Properties

Label 161.4.c.a.160.2
Level $161$
Weight $4$
Character 161.160
Analytic conductor $9.499$
Analytic rank $0$
Dimension $2$
CM discriminant -7
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [161,4,Mod(160,161)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(161, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("161.160");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 161 = 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 161.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.49930751092\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-7}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 160.2
Root \(0.500000 + 1.32288i\) of defining polynomial
Character \(\chi\) \(=\) 161.160
Dual form 161.4.c.a.160.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+5.00000 q^{2} +17.0000 q^{4} +18.5203i q^{7} +45.0000 q^{8} +27.0000 q^{9} -26.4575i q^{11} +92.6013i q^{14} +89.0000 q^{16} +135.000 q^{18} -132.288i q^{22} +(-20.0000 - 108.476i) q^{23} -125.000 q^{25} +314.844i q^{28} -166.000 q^{29} +85.0000 q^{32} +459.000 q^{36} -10.5830i q^{37} +534.442i q^{43} -449.778i q^{44} +(-100.000 - 542.379i) q^{46} -343.000 q^{49} -625.000 q^{50} -497.401i q^{53} +833.412i q^{56} -830.000 q^{58} +500.047i q^{63} -287.000 q^{64} -809.600i q^{67} +688.000 q^{71} +1215.00 q^{72} -52.9150i q^{74} +490.000 q^{77} +238.118i q^{79} +729.000 q^{81} +2672.21i q^{86} -1190.59i q^{88} +(-340.000 - 1844.09i) q^{92} -1715.00 q^{98} -714.353i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 10 q^{2} + 34 q^{4} + 90 q^{8} + 54 q^{9} + 178 q^{16} + 270 q^{18} - 40 q^{23} - 250 q^{25} - 332 q^{29} + 170 q^{32} + 918 q^{36} - 200 q^{46} - 686 q^{49} - 1250 q^{50} - 1660 q^{58} - 574 q^{64}+ \cdots - 3430 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/161\mathbb{Z}\right)^\times\).

\(n\) \(24\) \(120\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 5.00000 1.76777 0.883883 0.467707i \(-0.154920\pi\)
0.883883 + 0.467707i \(0.154920\pi\)
\(3\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(4\) 17.0000 2.12500
\(5\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(6\) 0 0
\(7\) 18.5203i 1.00000i
\(8\) 45.0000 1.98874
\(9\) 27.0000 1.00000
\(10\) 0 0
\(11\) 26.4575i 0.725204i −0.931944 0.362602i \(-0.881889\pi\)
0.931944 0.362602i \(-0.118111\pi\)
\(12\) 0 0
\(13\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(14\) 92.6013i 1.76777i
\(15\) 0 0
\(16\) 89.0000 1.39062
\(17\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(18\) 135.000 1.76777
\(19\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 132.288i 1.28199i
\(23\) −20.0000 108.476i −0.181317 0.983425i
\(24\) 0 0
\(25\) −125.000 −1.00000
\(26\) 0 0
\(27\) 0 0
\(28\) 314.844i 2.12500i
\(29\) −166.000 −1.06295 −0.531473 0.847075i \(-0.678361\pi\)
−0.531473 + 0.847075i \(0.678361\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(32\) 85.0000 0.469563
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 459.000 2.12500
\(37\) 10.5830i 0.0470226i −0.999724 0.0235113i \(-0.992515\pi\)
0.999724 0.0235113i \(-0.00748457\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(42\) 0 0
\(43\) 534.442i 1.89539i 0.319183 + 0.947693i \(0.396592\pi\)
−0.319183 + 0.947693i \(0.603408\pi\)
\(44\) 449.778i 1.54106i
\(45\) 0 0
\(46\) −100.000 542.379i −0.320526 1.73847i
\(47\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(48\) 0 0
\(49\) −343.000 −1.00000
\(50\) −625.000 −1.76777
\(51\) 0 0
\(52\) 0 0
\(53\) 497.401i 1.28912i −0.764554 0.644560i \(-0.777041\pi\)
0.764554 0.644560i \(-0.222959\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 833.412i 1.98874i
\(57\) 0 0
\(58\) −830.000 −1.87904
\(59\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(62\) 0 0
\(63\) 500.047i 1.00000i
\(64\) −287.000 −0.560547
\(65\) 0 0
\(66\) 0 0
\(67\) 809.600i 1.47624i −0.674667 0.738122i \(-0.735713\pi\)
0.674667 0.738122i \(-0.264287\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 688.000 1.15001 0.575004 0.818151i \(-0.305000\pi\)
0.575004 + 0.818151i \(0.305000\pi\)
\(72\) 1215.00 1.98874
\(73\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(74\) 52.9150i 0.0831250i
\(75\) 0 0
\(76\) 0 0
\(77\) 490.000 0.725204
\(78\) 0 0
\(79\) 238.118i 0.339118i 0.985520 + 0.169559i \(0.0542343\pi\)
−0.985520 + 0.169559i \(0.945766\pi\)
\(80\) 0 0
\(81\) 729.000 1.00000
\(82\) 0 0
\(83\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 2672.21i 3.35060i
\(87\) 0 0
\(88\) 1190.59i 1.44224i
\(89\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −340.000 1844.09i −0.385298 2.08978i
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(98\) −1715.00 −1.76777
\(99\) 714.353i 0.725204i
\(100\) −2125.00 −2.12500
\(101\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 2487.01i 2.27886i
\(107\) 1550.41i 1.40078i 0.713759 + 0.700392i \(0.246991\pi\)
−0.713759 + 0.700392i \(0.753009\pi\)
\(108\) 0 0
\(109\) 2275.35i 1.99944i 0.0237260 + 0.999718i \(0.492447\pi\)
−0.0237260 + 0.999718i \(0.507553\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 1648.30i 1.39062i
\(113\) 2307.10i 1.92065i −0.278886 0.960324i \(-0.589965\pi\)
0.278886 0.960324i \(-0.410035\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −2822.00 −2.25876
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 631.000 0.474080
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 2500.23i 1.76777i
\(127\) 2000.00 1.39741 0.698706 0.715409i \(-0.253760\pi\)
0.698706 + 0.715409i \(0.253760\pi\)
\(128\) −2115.00 −1.46048
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 4048.00i 2.60966i
\(135\) 0 0
\(136\) 0 0
\(137\) 783.142i 0.488382i −0.969727 0.244191i \(-0.921478\pi\)
0.969727 0.244191i \(-0.0785224\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 3440.00 2.03295
\(143\) 0 0
\(144\) 2403.00 1.39062
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 179.911i 0.0999230i
\(149\) 3545.31i 1.94928i 0.223777 + 0.974640i \(0.428161\pi\)
−0.223777 + 0.974640i \(0.571839\pi\)
\(150\) 0 0
\(151\) 2952.00 1.59093 0.795465 0.606000i \(-0.207227\pi\)
0.795465 + 0.606000i \(0.207227\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 2450.00 1.28199
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(158\) 1190.59i 0.599482i
\(159\) 0 0
\(160\) 0 0
\(161\) 2009.00 370.405i 0.983425 0.181317i
\(162\) 3645.00 1.76777
\(163\) 1780.00 0.855340 0.427670 0.903935i \(-0.359335\pi\)
0.427670 + 0.903935i \(0.359335\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(168\) 0 0
\(169\) 2197.00 1.00000
\(170\) 0 0
\(171\) 0 0
\(172\) 9085.51i 4.02770i
\(173\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(174\) 0 0
\(175\) 2315.03i 1.00000i
\(176\) 2354.72i 1.00849i
\(177\) 0 0
\(178\) 0 0
\(179\) 2084.00 0.870198 0.435099 0.900383i \(-0.356713\pi\)
0.435099 + 0.900383i \(0.356713\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −900.000 4881.41i −0.360592 1.95577i
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 3360.10i 1.27292i 0.771308 + 0.636462i \(0.219603\pi\)
−0.771308 + 0.636462i \(0.780397\pi\)
\(192\) 0 0
\(193\) −4590.00 −1.71189 −0.855947 0.517064i \(-0.827025\pi\)
−0.855947 + 0.517064i \(0.827025\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) −5831.00 −2.12500
\(197\) −2210.00 −0.799269 −0.399634 0.916675i \(-0.630863\pi\)
−0.399634 + 0.916675i \(0.630863\pi\)
\(198\) 3571.76i 1.28199i
\(199\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(200\) −5625.00 −1.98874
\(201\) 0 0
\(202\) 0 0
\(203\) 3074.36i 1.06295i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −540.000 2928.85i −0.181317 0.983425i
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −5868.00 −1.91455 −0.957274 0.289181i \(-0.906617\pi\)
−0.957274 + 0.289181i \(0.906617\pi\)
\(212\) 8455.82i 2.73938i
\(213\) 0 0
\(214\) 7752.05i 2.47626i
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 11376.7i 3.53454i
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(224\) 1574.22i 0.469563i
\(225\) −3375.00 −1.00000
\(226\) 11535.5i 3.39526i
\(227\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(228\) 0 0
\(229\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −7470.00 −2.11392
\(233\) −4730.00 −1.32993 −0.664963 0.746877i \(-0.731553\pi\)
−0.664963 + 0.746877i \(0.731553\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 7376.00 1.99629 0.998146 0.0608655i \(-0.0193861\pi\)
0.998146 + 0.0608655i \(0.0193861\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(242\) 3155.00 0.838062
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) 8500.80i 2.12500i
\(253\) −2870.00 + 529.150i −0.713183 + 0.131492i
\(254\) 10000.0 2.47030
\(255\) 0 0
\(256\) −8279.00 −2.02124
\(257\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(258\) 0 0
\(259\) 196.000 0.0470226
\(260\) 0 0
\(261\) −4482.00 −1.06295
\(262\) 0 0
\(263\) 4026.83i 0.944126i 0.881565 + 0.472063i \(0.156491\pi\)
−0.881565 + 0.472063i \(0.843509\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 13763.2i 3.13702i
\(269\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 3915.71i 0.863346i
\(275\) 3307.19i 0.725204i
\(276\) 0 0
\(277\) −7310.00 −1.58561 −0.792807 0.609472i \(-0.791381\pi\)
−0.792807 + 0.609472i \(0.791381\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 8360.57i 1.77491i −0.460893 0.887456i \(-0.652471\pi\)
0.460893 0.887456i \(-0.347529\pi\)
\(282\) 0 0
\(283\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(284\) 11696.0 2.44377
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 2295.00 0.469563
\(289\) −4913.00 −1.00000
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 476.235i 0.0935156i
\(297\) 0 0
\(298\) 17726.5i 3.44587i
\(299\) 0 0
\(300\) 0 0
\(301\) −9898.00 −1.89539
\(302\) 14760.0 2.81239
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(308\) 8330.00 1.54106
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(312\) 0 0
\(313\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 4048.00i 0.720626i
\(317\) 6970.00 1.23493 0.617467 0.786597i \(-0.288159\pi\)
0.617467 + 0.786597i \(0.288159\pi\)
\(318\) 0 0
\(319\) 4391.95i 0.770852i
\(320\) 0 0
\(321\) 0 0
\(322\) 10045.0 1852.03i 1.73847 0.320526i
\(323\) 0 0
\(324\) 12393.0 2.12500
\(325\) 0 0
\(326\) 8900.00 1.51204
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −10908.0 −1.81135 −0.905677 0.423969i \(-0.860636\pi\)
−0.905677 + 0.423969i \(0.860636\pi\)
\(332\) 0 0
\(333\) 285.741i 0.0470226i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 11916.5i 1.92621i −0.269135 0.963103i \(-0.586738\pi\)
0.269135 0.963103i \(-0.413262\pi\)
\(338\) 10985.0 1.76777
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 6352.45i 1.00000i
\(344\) 24049.9i 3.76943i
\(345\) 0 0
\(346\) 0 0
\(347\) 4100.00 0.634293 0.317146 0.948377i \(-0.397275\pi\)
0.317146 + 0.948377i \(0.397275\pi\)
\(348\) 0 0
\(349\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(350\) 11575.2i 1.76777i
\(351\) 0 0
\(352\) 2248.89i 0.340529i
\(353\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 10420.0 1.53831
\(359\) 10927.0i 1.60641i 0.595700 + 0.803207i \(0.296875\pi\)
−0.595700 + 0.803207i \(0.703125\pi\)
\(360\) 0 0
\(361\) −6859.00 −1.00000
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(368\) −1780.00 9654.35i −0.252144 1.36758i
\(369\) 0 0
\(370\) 0 0
\(371\) 9212.00 1.28912
\(372\) 0 0
\(373\) 3524.14i 0.489204i −0.969624 0.244602i \(-0.921343\pi\)
0.969624 0.244602i \(-0.0786573\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 8704.52i 1.17974i −0.807498 0.589870i \(-0.799179\pi\)
0.807498 0.589870i \(-0.200821\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 16800.5i 2.25023i
\(383\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −22950.0 −3.02623
\(387\) 14429.9i 1.89539i
\(388\) 0 0
\(389\) 11165.1i 1.45525i −0.685976 0.727624i \(-0.740625\pi\)
0.685976 0.727624i \(-0.259375\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −15435.0 −1.98874
\(393\) 0 0
\(394\) −11050.0 −1.41292
\(395\) 0 0
\(396\) 12144.0i 1.54106i
\(397\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) −11125.0 −1.39062
\(401\) 15980.3i 1.99007i 0.0995016 + 0.995037i \(0.468275\pi\)
−0.0995016 + 0.995037i \(0.531725\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 15371.8i 1.87904i
\(407\) −280.000 −0.0341009
\(408\) 0 0
\(409\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) −2700.00 14644.2i −0.320526 1.73847i
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 0 0
\(421\) 8096.00i 0.937232i 0.883402 + 0.468616i \(0.155247\pi\)
−0.883402 + 0.468616i \(0.844753\pi\)
\(422\) −29340.0 −3.38448
\(423\) 0 0
\(424\) 22383.1i 2.56372i
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 26357.0i 2.97666i
\(429\) 0 0
\(430\) 0 0
\(431\) 15689.3i 1.75343i −0.481012 0.876714i \(-0.659731\pi\)
0.481012 0.876714i \(-0.340269\pi\)
\(432\) 0 0
\(433\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 38680.9i 4.24880i
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(440\) 0 0
\(441\) −9261.00 −1.00000
\(442\) 0 0
\(443\) 18580.0 1.99269 0.996346 0.0854102i \(-0.0272201\pi\)
0.996346 + 0.0854102i \(0.0272201\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 5315.31i 0.560547i
\(449\) 2686.00 0.282317 0.141158 0.989987i \(-0.454917\pi\)
0.141158 + 0.989987i \(0.454917\pi\)
\(450\) −16875.0 −1.76777
\(451\) 0 0
\(452\) 39220.6i 4.08138i
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 17821.8i 1.82422i 0.409947 + 0.912109i \(0.365547\pi\)
−0.409947 + 0.912109i \(0.634453\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(462\) 0 0
\(463\) 8440.00 0.847171 0.423585 0.905856i \(-0.360771\pi\)
0.423585 + 0.905856i \(0.360771\pi\)
\(464\) −14774.0 −1.47816
\(465\) 0 0
\(466\) −23650.0 −2.35100
\(467\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(468\) 0 0
\(469\) 14994.0 1.47624
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 14140.0 1.37454
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 13429.8i 1.28912i
\(478\) 36880.0 3.52898
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 10727.0 1.00742
\(485\) 0 0
\(486\) 0 0
\(487\) 21240.0 1.97634 0.988169 0.153371i \(-0.0490130\pi\)
0.988169 + 0.153371i \(0.0490130\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 20372.0 1.87246 0.936228 0.351394i \(-0.114292\pi\)
0.936228 + 0.351394i \(0.114292\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 12741.9i 1.15001i
\(498\) 0 0
\(499\) 7236.00 0.649154 0.324577 0.945859i \(-0.394778\pi\)
0.324577 + 0.945859i \(0.394778\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) 22502.1i 1.98874i
\(505\) 0 0
\(506\) −14350.0 + 2645.75i −1.26074 + 0.232447i
\(507\) 0 0
\(508\) 34000.0 2.96950
\(509\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −24475.0 −2.11260
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 980.000 0.0831250
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(522\) −22410.0 −1.87904
\(523\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 20134.2i 1.66900i
\(527\) 0 0
\(528\) 0 0
\(529\) −11367.0 + 4339.03i −0.934248 + 0.356623i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 36432.0i 2.93586i
\(537\) 0 0
\(538\) 0 0
\(539\) 9074.93i 0.725204i
\(540\) 0 0
\(541\) −15878.0 −1.26183 −0.630914 0.775853i \(-0.717320\pi\)
−0.630914 + 0.775853i \(0.717320\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −12980.0 −1.01460 −0.507299 0.861770i \(-0.669356\pi\)
−0.507299 + 0.861770i \(0.669356\pi\)
\(548\) 13313.4i 1.03781i
\(549\) 0 0
\(550\) 16535.9i 1.28199i
\(551\) 0 0
\(552\) 0 0
\(553\) −4410.00 −0.339118
\(554\) −36550.0 −2.80300
\(555\) 0 0
\(556\) 0 0
\(557\) 16498.9i 1.25508i −0.778583 0.627541i \(-0.784061\pi\)
0.778583 0.627541i \(-0.215939\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 41802.9i 3.13763i
\(563\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 13501.3i 1.00000i
\(568\) 30960.0 2.28706
\(569\) 3598.22i 0.265106i −0.991176 0.132553i \(-0.957683\pi\)
0.991176 0.132553i \(-0.0423175\pi\)
\(570\) 0 0
\(571\) 26431.1i 1.93714i −0.248747 0.968569i \(-0.580019\pi\)
0.248747 0.968569i \(-0.419981\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 2500.00 + 13559.5i 0.181317 + 0.983425i
\(576\) −7749.00 −0.560547
\(577\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(578\) −24565.0 −1.76777
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −13160.0 −0.934874
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 941.887i 0.0653908i
\(593\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 60270.2i 4.14222i
\(597\) 0 0
\(598\) 0 0
\(599\) 24736.0 1.68729 0.843644 0.536903i \(-0.180406\pi\)
0.843644 + 0.536903i \(0.180406\pi\)
\(600\) 0 0
\(601\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(602\) −49490.0 −3.35060
\(603\) 21859.2i 1.47624i
\(604\) 50184.0 3.38073
\(605\) 0 0
\(606\) 0 0
\(607\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 26383.4i 1.73836i 0.494493 + 0.869182i \(0.335354\pi\)
−0.494493 + 0.869182i \(0.664646\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 22050.0 1.44224
\(617\) 2497.59i 0.162965i 0.996675 + 0.0814823i \(0.0259654\pi\)
−0.996675 + 0.0814823i \(0.974035\pi\)
\(618\) 0 0
\(619\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 15625.0 1.00000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 17858.8i 1.12670i −0.826218 0.563351i \(-0.809512\pi\)
0.826218 0.563351i \(-0.190488\pi\)
\(632\) 10715.3i 0.674417i
\(633\) 0 0
\(634\) 34850.0 2.18308
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 21959.7i 1.36269i
\(639\) 18576.0 1.15001
\(640\) 0 0
\(641\) 31219.9i 1.92373i −0.273526 0.961865i \(-0.588190\pi\)
0.273526 0.961865i \(-0.411810\pi\)
\(642\) 0 0
\(643\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(644\) 34153.0 6296.89i 2.08978 0.385298i
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(648\) 32805.0 1.98874
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 30260.0 1.81760
\(653\) −27050.0 −1.62105 −0.810527 0.585701i \(-0.800819\pi\)
−0.810527 + 0.585701i \(0.800819\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 33786.2i 1.99716i 0.0533186 + 0.998578i \(0.483020\pi\)
−0.0533186 + 0.998578i \(0.516980\pi\)
\(660\) 0 0
\(661\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(662\) −54540.0 −3.20205
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 1428.71i 0.0831250i
\(667\) 3320.00 + 18007.0i 0.192730 + 1.04533i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −33570.0 −1.92278 −0.961388 0.275196i \(-0.911257\pi\)
−0.961388 + 0.275196i \(0.911257\pi\)
\(674\) 59582.3i 3.40508i
\(675\) 0 0
\(676\) 37349.0 2.12500
\(677\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −34060.0 −1.90815 −0.954077 0.299560i \(-0.903160\pi\)
−0.954077 + 0.299560i \(0.903160\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 31762.2i 1.76777i
\(687\) 0 0
\(688\) 47565.3i 2.63577i
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(692\) 0 0
\(693\) 13230.0 0.725204
\(694\) 20500.0 1.12128
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 39355.6i 2.12500i
\(701\) 36881.8i 1.98717i 0.113093 + 0.993584i \(0.463924\pi\)
−0.113093 + 0.993584i \(0.536076\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 7593.31i 0.406511i
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 35611.8i 1.88636i −0.332281 0.943180i \(-0.607818\pi\)
0.332281 0.943180i \(-0.392182\pi\)
\(710\) 0 0
\(711\) 6429.18i 0.339118i
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 35428.0 1.84917
\(717\) 0 0
\(718\) 54634.8i 2.83977i
\(719\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −34295.0 −1.76777
\(723\) 0 0
\(724\) 0 0
\(725\) 20750.0 1.06295
\(726\) 0 0
\(727\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(728\) 0 0
\(729\) 19683.0 1.00000
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) −1700.00 9220.44i −0.0851397 0.461780i
\(737\) −21420.0 −1.07058
\(738\) 0 0
\(739\) −25324.0 −1.26057 −0.630283 0.776365i \(-0.717061\pi\)
−0.630283 + 0.776365i \(0.717061\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 46060.0 2.27886
\(743\) 31743.7i 1.56738i −0.621151 0.783691i \(-0.713335\pi\)
0.621151 0.783691i \(-0.286665\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 17620.7i 0.864799i
\(747\) 0 0
\(748\) 0 0
\(749\) −28714.0 −1.40078
\(750\) 0 0
\(751\) 41088.5i 1.99646i 0.0594732 + 0.998230i \(0.481058\pi\)
−0.0594732 + 0.998230i \(0.518942\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 22848.7i 1.09703i −0.836141 0.548514i \(-0.815194\pi\)
0.836141 0.548514i \(-0.184806\pi\)
\(758\) 43522.6i 2.08550i
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(762\) 0 0
\(763\) −42140.0 −1.99944
\(764\) 57121.8i 2.70496i
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −78030.0 −3.63777
\(773\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(774\) 72149.6i 3.35060i
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 55825.4i 2.57254i
\(779\) 0 0
\(780\) 0 0
\(781\) 18202.8i 0.833990i
\(782\) 0 0
\(783\) 0 0
\(784\) −30527.0 −1.39062
\(785\) 0 0
\(786\) 0 0
\(787\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(788\) −37570.0 −1.69845
\(789\) 0 0
\(790\) 0 0
\(791\) 42728.0 1.92065
\(792\) 32145.9i 1.44224i
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) −10625.0 −0.469563
\(801\) 0 0
\(802\) 79901.7i 3.51799i
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 37354.0 1.62336 0.811679 0.584104i \(-0.198554\pi\)
0.811679 + 0.584104i \(0.198554\pi\)
\(810\) 0 0
\(811\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(812\) 52264.2i 2.25876i
\(813\) 0 0
\(814\) −1400.00 −0.0602825
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 43538.0 1.85078 0.925388 0.379022i \(-0.123739\pi\)
0.925388 + 0.379022i \(0.123739\pi\)
\(822\) 0 0
\(823\) −46240.0 −1.95848 −0.979238 0.202716i \(-0.935023\pi\)
−0.979238 + 0.202716i \(0.935023\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 41077.9i 1.72723i −0.504151 0.863615i \(-0.668195\pi\)
0.504151 0.863615i \(-0.331805\pi\)
\(828\) −9180.00 49790.4i −0.385298 2.08978i
\(829\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) 3167.00 0.129854
\(842\) 40480.0i 1.65681i
\(843\) 0 0
\(844\) −99756.0 −4.06842
\(845\) 0 0
\(846\) 0 0
\(847\) 11686.3i 0.474080i
\(848\) 44268.7i 1.79268i
\(849\) 0 0
\(850\) 0 0
\(851\) −1148.00 + 211.660i −0.0462432 + 0.00852599i
\(852\) 0 0
\(853\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 69768.5i 2.78579i
\(857\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(858\) 0 0
\(859\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 78446.5i 3.09965i
\(863\) −20200.0 −0.796774 −0.398387 0.917217i \(-0.630430\pi\)
−0.398387 + 0.917217i \(0.630430\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 6300.00 0.245930
\(870\) 0 0
\(871\) 0 0
\(872\) 102391.i 3.97636i
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −6550.00 −0.252198 −0.126099 0.992018i \(-0.540246\pi\)
−0.126099 + 0.992018i \(0.540246\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(882\) −46305.0 −1.76777
\(883\) −30060.0 −1.14564 −0.572820 0.819681i \(-0.694150\pi\)
−0.572820 + 0.819681i \(0.694150\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 92900.0 3.52261
\(887\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(888\) 0 0
\(889\) 37040.5i 1.39741i
\(890\) 0 0
\(891\) 19287.5i 0.725204i
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 39170.3i 1.46048i
\(897\) 0 0
\(898\) 13430.0 0.499070
\(899\) 0 0
\(900\) −57375.0 −2.12500
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 103819.i 3.81967i
\(905\) 0 0
\(906\) 0 0
\(907\) 14250.0i 0.521680i 0.965382 + 0.260840i \(0.0839996\pi\)
−0.965382 + 0.260840i \(0.916000\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 38125.3i 1.38655i 0.720673 + 0.693275i \(0.243833\pi\)
−0.720673 + 0.693275i \(0.756167\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 89108.9i 3.22479i
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 51301.1i 1.84142i −0.390244 0.920711i \(-0.627609\pi\)
0.390244 0.920711i \(-0.372391\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 1322.88i 0.0470226i
\(926\) 42200.0 1.49760
\(927\) 0 0
\(928\) −14110.0 −0.499120
\(929\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −80410.0 −2.82609
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(938\) 74970.0 2.60966
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 70700.0 2.42987
\(947\) −48820.0 −1.67522 −0.837612 0.546266i \(-0.816049\pi\)
−0.837612 + 0.546266i \(0.816049\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 51031.3i 1.73459i 0.497794 + 0.867295i \(0.334143\pi\)
−0.497794 + 0.867295i \(0.665857\pi\)
\(954\) 67149.2i 2.27886i
\(955\) 0 0
\(956\) 125392. 4.24212
\(957\) 0 0
\(958\) 0 0
\(959\) 14504.0 0.488382
\(960\) 0 0
\(961\) 29791.0 1.00000
\(962\) 0 0
\(963\) 41861.1i 1.40078i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 52040.0 1.73060 0.865302 0.501251i \(-0.167127\pi\)
0.865302 + 0.501251i \(0.167127\pi\)
\(968\) 28395.0 0.942820
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 106200. 3.49370
\(975\) 0 0
\(976\) 0 0
\(977\) 48216.2i 1.57889i −0.613824 0.789443i \(-0.710369\pi\)
0.613824 0.789443i \(-0.289631\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 61434.3i 1.99944i
\(982\) 101860. 3.31006
\(983\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 57974.0 10688.8i 1.86397 0.343666i
\(990\) 0 0
\(991\) 57528.0 1.84403 0.922017 0.387150i \(-0.126540\pi\)
0.922017 + 0.387150i \(0.126540\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 63709.7i 2.03295i
\(995\) 0 0
\(996\) 0 0
\(997\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(998\) 36180.0 1.14755
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 161.4.c.a.160.2 yes 2
7.6 odd 2 CM 161.4.c.a.160.2 yes 2
23.22 odd 2 inner 161.4.c.a.160.1 2
161.160 even 2 inner 161.4.c.a.160.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
161.4.c.a.160.1 2 23.22 odd 2 inner
161.4.c.a.160.1 2 161.160 even 2 inner
161.4.c.a.160.2 yes 2 1.1 even 1 trivial
161.4.c.a.160.2 yes 2 7.6 odd 2 CM