + 43236x^{4} + 20128x^{3} - 55968x^{2} - 6463604x + 23372755 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{23}]\)
Coefficient ring index: \( 2^{4}\cdot 7 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 160.1
Root \(-10.4466 + 12.7456i\) of defining polynomial
Character \(\chi\) \(=\) 161.160
Dual form 161.4.c.b.160.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} -5.83095i q^{3} -7.00000 q^{4} -20.8933 q^{5} +5.83095i q^{6} +(-5.36058 - 17.7275i) q^{7} +15.0000 q^{8} -7.00000 q^{9} +20.8933 q^{10} -15.7947i q^{11} +40.8167i q^{12} +35.4193i q^{13} +(5.36058 + 17.7275i) q^{14} +121.828i q^{15} +41.0000 q^{16} +20.8933 q^{17} +7.00000 q^{18} -92.0980 q^{19} +146.253 q^{20} +(-103.368 + 31.2573i) q^{21} +15.7947i q^{22} +(79.2642 + 76.7085i) q^{23} -87.4643i q^{24} +311.528 q^{25} -35.4193i q^{26} -116.619i q^{27} +(37.5241 + 124.092i) q^{28} -150.528 q^{29} -121.828i q^{30} -172.133i q^{31} -161.000 q^{32} -92.0980 q^{33} -20.8933 q^{34} +(112.000 + 370.385i) q^{35} +49.0000 q^{36} +69.9138i q^{37} +92.0980 q^{38} +206.528 q^{39} -313.399 q^{40} +446.621i q^{41} +(103.368 - 31.2573i) q^{42} -83.5031i q^{43} +110.563i q^{44} +146.253 q^{45} +(-79.2642 - 76.7085i) q^{46} -8.86623i q^{47} -239.069i q^{48} +(-285.528 + 190.059i) q^{49} -311.528 q^{50} -121.828i q^{51} -247.935i q^{52} +588.814i q^{53} +116.619i q^{54} +330.002i q^{55} +(-80.4087 - 265.912i) q^{56} +537.019i q^{57} +150.528 q^{58} -522.424i q^{59} -852.793i q^{60} -170.990 q^{61} +172.133i q^{62} +(37.5241 + 124.092i) q^{63} -167.000 q^{64} -740.025i q^{65} +92.0980 q^{66} -895.647i q^{67} -146.253 q^{68} +(447.283 - 462.186i) q^{69} +(-112.000 - 370.385i) q^{70} +241.472 q^{71} -105.000 q^{72} +775.756i q^{73} -69.9138i q^{74} -1816.51i q^{75} +644.686 q^{76} +(-280.000 + 84.6686i) q^{77} -206.528 q^{78} +514.489i q^{79} -856.624 q^{80} -869.000 q^{81} -446.621i q^{82} -209.771 q^{83} +(723.577 - 218.801i) q^{84} -436.528 q^{85} +83.5031i q^{86} +877.724i q^{87} -236.920i q^{88} +1216.49 q^{89} -146.253 q^{90} +(627.896 - 189.868i) q^{91} +(-554.849 - 536.959i) q^{92} -1003.70 q^{93} +8.86623i q^{94} +1924.23 q^{95} +938.783i q^{96} -379.084 q^{97} +(285.528 - 190.059i) q^{98} +110.563i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{2} - 56 q^{4} + 120 q^{8} - 56 q^{9} + 328 q^{16} + 56 q^{18} - 124 q^{23} + 976 q^{25} + 312 q^{29} - 1288 q^{32} + 896 q^{35} + 392 q^{36} + 136 q^{39} + 124 q^{46} - 768 q^{49} - 976 q^{50}+ \cdots + 768 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/161\mathbb{Z}\right)^\times\).

\(n\) \(24\) \(120\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.353553 −0.176777 0.984251i \(-0.556567\pi\)
−0.176777 + 0.984251i \(0.556567\pi\)
\(3\) 5.83095i 1.12217i −0.827759 0.561084i \(-0.810385\pi\)
0.827759 0.561084i \(-0.189615\pi\)
\(4\) −7.00000 −0.875000
\(5\) −20.8933 −1.86875 −0.934375 0.356291i \(-0.884041\pi\)
−0.934375 + 0.356291i \(0.884041\pi\)
\(6\) 5.83095i 0.396746i
\(7\) −5.36058 17.7275i −0.289444 0.957195i
\(8\) 15.0000 0.662913
\(9\) −7.00000 −0.259259
\(10\) 20.8933 0.660703
\(11\) 15.7947i 0.432934i −0.976290 0.216467i \(-0.930547\pi\)
0.976290 0.216467i \(-0.0694534\pi\)
\(12\) 40.8167i 0.981896i
\(13\) 35.4193i 0.755658i 0.925875 + 0.377829i \(0.123329\pi\)
−0.925875 + 0.377829i \(0.876671\pi\)
\(14\) 5.36058 + 17.7275i 0.102334 + 0.338420i
\(15\) 121.828i 2.09705i
\(16\) 41.0000 0.640625
\(17\) 20.8933 0.298080 0.149040 0.988831i \(-0.452382\pi\)
0.149040 + 0.988831i \(0.452382\pi\)
\(18\) 7.00000 0.0916620
\(19\) −92.0980 −1.11204 −0.556019 0.831170i \(-0.687672\pi\)
−0.556019 + 0.831170i \(0.687672\pi\)
\(20\) 146.253 1.63516
\(21\) −103.368 + 31.2573i −1.07413 + 0.324805i
\(22\) 15.7947i 0.153065i
\(23\) 79.2642 + 76.7085i 0.718597 + 0.695427i
\(24\) 87.4643i 0.743899i
\(25\) 311.528 2.49223
\(26\) 35.4193i 0.267165i
\(27\) 116.619i 0.831235i
\(28\) 37.5241 + 124.092i 0.253264 + 0.837546i
\(29\) −150.528 −0.963876 −0.481938 0.876205i \(-0.660067\pi\)
−0.481938 + 0.876205i \(0.660067\pi\)
\(30\) 121.828i 0.741419i
\(31\) 172.133i 0.997290i −0.866806 0.498645i \(-0.833831\pi\)
0.866806 0.498645i \(-0.166169\pi\)
\(32\) −161.000 −0.889408
\(33\) −92.0980 −0.485824
\(34\) −20.8933 −0.105387
\(35\) 112.000 + 370.385i 0.540899 + 1.78876i
\(36\) 49.0000 0.226852
\(37\) 69.9138i 0.310642i 0.987864 + 0.155321i \(0.0496412\pi\)
−0.987864 + 0.155321i \(0.950359\pi\)
\(38\) 92.0980 0.393165
\(39\) 206.528 0.847974
\(40\) −313.399 −1.23882
\(41\) 446.621i 1.70123i 0.525787 + 0.850616i \(0.323771\pi\)
−0.525787 + 0.850616i \(0.676229\pi\)
\(42\) 103.368 31.2573i 0.379763 0.114836i
\(43\) 83.5031i 0.296142i −0.988977 0.148071i \(-0.952694\pi\)
0.988977 0.148071i \(-0.0473064\pi\)
\(44\) 110.563i 0.378817i
\(45\) 146.253 0.484491
\(46\) −79.2642 76.7085i −0.254062 0.245871i
\(47\) 8.86623i 0.0275164i −0.999905 0.0137582i \(-0.995620\pi\)
0.999905 0.0137582i \(-0.00437951\pi\)
\(48\) 239.069i 0.718888i
\(49\) −285.528 + 190.059i −0.832444 + 0.554109i
\(50\) −311.528 −0.881135
\(51\) 121.828i 0.334496i
\(52\) 247.935i 0.661201i
\(53\) 588.814i 1.52603i 0.646379 + 0.763017i \(0.276283\pi\)
−0.646379 + 0.763017i \(0.723717\pi\)
\(54\) 116.619i 0.293886i
\(55\) 330.002i 0.809045i
\(56\) −80.4087 265.912i −0.191876 0.634537i
\(57\) 537.019i 1.24789i
\(58\) 150.528 0.340782
\(59\) 522.424i 1.15278i −0.817176 0.576388i \(-0.804462\pi\)
0.817176 0.576388i \(-0.195538\pi\)
\(60\) 852.793i 1.83492i
\(61\) −170.990 −0.358901 −0.179451 0.983767i \(-0.557432\pi\)
−0.179451 + 0.983767i \(0.557432\pi\)
\(62\) 172.133i 0.352595i
\(63\) 37.5241 + 124.092i 0.0750411 + 0.248162i
\(64\) −167.000 −0.326172
\(65\) 740.025i 1.41214i
\(66\) 92.0980 0.171765
\(67\) 895.647i 1.63315i −0.577243 0.816573i \(-0.695871\pi\)
0.577243 0.816573i \(-0.304129\pi\)
\(68\) −146.253 −0.260820
\(69\) 447.283 462.186i 0.780385 0.806386i
\(70\) −112.000 370.385i −0.191237 0.632421i
\(71\) 241.472 0.403626 0.201813 0.979424i \(-0.435317\pi\)
0.201813 + 0.979424i \(0.435317\pi\)
\(72\) −105.000 −0.171866
\(73\) 775.756i 1.24377i 0.783108 + 0.621886i \(0.213633\pi\)
−0.783108 + 0.621886i \(0.786367\pi\)
\(74\) 69.9138i 0.109829i
\(75\) 1816.51i 2.79670i
\(76\) 644.686 0.973033
\(77\) −280.000 + 84.6686i −0.414402 + 0.125310i
\(78\) −206.528 −0.299804
\(79\) 514.489i 0.732716i 0.930474 + 0.366358i \(0.119395\pi\)
−0.930474 + 0.366358i \(0.880605\pi\)
\(80\) −856.624 −1.19717
\(81\) −869.000 −1.19204
\(82\) 446.621i 0.601476i
\(83\) −209.771 −0.277414 −0.138707 0.990333i \(-0.544295\pi\)
−0.138707 + 0.990333i \(0.544295\pi\)
\(84\) 723.577 218.801i 0.939866 0.284204i
\(85\) −436.528 −0.557037
\(86\) 83.5031i 0.104702i
\(87\) 877.724i 1.08163i
\(88\) 236.920i 0.286997i
\(89\) 1216.49 1.44885 0.724426 0.689353i \(-0.242105\pi\)
0.724426 + 0.689353i \(0.242105\pi\)
\(90\) −146.253 −0.171293
\(91\) 627.896 189.868i 0.723312 0.218721i
\(92\) −554.849 536.959i −0.628772 0.608499i
\(93\) −1003.70 −1.11913
\(94\) 8.86623i 0.00972852i
\(95\) 1924.23 2.07812
\(96\) 938.783i 0.998064i
\(97\) −379.084 −0.396806 −0.198403 0.980121i \(-0.563575\pi\)
−0.198403 + 0.980121i \(0.563575\pi\)
\(98\) 285.528 190.059i 0.294313 0.195907i
\(99\) 110.563i 0.112242i
\(100\) −2180.70 −2.18070
\(101\) 1154.09i 1.13700i 0.822684 + 0.568499i \(0.192476\pi\)
−0.822684 + 0.568499i \(0.807524\pi\)
\(102\) 121.828i 0.118262i
\(103\) −677.109 −0.647743 −0.323872 0.946101i \(-0.604985\pi\)
−0.323872 + 0.946101i \(0.604985\pi\)
\(104\) 531.290i 0.500935i
\(105\) 2159.70 653.067i 2.00729 0.606979i
\(106\) 588.814i 0.539534i
\(107\) 1802.56i 1.62860i 0.580445 + 0.814299i \(0.302878\pi\)
−0.580445 + 0.814299i \(0.697122\pi\)
\(108\) 816.333i 0.727331i
\(109\) 291.039i 0.255748i −0.991790 0.127874i \(-0.959185\pi\)
0.991790 0.127874i \(-0.0408153\pi\)
\(110\) 330.002i 0.286041i
\(111\) 407.664 0.348592
\(112\) −219.784 726.827i −0.185425 0.613203i
\(113\) 1096.33i 0.912690i 0.889803 + 0.456345i \(0.150842\pi\)
−0.889803 + 0.456345i \(0.849158\pi\)
\(114\) 537.019i 0.441197i
\(115\) −1656.09 1602.69i −1.34288 1.29958i
\(116\) 1053.70 0.843392
\(117\) 247.935i 0.195911i
\(118\) 522.424i 0.407568i
\(119\) −112.000 370.385i −0.0862775 0.285321i
\(120\) 1827.41i 1.39016i
\(121\) 1081.53 0.812568
\(122\) 170.990 0.126891
\(123\) 2604.23 1.90907
\(124\) 1204.93i 0.872628i
\(125\) −3897.19 −2.78860
\(126\) −37.5241 124.092i −0.0265310 0.0877384i
\(127\) −1820.23 −1.27180 −0.635902 0.771770i \(-0.719372\pi\)
−0.635902 + 0.771770i \(0.719372\pi\)
\(128\) 1455.00 1.00473
\(129\) −486.903 −0.332321
\(130\) 740.025i 0.499265i
\(131\) 420.547i 0.280484i 0.990117 + 0.140242i \(0.0447880\pi\)
−0.990117 + 0.140242i \(0.955212\pi\)
\(132\) 644.686 0.425096
\(133\) 493.699 + 1632.67i 0.321873 + 1.06444i
\(134\) 895.647i 0.577404i
\(135\) 2436.55i 1.55337i
\(136\) 313.399 0.197601
\(137\) 2332.96i 1.45488i −0.686172 0.727440i \(-0.740710\pi\)
0.686172 0.727440i \(-0.259290\pi\)
\(138\) −447.283 + 462.186i −0.275908 + 0.285100i
\(139\) 1822.58i 1.11215i −0.831132 0.556076i \(-0.812307\pi\)
0.831132 0.556076i \(-0.187693\pi\)
\(140\) −784.000 2592.70i −0.473286 1.56516i
\(141\) −51.6985 −0.0308780
\(142\) −241.472 −0.142703
\(143\) 559.437 0.327150
\(144\) −287.000 −0.166088
\(145\) 3145.03 1.80124
\(146\) 775.756i 0.439740i
\(147\) 1108.23 + 1664.90i 0.621803 + 0.934142i
\(148\) 489.397i 0.271812i
\(149\) 625.052i 0.343666i 0.985126 + 0.171833i \(0.0549689\pi\)
−0.985126 + 0.171833i \(0.945031\pi\)
\(150\) 1816.51i 0.988781i
\(151\) −2461.70 −1.32669 −0.663345 0.748314i \(-0.730864\pi\)
−0.663345 + 0.748314i \(0.730864\pi\)
\(152\) −1381.47 −0.737184
\(153\) −146.253 −0.0772800
\(154\) 280.000 84.6686i 0.146513 0.0443038i
\(155\) 3596.42i 1.86369i
\(156\) −1445.70 −0.741978
\(157\) 1444.99 0.734539 0.367269 0.930115i \(-0.380293\pi\)
0.367269 + 0.930115i \(0.380293\pi\)
\(158\) 514.489i 0.259054i
\(159\) 3433.34 1.71246
\(160\) 3363.82 1.66208
\(161\) 934.947 1816.36i 0.457666 0.889124i
\(162\) 869.000 0.421451
\(163\) 468.000 0.224887 0.112444 0.993658i \(-0.464132\pi\)
0.112444 + 0.993658i \(0.464132\pi\)
\(164\) 3126.35i 1.48858i
\(165\) 1924.23 0.907884
\(166\) 209.771 0.0980805
\(167\) 1273.94i 0.590303i 0.955450 + 0.295152i \(0.0953702\pi\)
−0.955450 + 0.295152i \(0.904630\pi\)
\(168\) −1550.52 + 468.859i −0.712056 + 0.215317i
\(169\) 942.472 0.428981
\(170\) 436.528 0.196942
\(171\) 644.686 0.288306
\(172\) 584.522i 0.259124i
\(173\) 3137.58i 1.37888i 0.724345 + 0.689438i \(0.242142\pi\)
−0.724345 + 0.689438i \(0.757858\pi\)
\(174\) 877.724i 0.382414i
\(175\) −1669.97 5522.62i −0.721360 2.38555i
\(176\) 647.582i 0.277348i
\(177\) −3046.23 −1.29361
\(178\) −1216.49 −0.512246
\(179\) 860.000 0.359103 0.179551 0.983749i \(-0.442535\pi\)
0.179551 + 0.983749i \(0.442535\pi\)
\(180\) −1023.77 −0.423929
\(181\) 257.915 0.105915 0.0529576 0.998597i \(-0.483135\pi\)
0.0529576 + 0.998597i \(0.483135\pi\)
\(182\) −627.896 + 189.868i −0.255729 + 0.0773295i
\(183\) 997.032i 0.402747i
\(184\) 1188.96 + 1150.63i 0.476367 + 0.461007i
\(185\) 1460.73i 0.580513i
\(186\) 1003.70 0.395671
\(187\) 330.002i 0.129049i
\(188\) 62.0636i 0.0240769i
\(189\) −2067.36 + 625.146i −0.795654 + 0.240596i
\(190\) −1924.23 −0.734727
\(191\) 3948.07i 1.49567i 0.663886 + 0.747834i \(0.268906\pi\)
−0.663886 + 0.747834i \(0.731094\pi\)
\(192\) 973.769i 0.366019i
\(193\) −4015.70 −1.49770 −0.748851 0.662739i \(-0.769394\pi\)
−0.748851 + 0.662739i \(0.769394\pi\)
\(194\) 379.084 0.140292
\(195\) −4315.05 −1.58465
\(196\) 1998.70 1330.42i 0.728389 0.484845i
\(197\) −2870.23 −1.03805 −0.519023 0.854760i \(-0.673704\pi\)
−0.519023 + 0.854760i \(0.673704\pi\)
\(198\) 110.563i 0.0396836i
\(199\) 4066.01 1.44840 0.724200 0.689590i \(-0.242209\pi\)
0.724200 + 0.689590i \(0.242209\pi\)
\(200\) 4672.93 1.65213
\(201\) −5222.48 −1.83266
\(202\) 1154.09i 0.401989i
\(203\) 806.919 + 2668.49i 0.278988 + 0.922618i
\(204\) 852.793i 0.292684i
\(205\) 9331.37i 3.17918i
\(206\) 677.109 0.229012
\(207\) −554.849 536.959i −0.186303 0.180296i
\(208\) 1452.19i 0.484093i
\(209\) 1454.66i 0.481439i
\(210\) −2159.70 + 653.067i −0.709683 + 0.214599i
\(211\) −4695.40 −1.53196 −0.765982 0.642862i \(-0.777747\pi\)
−0.765982 + 0.642862i \(0.777747\pi\)
\(212\) 4121.69i 1.33528i
\(213\) 1408.01i 0.452935i
\(214\) 1802.56i 0.575797i
\(215\) 1744.65i 0.553415i
\(216\) 1749.29i 0.551036i
\(217\) −3051.49 + 922.732i −0.954601 + 0.288660i
\(218\) 291.039i 0.0904205i
\(219\) 4523.40 1.39572
\(220\) 2310.02i 0.707915i
\(221\) 740.025i 0.225247i
\(222\) −407.664 −0.123246
\(223\) 301.372i 0.0904994i −0.998976 0.0452497i \(-0.985592\pi\)
0.998976 0.0452497i \(-0.0144084\pi\)
\(224\) 863.053 + 2854.13i 0.257434 + 0.851337i
\(225\) −2180.70 −0.646133
\(226\) 1096.33i 0.322685i
\(227\) 5207.10 1.52250 0.761250 0.648458i \(-0.224586\pi\)
0.761250 + 0.648458i \(0.224586\pi\)
\(228\) 3759.13i 1.09191i
\(229\) −448.122 −0.129313 −0.0646566 0.997908i \(-0.520595\pi\)
−0.0646566 + 0.997908i \(0.520595\pi\)
\(230\) 1656.09 + 1602.69i 0.474779 + 0.459471i
\(231\) 493.699 + 1632.67i 0.140619 + 0.465028i
\(232\) −2257.93 −0.638966
\(233\) −4785.70 −1.34559 −0.672793 0.739831i \(-0.734906\pi\)
−0.672793 + 0.739831i \(0.734906\pi\)
\(234\) 247.935i 0.0692651i
\(235\) 185.244i 0.0514213i
\(236\) 3656.97i 1.00868i
\(237\) 2999.96 0.822229
\(238\) 112.000 + 370.385i 0.0305037 + 0.100876i
\(239\) 822.075 0.222492 0.111246 0.993793i \(-0.464516\pi\)
0.111246 + 0.993793i \(0.464516\pi\)
\(240\) 4994.93i 1.34342i
\(241\) 80.5677 0.0215345 0.0107673 0.999942i \(-0.496573\pi\)
0.0107673 + 0.999942i \(0.496573\pi\)
\(242\) −1081.53 −0.287286
\(243\) 1918.38i 0.506438i
\(244\) 1196.93 0.314038
\(245\) 5965.62 3970.96i 1.55563 1.03549i
\(246\) −2604.23 −0.674957
\(247\) 3262.05i 0.840320i
\(248\) 2581.99i 0.661116i
\(249\) 1223.16i 0.311304i
\(250\) 3897.19 0.985919
\(251\) −2638.42 −0.663488 −0.331744 0.943369i \(-0.607637\pi\)
−0.331744 + 0.943369i \(0.607637\pi\)
\(252\) −262.668 868.647i −0.0656609 0.217141i
\(253\) 1211.59 1251.95i 0.301074 0.311105i
\(254\) 1820.23 0.449650
\(255\) 2545.38i 0.625089i
\(256\) −119.000 −0.0290527
\(257\) 5325.82i 1.29267i −0.763055 0.646333i \(-0.776302\pi\)
0.763055 0.646333i \(-0.223698\pi\)
\(258\) 486.903 0.117493
\(259\) 1239.40 374.779i 0.297345 0.0899136i
\(260\) 5180.18i 1.23562i
\(261\) 1053.70 0.249894
\(262\) 420.547i 0.0991660i
\(263\) 284.066i 0.0666017i −0.999445 0.0333009i \(-0.989398\pi\)
0.999445 0.0333009i \(-0.0106020\pi\)
\(264\) −1381.47 −0.322059
\(265\) 12302.2i 2.85177i
\(266\) −493.699 1632.67i −0.113799 0.376335i
\(267\) 7093.30i 1.62585i
\(268\) 6269.53i 1.42900i
\(269\) 1840.02i 0.417057i 0.978016 + 0.208528i \(0.0668674\pi\)
−0.978016 + 0.208528i \(0.933133\pi\)
\(270\) 2436.55i 0.549199i
\(271\) 1737.82i 0.389538i −0.980849 0.194769i \(-0.937604\pi\)
0.980849 0.194769i \(-0.0623958\pi\)
\(272\) 856.624 0.190958
\(273\) −1107.11 3661.23i −0.245441 0.811677i
\(274\) 2332.96i 0.514377i
\(275\) 4920.49i 1.07897i
\(276\) −3130.98 + 3235.30i −0.682837 + 0.705587i
\(277\) −949.699 −0.205999 −0.103000 0.994681i \(-0.532844\pi\)
−0.103000 + 0.994681i \(0.532844\pi\)
\(278\) 1822.58i 0.393205i
\(279\) 1204.93i 0.258557i
\(280\) 1680.00 + 5555.78i 0.358569 + 1.18579i
\(281\) 4521.45i 0.959883i 0.877301 + 0.479941i \(0.159342\pi\)
−0.877301 + 0.479941i \(0.840658\pi\)
\(282\) 51.6985 0.0109170
\(283\) −7228.23 −1.51828 −0.759141 0.650926i \(-0.774381\pi\)
−0.759141 + 0.650926i \(0.774381\pi\)
\(284\) −1690.30 −0.353172
\(285\) 11220.1i 2.33200i
\(286\) −559.437 −0.115665
\(287\) 7917.48 2394.15i 1.62841 0.492412i
\(288\) 1127.00 0.230587
\(289\) −4476.47 −0.911148
\(290\) −3145.03 −0.636836
\(291\) 2210.42i 0.445282i
\(292\) 5430.29i 1.08830i
\(293\) −4549.21 −0.907057 −0.453529 0.891242i \(-0.649835\pi\)
−0.453529 + 0.891242i \(0.649835\pi\)
\(294\) −1108.23 1664.90i −0.219840 0.330269i
\(295\) 10915.1i 2.15425i
\(296\) 1048.71i 0.205929i
\(297\) −1841.96 −0.359870
\(298\) 625.052i 0.121504i
\(299\) −2716.96 + 2807.48i −0.525505 + 0.543013i
\(300\) 12715.5i 2.44711i
\(301\) −1480.30 + 447.625i −0.283466 + 0.0857166i
\(302\) 2461.70 0.469056
\(303\) 6729.47 1.27590
\(304\) −3776.02 −0.712399
\(305\) 3572.53 0.670696
\(306\) 146.253 0.0273226
\(307\) 612.729i 0.113910i −0.998377 0.0569549i \(-0.981861\pi\)
0.998377 0.0569549i \(-0.0181391\pi\)
\(308\) 1960.00 592.680i 0.362602 0.109646i
\(309\) 3948.19i 0.726876i
\(310\) 3596.42i 0.658912i
\(311\) 375.018i 0.0683773i 0.999415 + 0.0341886i \(0.0108847\pi\)
−0.999415 + 0.0341886i \(0.989115\pi\)
\(312\) 3097.93 0.562133
\(313\) 3421.81 0.617931 0.308965 0.951073i \(-0.400017\pi\)
0.308965 + 0.951073i \(0.400017\pi\)
\(314\) −1444.99 −0.259699
\(315\) −784.000 2592.70i −0.140233 0.463752i
\(316\) 3601.42i 0.641126i
\(317\) 5681.93 1.00672 0.503358 0.864078i \(-0.332098\pi\)
0.503358 + 0.864078i \(0.332098\pi\)
\(318\) −3433.34 −0.605448
\(319\) 2377.55i 0.417295i
\(320\) 3489.17 0.609534
\(321\) 10510.6 1.82756
\(322\) −934.947 + 1816.36i −0.161809 + 0.314353i
\(323\) −1924.23 −0.331476
\(324\) 6083.00 1.04304
\(325\) 11034.1i 1.88327i
\(326\) −468.000 −0.0795096
\(327\) −1697.04 −0.286992
\(328\) 6699.32i 1.12777i
\(329\) −157.176 + 47.5281i −0.0263386 + 0.00796447i
\(330\) −1924.23 −0.320985
\(331\) 1399.40 0.232380 0.116190 0.993227i \(-0.462932\pi\)
0.116190 + 0.993227i \(0.462932\pi\)
\(332\) 1468.39 0.242737
\(333\) 489.397i 0.0805369i
\(334\) 1273.94i 0.208704i
\(335\) 18713.0i 3.05194i
\(336\) −4238.10 + 1281.55i −0.688116 + 0.208078i
\(337\) 6483.68i 1.04804i −0.851707 0.524019i \(-0.824432\pi\)
0.851707 0.524019i \(-0.175568\pi\)
\(338\) −942.472 −0.151668
\(339\) 6392.64 1.02419
\(340\) 3055.70 0.487407
\(341\) −2718.78 −0.431760
\(342\) −644.686 −0.101932
\(343\) 4899.87 + 4042.88i 0.771336 + 0.636428i
\(344\) 1252.55i 0.196316i
\(345\) −9345.21 + 9656.56i −1.45835 + 1.50693i
\(346\) 3137.58i 0.487506i
\(347\) −12474.0 −1.92979 −0.964896 0.262634i \(-0.915409\pi\)
−0.964896 + 0.262634i \(0.915409\pi\)
\(348\) 6144.07i 0.946427i
\(349\) 3405.32i 0.522300i −0.965298 0.261150i \(-0.915898\pi\)
0.965298 0.261150i \(-0.0841017\pi\)
\(350\) 1669.97 + 5522.62i 0.255039 + 0.843418i
\(351\) 4130.57 0.628129
\(352\) 2542.94i 0.385055i
\(353\) 4908.22i 0.740052i −0.929021 0.370026i \(-0.879349\pi\)
0.929021 0.370026i \(-0.120651\pi\)
\(354\) 3046.23 0.457359
\(355\) −5045.13 −0.754275
\(356\) −8515.43 −1.26774
\(357\) −2159.70 + 653.067i −0.320178 + 0.0968178i
\(358\) −860.000 −0.126962
\(359\) 369.060i 0.0542570i 0.999632 + 0.0271285i \(0.00863633\pi\)
−0.999632 + 0.0271285i \(0.991364\pi\)
\(360\) 2193.79 0.321175
\(361\) 1623.04 0.236629
\(362\) −257.915 −0.0374467
\(363\) 6306.34i 0.911837i
\(364\) −4395.27 + 1329.08i −0.632898 + 0.191381i
\(365\) 16208.1i 2.32430i
\(366\) 997.032i 0.142393i
\(367\) −10842.3 −1.54213 −0.771065 0.636756i \(-0.780276\pi\)
−0.771065 + 0.636756i \(0.780276\pi\)
\(368\) 3249.83 + 3145.05i 0.460351 + 0.445508i
\(369\) 3126.35i 0.441060i
\(370\) 1460.73i 0.205242i
\(371\) 10438.2 3156.38i 1.46071 0.441701i
\(372\) 7025.89 0.979235
\(373\) 5670.05i 0.787088i −0.919306 0.393544i \(-0.871249\pi\)
0.919306 0.393544i \(-0.128751\pi\)
\(374\) 330.002i 0.0456257i
\(375\) 22724.3i 3.12927i
\(376\) 132.993i 0.0182410i
\(377\) 5331.61i 0.728361i
\(378\) 2067.36 625.146i 0.281306 0.0850636i
\(379\) 1089.36i 0.147642i 0.997271 + 0.0738212i \(0.0235194\pi\)
−0.997271 + 0.0738212i \(0.976481\pi\)
\(380\) −13469.6 −1.81836
\(381\) 10613.7i 1.42718i
\(382\) 3948.07i 0.528798i
\(383\) −1620.17 −0.216153 −0.108077 0.994143i \(-0.534469\pi\)
−0.108077 + 0.994143i \(0.534469\pi\)
\(384\) 8484.04i 1.12747i
\(385\) 5850.11 1769.00i 0.774414 0.234173i
\(386\) 4015.70 0.529517
\(387\) 584.522i 0.0767776i
\(388\) 2653.59 0.347205
\(389\) 9875.13i 1.28712i −0.765397 0.643559i \(-0.777457\pi\)
0.765397 0.643559i \(-0.222543\pi\)
\(390\) 4315.05 0.560259
\(391\) 1656.09 + 1602.69i 0.214199 + 0.207293i
\(392\) −4282.93 + 2850.89i −0.551838 + 0.367326i
\(393\) 2452.19 0.314750
\(394\) 2870.23 0.367005
\(395\) 10749.4i 1.36926i
\(396\) 773.939i 0.0982118i
\(397\) 6695.53i 0.846446i 0.906026 + 0.423223i \(0.139101\pi\)
−0.906026 + 0.423223i \(0.860899\pi\)
\(398\) −4066.01 −0.512087
\(399\) 9520.00 2878.73i 1.19448 0.361195i
\(400\) 12772.7 1.59658
\(401\) 10839.3i 1.34985i 0.737887 + 0.674925i \(0.235824\pi\)
−0.737887 + 0.674925i \(0.764176\pi\)
\(402\) 5222.48 0.647944
\(403\) 6096.83 0.753610
\(404\) 8078.66i 0.994873i
\(405\) 18156.2 2.22763
\(406\) −806.919 2668.49i −0.0986373 0.326195i
\(407\) 1104.27 0.134488
\(408\) 1827.41i 0.221741i
\(409\) 5976.01i 0.722480i 0.932473 + 0.361240i \(0.117647\pi\)
−0.932473 + 0.361240i \(0.882353\pi\)
\(410\) 9331.37i 1.12401i
\(411\) −13603.4 −1.63262
\(412\) 4739.76 0.566775
\(413\) −9261.26 + 2800.49i −1.10343 + 0.333664i
\(414\) 554.849 + 536.959i 0.0658680 + 0.0637442i
\(415\) 4382.79 0.518417
\(416\) 5702.51i 0.672088i
\(417\) −10627.4 −1.24802
\(418\) 1454.66i 0.170214i
\(419\) −7995.76 −0.932264 −0.466132 0.884715i \(-0.654353\pi\)
−0.466132 + 0.884715i \(0.654353\pi\)
\(420\) −15117.9 + 4571.47i −1.75637 + 0.531106i
\(421\) 7113.86i 0.823535i 0.911289 + 0.411768i \(0.135088\pi\)
−0.911289 + 0.411768i \(0.864912\pi\)
\(422\) 4695.40 0.541631
\(423\) 62.0636i 0.00713389i
\(424\) 8832.20i 1.01163i
\(425\) 6508.84 0.742883
\(426\) 1408.01i 0.160137i
\(427\) 916.603 + 3031.22i 0.103882 + 0.343538i
\(428\) 12617.9i 1.42502i
\(429\) 3262.05i 0.367117i
\(430\) 1744.65i 0.195662i
\(431\) 4192.44i 0.468545i −0.972171 0.234272i \(-0.924729\pi\)
0.972171 0.234272i \(-0.0752708\pi\)
\(432\) 4781.38i 0.532510i
\(433\) 14887.2 1.65228 0.826138 0.563468i \(-0.190533\pi\)
0.826138 + 0.563468i \(0.190533\pi\)
\(434\) 3051.49 922.732i 0.337502 0.102057i
\(435\) 18338.5i 2.02130i
\(436\) 2037.27i 0.223779i
\(437\) −7300.07 7064.69i −0.799107 0.773341i
\(438\) −4523.40 −0.493462
\(439\) 14132.5i 1.53647i 0.640169 + 0.768234i \(0.278864\pi\)
−0.640169 + 0.768234i \(0.721136\pi\)
\(440\) 4950.03i 0.536326i
\(441\) 1998.70 1330.42i 0.215819 0.143658i
\(442\) 740.025i 0.0796367i
\(443\) −8654.19 −0.928156 −0.464078 0.885794i \(-0.653614\pi\)
−0.464078 + 0.885794i \(0.653614\pi\)
\(444\) −2853.65 −0.305018
\(445\) −25416.5 −2.70754
\(446\) 301.372i 0.0319964i
\(447\) 3644.65 0.385651
\(448\) 895.217 + 2960.49i 0.0944085 + 0.312210i
\(449\) 8249.59 0.867087 0.433544 0.901133i \(-0.357263\pi\)
0.433544 + 0.901133i \(0.357263\pi\)
\(450\) 2180.70 0.228442
\(451\) 7054.24 0.736521
\(452\) 7674.31i 0.798604i
\(453\) 14354.0i 1.48877i
\(454\) −5207.10 −0.538285
\(455\) −13118.8 + 3966.96i −1.35169 + 0.408734i
\(456\) 8055.28i 0.827244i
\(457\) 10215.4i 1.04564i −0.852444 0.522819i \(-0.824880\pi\)
0.852444 0.522819i \(-0.175120\pi\)
\(458\) 448.122 0.0457191
\(459\) 2436.55i 0.247775i
\(460\) 11592.6 + 11218.8i 1.17502 + 1.13713i
\(461\) 14852.8i 1.50058i −0.661111 0.750288i \(-0.729915\pi\)
0.661111 0.750288i \(-0.270085\pi\)
\(462\) −493.699 1632.67i −0.0497163 0.164412i
\(463\) 4969.10 0.498776 0.249388 0.968404i \(-0.419770\pi\)
0.249388 + 0.968404i \(0.419770\pi\)
\(464\) −6171.66 −0.617483
\(465\) 20970.5 2.09137
\(466\) 4785.70 0.475736
\(467\) −6965.78 −0.690231 −0.345115 0.938560i \(-0.612160\pi\)
−0.345115 + 0.938560i \(0.612160\pi\)
\(468\) 1735.55i 0.171422i
\(469\) −15877.6 + 4801.19i −1.56324 + 0.472704i
\(470\) 185.244i 0.0181802i
\(471\) 8425.65i 0.824275i
\(472\) 7836.35i 0.764189i
\(473\) −1318.90 −0.128210
\(474\) −2999.96 −0.290702
\(475\) −28691.1 −2.77145
\(476\) 784.000 + 2592.70i 0.0754928 + 0.249656i
\(477\) 4121.69i 0.395638i
\(478\) −822.075 −0.0786628
\(479\) −9568.28 −0.912705 −0.456352 0.889799i \(-0.650844\pi\)
−0.456352 + 0.889799i \(0.650844\pi\)
\(480\) 19614.2i 1.86513i
\(481\) −2476.30 −0.234739
\(482\) −80.5677 −0.00761361
\(483\) −10591.1 5451.63i −0.997746 0.513577i
\(484\) −7570.70 −0.710997
\(485\) 7920.30 0.741531
\(486\) 1918.38i 0.179053i
\(487\) −19805.6 −1.84287 −0.921434 0.388535i \(-0.872981\pi\)
−0.921434 + 0.388535i \(0.872981\pi\)
\(488\) −2564.84 −0.237920
\(489\) 2728.89i 0.252361i
\(490\) −5965.62 + 3970.96i −0.549998 + 0.366101i
\(491\) 7182.57 0.660173 0.330086 0.943951i \(-0.392922\pi\)
0.330086 + 0.943951i \(0.392922\pi\)
\(492\) −18229.6 −1.67043
\(493\) −3145.03 −0.287312
\(494\) 3262.05i 0.297098i
\(495\) 2310.02i 0.209752i
\(496\) 7057.45i 0.638889i
\(497\) −1294.43 4280.69i −0.116827 0.386348i
\(498\) 1223.16i 0.110063i
\(499\) 9716.99 0.871727 0.435864 0.900013i \(-0.356443\pi\)
0.435864 + 0.900013i \(0.356443\pi\)
\(500\) 27280.3 2.44002
\(501\) 7428.30 0.662419
\(502\) 2638.42 0.234578
\(503\) −5290.39 −0.468960 −0.234480 0.972121i \(-0.575339\pi\)
−0.234480 + 0.972121i \(0.575339\pi\)
\(504\) 562.861 + 1861.39i 0.0497457 + 0.164509i
\(505\) 24112.8i 2.12476i
\(506\) −1211.59 + 1251.95i −0.106446 + 0.109992i
\(507\) 5495.51i 0.481389i
\(508\) 12741.6 1.11283
\(509\) 10463.4i 0.911167i 0.890193 + 0.455583i \(0.150569\pi\)
−0.890193 + 0.455583i \(0.849431\pi\)
\(510\) 2545.38i 0.221002i
\(511\) 13752.2 4158.50i 1.19053 0.360003i
\(512\) −11521.0 −0.994455
\(513\) 10740.4i 0.924365i
\(514\) 5325.82i 0.457027i
\(515\) 14147.0 1.21047
\(516\) 3408.32 0.290781
\(517\) −140.039 −0.0119128
\(518\) −1239.40 + 374.779i −0.105127 + 0.0317892i
\(519\) 18295.1 1.54733
\(520\) 11100.4i 0.936123i
\(521\) 1129.02 0.0949387 0.0474693 0.998873i \(-0.484884\pi\)
0.0474693 + 0.998873i \(0.484884\pi\)
\(522\) −1053.70 −0.0883508
\(523\) 8771.67 0.733381 0.366691 0.930343i \(-0.380491\pi\)
0.366691 + 0.930343i \(0.380491\pi\)
\(524\) 2943.83i 0.245423i
\(525\) −32202.1 + 9737.53i −2.67698 + 0.809487i
\(526\) 284.066i 0.0235473i
\(527\) 3596.42i 0.297272i
\(528\) −3776.02 −0.311231
\(529\) 398.621 + 12160.5i 0.0327625 + 0.999463i
\(530\) 12302.2i 1.00825i
\(531\) 3656.97i 0.298868i
\(532\) −3455.89 11428.7i −0.281639 0.931383i
\(533\) −15819.0 −1.28555
\(534\) 7093.30i 0.574826i
\(535\) 37661.4i 3.04344i
\(536\) 13434.7i 1.08263i
\(537\) 5014.62i 0.402973i
\(538\) 1840.02i 0.147452i
\(539\) 3001.92 + 4509.83i 0.239892 + 0.360393i
\(540\) 17055.9i 1.35920i
\(541\) 10860.5 0.863085 0.431543 0.902093i \(-0.357969\pi\)
0.431543 + 0.902093i \(0.357969\pi\)
\(542\) 1737.82i 0.137723i
\(543\) 1503.89i 0.118855i
\(544\) −3363.82 −0.265115
\(545\) 6080.76i 0.477929i
\(546\) 1107.11 + 3661.23i 0.0867766 + 0.286971i
\(547\) −3492.83 −0.273021 −0.136511 0.990639i \(-0.543589\pi\)
−0.136511 + 0.990639i \(0.543589\pi\)
\(548\) 16330.7i 1.27302i
\(549\) 1196.93 0.0930484
\(550\) 4920.49i 0.381473i
\(551\) 13863.4 1.07187
\(552\) 6709.25 6932.78i 0.517327 0.534563i
\(553\) 9120.60 2757.96i 0.701352 0.212080i
\(554\) 949.699 0.0728318
\(555\) −8517.43 −0.651432
\(556\) 12758.0i 0.973132i
\(557\) 18223.1i 1.38624i 0.720822 + 0.693120i \(0.243764\pi\)
−0.720822 + 0.693120i \(0.756236\pi\)
\(558\) 1204.93i 0.0914135i
\(559\) 2957.62 0.223782
\(560\) 4592.00 + 15185.8i 0.346513 + 1.14592i
\(561\) −1924.23 −0.144814
\(562\) 4521.45i 0.339370i
\(563\) 12708.3 0.951314 0.475657 0.879631i \(-0.342210\pi\)
0.475657 + 0.879631i \(0.342210\pi\)
\(564\) 361.890 0.0270183
\(565\) 22905.9i 1.70559i
\(566\) 7228.23 0.536794
\(567\) 4658.34 + 15405.2i 0.345030 + 1.14102i
\(568\) 3622.07 0.267568
\(569\) 3834.35i 0.282503i 0.989974 + 0.141252i \(0.0451127\pi\)
−0.989974 + 0.141252i \(0.954887\pi\)
\(570\) 11220.1i 0.824486i
\(571\) 21202.1i 1.55391i 0.629558 + 0.776953i \(0.283236\pi\)
−0.629558 + 0.776953i \(0.716764\pi\)
\(572\) −3916.06 −0.286256
\(573\) 23021.0 1.67839
\(574\) −7917.48 + 2394.15i −0.575730 + 0.174094i
\(575\) 24693.0 + 23896.9i 1.79091 + 1.73316i
\(576\) 1169.00 0.0845631
\(577\) 21934.3i 1.58256i 0.611455 + 0.791279i \(0.290585\pi\)
−0.611455 + 0.791279i \(0.709415\pi\)
\(578\) 4476.47 0.322140
\(579\) 23415.3i 1.68067i
\(580\) −22015.2 −1.57609
\(581\) 1124.49 + 3718.71i 0.0802957 + 0.265539i
\(582\) 2210.42i 0.157431i
\(583\) 9300.12 0.660671
\(584\) 11636.3i 0.824512i
\(585\) 5180.18i 0.366109i
\(586\) 4549.21 0.320693
\(587\) 9268.05i 0.651675i 0.945426 + 0.325838i \(0.105646\pi\)
−0.945426 + 0.325838i \(0.894354\pi\)
\(588\) −7757.59 11654.3i −0.544077 0.817374i
\(589\) 15853.1i 1.10902i
\(590\) 10915.1i 0.761642i
\(591\) 16736.2i 1.16486i
\(592\) 2866.47i 0.199005i
\(593\) 9700.10i 0.671729i −0.941910 0.335865i \(-0.890972\pi\)
0.941910 0.335865i \(-0.109028\pi\)
\(594\) 1841.96 0.127233
\(595\) 2340.05 + 7738.56i 0.161231 + 0.533193i
\(596\) 4375.36i 0.300708i
\(597\) 23708.7i 1.62535i
\(598\) 2716.96 2807.48i 0.185794 0.191984i
\(599\) −3745.36 −0.255478 −0.127739 0.991808i \(-0.540772\pi\)
−0.127739 + 0.991808i \(0.540772\pi\)
\(600\) 27247.6i 1.85396i
\(601\) 10117.8i 0.686711i −0.939206 0.343355i \(-0.888437\pi\)
0.939206 0.343355i \(-0.111563\pi\)
\(602\) 1480.30 447.625i 0.100220 0.0303054i
\(603\) 6269.53i 0.423408i
\(604\) 17231.9 1.16085
\(605\) −22596.7 −1.51849
\(606\) −6729.47 −0.451099
\(607\) 24691.1i 1.65104i 0.564374 + 0.825519i \(0.309118\pi\)
−0.564374 + 0.825519i \(0.690882\pi\)
\(608\) 14827.8 0.989055
\(609\) 15559.8 4705.11i 1.03533 0.313072i
\(610\) −3572.53 −0.237127
\(611\) 314.036 0.0207930
\(612\) 1023.77 0.0676200
\(613\) 12506.3i 0.824023i 0.911179 + 0.412012i \(0.135174\pi\)
−0.911179 + 0.412012i \(0.864826\pi\)
\(614\) 612.729i 0.0402732i
\(615\) −54410.8 −3.56757
\(616\) −4200.00 + 1270.03i −0.274712 + 0.0830697i
\(617\) 16067.8i 1.04840i −0.851594 0.524201i \(-0.824364\pi\)
0.851594 0.524201i \(-0.175636\pi\)
\(618\) 3948.19i 0.256990i
\(619\) −26407.0 −1.71468 −0.857339 0.514752i \(-0.827884\pi\)
−0.857339 + 0.514752i \(0.827884\pi\)
\(620\) 25174.9i 1.63072i
\(621\) 8945.67 9243.71i 0.578063 0.597323i
\(622\) 375.018i 0.0241750i
\(623\) −6521.10 21565.3i −0.419361 1.38683i
\(624\) 8467.66 0.543234
\(625\) 42483.9 2.71897
\(626\) −3421.81 −0.218472
\(627\) 8482.04 0.540255
\(628\) −10114.9 −0.642721
\(629\) 1460.73i 0.0925962i
\(630\) 784.000 + 2592.70i 0.0495799 + 0.163961i
\(631\) 13957.1i 0.880546i 0.897864 + 0.440273i \(0.145118\pi\)
−0.897864 + 0.440273i \(0.854882\pi\)
\(632\) 7717.34i 0.485726i
\(633\) 27378.6i 1.71912i
\(634\) −5681.93 −0.355928
\(635\) 38030.5 2.37668
\(636\) −24033.4 −1.49841
\(637\) −6731.77 10113.2i −0.418717 0.629043i
\(638\) 2377.55i 0.147536i
\(639\) −1690.30 −0.104644
\(640\) −30399.7 −1.87758
\(641\) 11767.9i 0.725125i 0.931959 + 0.362563i \(0.118098\pi\)
−0.931959 + 0.362563i \(0.881902\pi\)
\(642\) −10510.6 −0.646140
\(643\) 18456.4 1.13196 0.565979 0.824420i \(-0.308498\pi\)
0.565979 + 0.824420i \(0.308498\pi\)
\(644\) −6544.63 + 12714.5i −0.400457 + 0.777984i
\(645\) 10173.0 0.621025
\(646\) 1924.23 0.117195
\(647\) 12931.1i 0.785738i 0.919595 + 0.392869i \(0.128517\pi\)
−0.919595 + 0.392869i \(0.871483\pi\)
\(648\) −13035.0 −0.790221
\(649\) −8251.51 −0.499076
\(650\) 11034.1i 0.665837i
\(651\) 5380.41 + 17793.1i 0.323924 + 1.07122i
\(652\) −3276.00 −0.196776
\(653\) 840.191 0.0503510 0.0251755 0.999683i \(-0.491986\pi\)
0.0251755 + 0.999683i \(0.491986\pi\)
\(654\) 1697.04 0.101467
\(655\) 8786.61i 0.524154i
\(656\) 18311.5i 1.08985i
\(657\) 5430.29i 0.322460i
\(658\) 157.176 47.5281i 0.00931209 0.00281586i
\(659\) 2845.25i 0.168187i 0.996458 + 0.0840934i \(0.0267994\pi\)
−0.996458 + 0.0840934i \(0.973201\pi\)
\(660\) −13469.6 −0.794399
\(661\) 22797.9 1.34151 0.670753 0.741681i \(-0.265971\pi\)
0.670753 + 0.741681i \(0.265971\pi\)
\(662\) −1399.40 −0.0821588
\(663\) 4315.05 0.252764
\(664\) −3146.56 −0.183901
\(665\) −10315.0 34111.7i −0.601500 1.98917i
\(666\) 489.397i 0.0284741i
\(667\) −11931.5 11546.8i −0.692638 0.670306i
\(668\) 8917.60i 0.516516i
\(669\) −1757.29 −0.101556
\(670\) 18713.0i 1.07902i
\(671\) 2700.72i 0.155380i
\(672\) 16642.3 5032.42i 0.955342 0.288884i
\(673\) 18718.6 1.07214 0.536068 0.844175i \(-0.319909\pi\)
0.536068 + 0.844175i \(0.319909\pi\)
\(674\) 6483.68i 0.370537i
\(675\) 36330.1i 2.07163i
\(676\) −6597.30 −0.375359
\(677\) −16328.0 −0.926935 −0.463468 0.886114i \(-0.653395\pi\)
−0.463468 + 0.886114i \(0.653395\pi\)
\(678\) −6392.64 −0.362106
\(679\) 2032.11 + 6720.21i 0.114853 + 0.379820i
\(680\) −6547.93 −0.369267
\(681\) 30362.4i 1.70850i
\(682\) 2718.78 0.152650
\(683\) −1241.59 −0.0695579 −0.0347790 0.999395i \(-0.511073\pi\)
−0.0347790 + 0.999395i \(0.511073\pi\)
\(684\) −4512.80 −0.252268
\(685\) 48743.2i 2.71881i
\(686\) −4899.87 4042.88i −0.272709 0.225011i
\(687\) 2612.97i 0.145111i
\(688\) 3423.63i 0.189716i
\(689\) −20855.4 −1.15316
\(690\) 9345.21 9656.56i 0.515603 0.532781i
\(691\) 12873.3i 0.708719i −0.935109 0.354360i \(-0.884699\pi\)
0.935109 0.354360i \(-0.115301\pi\)
\(692\) 21963.0i 1.20652i
\(693\) 1960.00 592.680i 0.107438 0.0324878i
\(694\) 12474.0 0.682284
\(695\) 38079.6i 2.07833i
\(696\) 13165.9i 0.717026i
\(697\) 9331.37i 0.507103i
\(698\) 3405.32i 0.184661i
\(699\) 27905.2i 1.50997i
\(700\) 11689.8 + 38658.3i 0.631190 + 2.08735i
\(701\) 3110.36i 0.167584i 0.996483 + 0.0837922i \(0.0267032\pi\)
−0.996483 + 0.0837922i \(0.973297\pi\)
\(702\) −4130.57 −0.222077
\(703\) 6438.92i 0.345446i
\(704\) 2637.71i 0.141211i
\(705\) 1080.15 0.0577033
\(706\) 4908.22i 0.261648i
\(707\) 20459.2 6186.62i 1.08833 0.329097i
\(708\) 21323.6 1.13191
\(709\) 27905.1i 1.47814i 0.673630 + 0.739069i \(0.264734\pi\)
−0.673630 + 0.739069i \(0.735266\pi\)
\(710\) 5045.13 0.266677
\(711\) 3601.42i 0.189963i
\(712\) 18247.4 0.960462
\(713\) 13204.1 13644.0i 0.693542 0.716649i
\(714\) 2159.70 653.067i 0.113200 0.0342303i
\(715\) −11688.5 −0.611361
\(716\) −6020.00 −0.314215
\(717\) 4793.48i 0.249673i
\(718\) 369.060i 0.0191827i
\(719\) 5116.03i 0.265362i 0.991159 + 0.132681i \(0.0423587\pi\)
−0.991159 + 0.132681i \(0.957641\pi\)
\(720\) 5996.37 0.310377
\(721\) 3629.70 + 12003.5i 0.187485 + 0.620017i
\(722\) −1623.04 −0.0836609
\(723\) 469.787i 0.0241654i
\(724\) −1805.40 −0.0926759
\(725\) −46893.9 −2.40220
\(726\) 6306.34i 0.322383i
\(727\) 35674.0 1.81991 0.909954 0.414708i \(-0.136116\pi\)
0.909954 + 0.414708i \(0.136116\pi\)
\(728\) 9418.44 2848.02i 0.479493 0.144993i
\(729\) −12277.0 −0.623736
\(730\) 16208.1i 0.821764i
\(731\) 1744.65i 0.0882740i
\(732\) 6979.22i 0.352404i
\(733\) −19488.1 −0.982004 −0.491002 0.871158i \(-0.663369\pi\)
−0.491002 + 0.871158i \(0.663369\pi\)
\(734\) 10842.3 0.545226
\(735\) −23154.5 34785.2i −1.16199 1.74568i
\(736\) −12761.5 12350.1i −0.639125 0.618518i
\(737\) −14146.5 −0.707044
\(738\) 3126.35i 0.155938i
\(739\) 24822.2 1.23559 0.617794 0.786340i \(-0.288027\pi\)
0.617794 + 0.786340i \(0.288027\pi\)
\(740\) 10225.1i 0.507949i
\(741\) −19020.8 −0.942980
\(742\) −10438.2 + 3156.38i −0.516439 + 0.156165i
\(743\) 3748.17i 0.185070i −0.995709 0.0925349i \(-0.970503\pi\)
0.995709 0.0925349i \(-0.0294970\pi\)
\(744\) −15055.5 −0.741883
\(745\) 13059.4i 0.642226i
\(746\) 5670.05i 0.278278i
\(747\) 1468.39 0.0719220
\(748\) 2310.02i 0.112918i
\(749\) 31954.9 9662.77i 1.55889 0.471388i
\(750\) 22724.3i 1.10637i
\(751\) 15506.8i 0.753463i −0.926322 0.376732i \(-0.877048\pi\)
0.926322 0.376732i \(-0.122952\pi\)
\(752\) 363.515i 0.0176277i
\(753\) 15384.5i 0.744544i
\(754\) 5331.61i 0.257514i
\(755\) 51432.9 2.47925
\(756\) 14471.5 4376.02i 0.696197 0.210522i
\(757\) 15098.9i 0.724941i −0.931995 0.362470i \(-0.881933\pi\)
0.931995 0.362470i \(-0.118067\pi\)
\(758\) 1089.36i 0.0521995i
\(759\) −7300.07 7064.69i −0.349112 0.337855i
\(760\) 28863.4 1.37761
\(761\) 39800.6i 1.89589i −0.318435 0.947945i \(-0.603157\pi\)
0.318435 0.947945i \(-0.396843\pi\)
\(762\) 10613.7i 0.504583i
\(763\) −5159.40 + 1560.14i −0.244800 + 0.0740247i
\(764\) 27636.5i 1.30871i
\(765\) 3055.70 0.144417
\(766\) 1620.17 0.0764217
\(767\) 18503.9 0.871104
\(768\) 693.883i 0.0326020i
\(769\) 4772.54 0.223800 0.111900 0.993719i \(-0.464306\pi\)
0.111900 + 0.993719i \(0.464306\pi\)
\(770\) −5850.11 + 1769.00i −0.273797 + 0.0827928i
\(771\) −31054.6 −1.45059
\(772\) 28109.9 1.31049
\(773\) −31119.4 −1.44798 −0.723990 0.689811i \(-0.757694\pi\)
−0.723990 + 0.689811i \(0.757694\pi\)
\(774\) 584.522i 0.0271450i
\(775\) 53624.3i 2.48547i
\(776\) −5686.26 −0.263047
\(777\) −2185.32 7226.86i −0.100898 0.333671i
\(778\) 9875.13i 0.455065i
\(779\) 41132.9i 1.89183i
\(780\) 30205.4 1.38657
\(781\) 3813.97i 0.174743i
\(782\) −1656.09 1602.69i −0.0757309 0.0732891i
\(783\) 17554.5i 0.801208i
\(784\) −11706.7 + 7792.43i −0.533285 + 0.354976i
\(785\) −30190.5 −1.37267
\(786\) −2452.19 −0.111281
\(787\) 19852.2 0.899180 0.449590 0.893235i \(-0.351570\pi\)
0.449590 + 0.893235i \(0.351570\pi\)
\(788\) 20091.6 0.908291
\(789\) −1656.38 −0.0747383
\(790\) 10749.4i 0.484107i
\(791\) 19435.2 5876.96i 0.873622 0.264173i
\(792\) 1658.44i 0.0744067i
\(793\) 6056.33i 0.271206i
\(794\) 6695.53i 0.299264i
\(795\) −71733.7 −3.20017
\(796\) −28462.1 −1.26735
\(797\) −21633.5 −0.961477 −0.480739 0.876864i \(-0.659631\pi\)
−0.480739 + 0.876864i \(0.659631\pi\)
\(798\) −9520.00 + 2878.73i −0.422311 + 0.127702i
\(799\) 185.244i 0.00820210i
\(800\) −50156.1 −2.21661
\(801\) −8515.43 −0.375628
\(802\) 10839.3i 0.477244i
\(803\) 12252.8 0.538471
\(804\) 36557.3 1.60358
\(805\) −19534.1 + 37949.6i −0.855263 + 1.66155i
\(806\) −6096.83 −0.266441
\(807\) 10729.1 0.468008
\(808\) 17311.4i 0.753730i
\(809\) 10759.7 0.467603 0.233802 0.972284i \(-0.424883\pi\)
0.233802 + 0.972284i \(0.424883\pi\)
\(810\) −18156.2 −0.787587
\(811\) 27495.2i 1.19049i −0.803544 0.595245i \(-0.797055\pi\)
0.803544 0.595245i \(-0.202945\pi\)
\(812\) −5648.44 18679.4i −0.244115 0.807290i
\(813\) −10133.1 −0.437127
\(814\) −1104.27 −0.0475485
\(815\) −9778.05 −0.420258
\(816\) 4994.93i 0.214286i
\(817\) 7690.47i 0.329321i
\(818\) 5976.01i 0.255435i
\(819\) −4395.27 + 1329.08i −0.187525 + 0.0567054i
\(820\) 65319.6i 2.78178i
\(821\) −20234.5 −0.860155 −0.430078 0.902792i \(-0.641514\pi\)
−0.430078 + 0.902792i \(0.641514\pi\)
\(822\) 13603.4 0.577218
\(823\) 3378.41 0.143091 0.0715456 0.997437i \(-0.477207\pi\)
0.0715456 + 0.997437i \(0.477207\pi\)
\(824\) −10156.6 −0.429397
\(825\) −28691.1 −1.21078
\(826\) 9261.26 2800.49i 0.390122 0.117968i
\(827\) 27515.3i 1.15696i −0.815698 0.578478i \(-0.803647\pi\)
0.815698 0.578478i \(-0.196353\pi\)
\(828\) 3883.94 + 3758.72i 0.163015 + 0.157759i
\(829\) 36959.9i 1.54846i −0.632907 0.774228i \(-0.718138\pi\)
0.632907 0.774228i \(-0.281862\pi\)
\(830\) −4382.79 −0.183288
\(831\) 5537.65i 0.231166i
\(832\) 5915.03i 0.246474i
\(833\) −5965.62 + 3970.96i −0.248135 + 0.165169i
\(834\) 10627.4 0.441242
\(835\) 26616.8i 1.10313i
\(836\) 10182.6i 0.421259i
\(837\) −20074.0 −0.828982
\(838\) 7995.76 0.329605
\(839\) −26912.3 −1.10741 −0.553705 0.832713i \(-0.686787\pi\)
−0.553705 + 0.832713i \(0.686787\pi\)
\(840\) 32395.5 9796.00i 1.33065 0.402374i
\(841\) −1730.21 −0.0709423
\(842\) 7113.86i 0.291164i
\(843\) 26364.3 1.07715
\(844\) 32867.8 1.34047
\(845\) −19691.3 −0.801659
\(846\) 62.0636i 0.00252221i
\(847\) −5797.62 19172.8i −0.235193 0.777786i
\(848\) 24141.4i 0.977615i
\(849\) 42147.5i 1.70377i
\(850\) −6508.84 −0.262649
\(851\) −5362.98 + 5541.66i −0.216029 + 0.223226i
\(852\) 9856.07i 0.396318i
\(853\) 31079.1i 1.24751i 0.781618 + 0.623757i \(0.214394\pi\)
−0.781618 + 0.623757i \(0.785606\pi\)
\(854\) −916.603 3031.22i −0.0367278 0.121459i
\(855\) −13469.6 −0.538772
\(856\) 27038.4i 1.07962i
\(857\) 1986.04i 0.0791619i 0.999216 + 0.0395809i \(0.0126023\pi\)
−0.999216 + 0.0395809i \(0.987398\pi\)
\(858\) 3262.05i 0.129795i
\(859\) 40956.5i 1.62680i 0.581707 + 0.813398i \(0.302385\pi\)
−0.581707 + 0.813398i \(0.697615\pi\)
\(860\) 12212.6i 0.484239i
\(861\) −13960.2 46166.4i −0.552568 1.82735i
\(862\) 4192.44i 0.165656i
\(863\) 44096.8 1.73936 0.869682 0.493612i \(-0.164324\pi\)
0.869682 + 0.493612i \(0.164324\pi\)
\(864\) 18775.7i 0.739307i
\(865\) 65554.2i 2.57677i
\(866\) −14887.2 −0.584168
\(867\) 26102.1i 1.02246i
\(868\) 21360.4 6459.12i 0.835275 0.252577i
\(869\) 8126.18 0.317217
\(870\) 18338.5i 0.714636i
\(871\) 31723.2 1.23410
\(872\) 4365.59i 0.169538i
\(873\) 2653.59 0.102876
\(874\) 7300.07 + 7064.69i 0.282527 + 0.273417i
\(875\) 20891.2 + 69087.4i 0.807144 + 2.66923i
\(876\) −31663.8 −1.22126
\(877\) −39412.9 −1.51753 −0.758767 0.651362i \(-0.774198\pi\)
−0.758767 + 0.651362i \(0.774198\pi\)
\(878\) 14132.5i 0.543224i
\(879\) 26526.2i 1.01787i
\(880\) 13530.1i 0.518295i
\(881\) 29181.2 1.11594 0.557968 0.829863i \(-0.311581\pi\)
0.557968 + 0.829863i \(0.311581\pi\)
\(882\) −1998.70 + 1330.42i −0.0763035 + 0.0507907i
\(883\) −15043.8 −0.573345 −0.286672 0.958029i \(-0.592549\pi\)
−0.286672 + 0.958029i \(0.592549\pi\)
\(884\) 5180.18i 0.197091i
\(885\) 63645.6 2.41743
\(886\) 8654.19 0.328153
\(887\) 22905.3i 0.867064i −0.901138 0.433532i \(-0.857267\pi\)
0.901138 0.433532i \(-0.142733\pi\)
\(888\) 6114.96 0.231086
\(889\) 9757.47 + 32268.1i 0.368116 + 1.21736i
\(890\) 25416.5 0.957260
\(891\) 13725.6i 0.516076i
\(892\) 2109.61i 0.0791870i
\(893\) 816.561i 0.0305993i
\(894\) −3644.65 −0.136348
\(895\) −17968.2 −0.671074
\(896\) −7799.64 25793.5i −0.290812 0.961719i
\(897\) 16370.3 + 15842.5i 0.609352 + 0.589704i
\(898\) −8249.59 −0.306562
\(899\) 25910.9i 0.961264i
\(900\) 15264.9 0.565366
\(901\) 12302.2i 0.454880i
\(902\) −7054.24 −0.260399
\(903\) 2610.08 + 8631.57i 0.0961883 + 0.318096i
\(904\) 16444.9i 0.605034i
\(905\) −5388.68 −0.197929
\(906\) 14354.0i 0.526359i
\(907\) 20693.8i 0.757582i −0.925482 0.378791i \(-0.876340\pi\)
0.925482 0.378791i \(-0.123660\pi\)
\(908\) −36449.7 −1.33219
\(909\) 8078.66i 0.294777i
\(910\) 13118.8 3966.96i 0.477894 0.144509i
\(911\) 49907.6i 1.81505i 0.419996 + 0.907526i \(0.362031\pi\)
−0.419996 + 0.907526i \(0.637969\pi\)
\(912\) 22017.8i 0.799431i
\(913\) 3313.26i 0.120102i
\(914\) 10215.4i 0.369689i
\(915\) 20831.2i 0.752633i
\(916\) 3136.85 0.113149
\(917\) 7455.25 2254.38i 0.268478 0.0811844i
\(918\) 2436.55i 0.0876015i
\(919\) 9215.03i 0.330768i −0.986229 0.165384i \(-0.947114\pi\)
0.986229 0.165384i \(-0.0528863\pi\)
\(920\) −24841.3 24040.4i −0.890211 0.861508i
\(921\) −3572.79 −0.127826
\(922\) 14852.8i 0.530534i
\(923\) 8552.76i 0.305003i
\(924\) −3455.89 11428.7i −0.123042 0.406900i
\(925\) 21780.1i 0.774191i
\(926\) −4969.10 −0.176344
\(927\) 4739.76 0.167933
\(928\) 24235.1 0.857279
\(929\) 38118.8i 1.34622i −0.739543 0.673109i \(-0.764959\pi\)
0.739543 0.673109i \(-0.235041\pi\)
\(930\) −20970.5 −0.739410
\(931\) 26296.6 17504.1i 0.925710 0.616190i
\(932\) 33499.9 1.17739
\(933\) 2186.71 0.0767307
\(934\) 6965.78 0.244033
\(935\) 6894.82i 0.241160i
\(936\) 3719.03i 0.129872i
\(937\) −45024.8 −1.56979 −0.784897 0.619626i \(-0.787284\pi\)
−0.784897 + 0.619626i \(0.787284\pi\)
\(938\) 15877.6 4801.19i 0.552688 0.167126i
\(939\) 19952.4i 0.693422i
\(940\) 1296.71i 0.0449937i
\(941\) −2642.81 −0.0915549 −0.0457775 0.998952i \(-0.514577\pi\)
−0.0457775 + 0.998952i \(0.514577\pi\)
\(942\) 8425.65i 0.291425i
\(943\) −34259.6 + 35401.1i −1.18308 + 1.22250i
\(944\) 21419.4i 0.738497i
\(945\) 43194.0 13061.3i 1.48688 0.449614i
\(946\) 1318.90 0.0453290
\(947\) −12827.8 −0.440176 −0.220088 0.975480i \(-0.570634\pi\)
−0.220088 + 0.975480i \(0.570634\pi\)
\(948\) −20999.7 −0.719451
\(949\) −27476.8 −0.939867
\(950\) 28691.1 0.979856
\(951\) 33131.0i 1.12970i
\(952\) −1680.00 5555.78i −0.0571944 0.189143i
\(953\) 28178.5i 0.957809i 0.877867 + 0.478905i \(0.158966\pi\)
−0.877867 + 0.478905i \(0.841034\pi\)
\(954\) 4121.69i 0.139879i
\(955\) 82488.1i 2.79503i
\(956\) −5754.52 −0.194680
\(957\) 13863.4 0.468274
\(958\) 9568.28 0.322690
\(959\) −41357.6 + 12506.0i −1.39260 + 0.421106i
\(960\) 20345.2i 0.683999i
\(961\) 161.272 0.00541345
\(962\) 2476.30 0.0829928
\(963\) 12617.9i 0.422229i
\(964\) −563.974 −0.0188427
\(965\) 83901.0 2.79883
\(966\) 10591.1 + 5451.63i 0.352757 + 0.181577i
\(967\) −16918.3 −0.562623 −0.281311 0.959617i \(-0.590769\pi\)
−0.281311 + 0.959617i \(0.590769\pi\)
\(968\) 16222.9 0.538662
\(969\) 11220.1i 0.371972i
\(970\) −7920.30 −0.262171
\(971\) 3245.22 0.107254 0.0536272 0.998561i \(-0.482922\pi\)
0.0536272 + 0.998561i \(0.482922\pi\)
\(972\) 13428.7i 0.443133i
\(973\) −32309.7 + 9770.07i −1.06455 + 0.321906i
\(974\) 19805.6 0.651552
\(975\) 64339.4 2.11334
\(976\) −7010.57 −0.229921
\(977\) 6365.67i 0.208450i −0.994554 0.104225i \(-0.966764\pi\)
0.994554 0.104225i \(-0.0332362\pi\)
\(978\) 2728.89i 0.0892230i
\(979\) 19214.1i 0.627257i
\(980\) −41759.3 + 27796.7i −1.36118 + 0.906055i
\(981\) 2037.27i 0.0663050i
\(982\) −7182.57 −0.233406
\(983\) −28349.1 −0.919834 −0.459917 0.887962i \(-0.652121\pi\)
−0.459917 + 0.887962i \(0.652121\pi\)
\(984\) 39063.4 1.26554
\(985\) 59968.4 1.93985
\(986\) 3145.03 0.101580
\(987\) 277.134 + 916.486i 0.00893746 + 0.0295563i
\(988\) 22834.3i 0.735280i
\(989\) 6405.40 6618.81i 0.205945 0.212807i
\(990\) 2310.02i 0.0741587i
\(991\) 7404.99 0.237364 0.118682 0.992932i \(-0.462133\pi\)
0.118682 + 0.992932i \(0.462133\pi\)
\(992\) 27713.4i 0.886997i
\(993\) 8159.82i 0.260769i
\(994\) 1294.43 + 4280.69i 0.0413046 + 0.136595i
\(995\) −84952.2 −2.70670
\(996\) 8562.14i 0.272391i
\(997\) 18086.5i 0.574530i 0.957851 + 0.287265i \(0.0927460\pi\)
−0.957851 + 0.287265i \(0.907254\pi\)
\(998\) −9716.99 −0.308202
\(999\) 8153.28 0.258217
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 161.4.c.b.160.1 8
7.6 odd 2 inner 161.4.c.b.160.8 yes 8
23.22 odd 2 inner 161.4.c.b.160.4 yes 8
161.160 even 2 inner 161.4.c.b.160.5 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
161.4.c.b.160.1 8 1.1 even 1 trivial
161.4.c.b.160.4 yes 8 23.22 odd 2 inner
161.4.c.b.160.5 yes 8 161.160 even 2 inner
161.4.c.b.160.8 yes 8 7.6 odd 2 inner