Properties

Label 161.4.a.d.1.9
Level $161$
Weight $4$
Character 161.1
Self dual yes
Analytic conductor $9.499$
Analytic rank $0$
Dimension $12$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [161,4,Mod(1,161)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(161, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("161.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 161 = 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 161.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(9.49930751092\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 4 x^{11} - 76 x^{10} + 311 x^{9} + 1979 x^{8} - 8466 x^{7} - 19942 x^{6} + 95647 x^{5} + \cdots - 70656 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.9
Root \(3.76511\) of defining polynomial
Character \(\chi\) \(=\) 161.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.76511 q^{2} +9.31158 q^{3} +6.17602 q^{4} +1.25334 q^{5} +35.0591 q^{6} +7.00000 q^{7} -6.86747 q^{8} +59.7056 q^{9} +4.71897 q^{10} -42.4133 q^{11} +57.5085 q^{12} -78.8059 q^{13} +26.3557 q^{14} +11.6706 q^{15} -75.2649 q^{16} +118.652 q^{17} +224.798 q^{18} +2.87339 q^{19} +7.74068 q^{20} +65.1811 q^{21} -159.691 q^{22} +23.0000 q^{23} -63.9470 q^{24} -123.429 q^{25} -296.713 q^{26} +304.541 q^{27} +43.2322 q^{28} -112.162 q^{29} +43.9411 q^{30} +138.981 q^{31} -228.441 q^{32} -394.935 q^{33} +446.737 q^{34} +8.77340 q^{35} +368.743 q^{36} +389.082 q^{37} +10.8186 q^{38} -733.808 q^{39} -8.60729 q^{40} -286.733 q^{41} +245.414 q^{42} -103.738 q^{43} -261.945 q^{44} +74.8316 q^{45} +86.5974 q^{46} +515.555 q^{47} -700.836 q^{48} +49.0000 q^{49} -464.724 q^{50} +1104.84 q^{51} -486.707 q^{52} +424.566 q^{53} +1146.63 q^{54} -53.1584 q^{55} -48.0723 q^{56} +26.7558 q^{57} -422.302 q^{58} -631.418 q^{59} +72.0780 q^{60} -365.728 q^{61} +523.278 q^{62} +417.939 q^{63} -257.984 q^{64} -98.7709 q^{65} -1486.97 q^{66} -285.493 q^{67} +732.797 q^{68} +214.166 q^{69} +33.0328 q^{70} +531.990 q^{71} -410.026 q^{72} +151.750 q^{73} +1464.93 q^{74} -1149.32 q^{75} +17.7461 q^{76} -296.893 q^{77} -2762.86 q^{78} +115.823 q^{79} -94.3328 q^{80} +1223.70 q^{81} -1079.58 q^{82} -979.050 q^{83} +402.560 q^{84} +148.712 q^{85} -390.584 q^{86} -1044.41 q^{87} +291.272 q^{88} +940.951 q^{89} +281.749 q^{90} -551.641 q^{91} +142.049 q^{92} +1294.13 q^{93} +1941.12 q^{94} +3.60135 q^{95} -2127.14 q^{96} -688.524 q^{97} +184.490 q^{98} -2532.31 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 4 q^{2} + q^{3} + 72 q^{4} + 16 q^{5} - 15 q^{6} + 84 q^{7} - 21 q^{8} + 203 q^{9} + 106 q^{10} + 50 q^{11} - 139 q^{12} + 21 q^{13} + 28 q^{14} + 192 q^{15} + 516 q^{16} + 26 q^{17} + 251 q^{18}+ \cdots + 2400 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 3.76511 1.33117 0.665583 0.746324i \(-0.268183\pi\)
0.665583 + 0.746324i \(0.268183\pi\)
\(3\) 9.31158 1.79201 0.896007 0.444039i \(-0.146455\pi\)
0.896007 + 0.444039i \(0.146455\pi\)
\(4\) 6.17602 0.772003
\(5\) 1.25334 0.112102 0.0560512 0.998428i \(-0.482149\pi\)
0.0560512 + 0.998428i \(0.482149\pi\)
\(6\) 35.0591 2.38547
\(7\) 7.00000 0.377964
\(8\) −6.86747 −0.303502
\(9\) 59.7056 2.21132
\(10\) 4.71897 0.149227
\(11\) −42.4133 −1.16255 −0.581277 0.813706i \(-0.697447\pi\)
−0.581277 + 0.813706i \(0.697447\pi\)
\(12\) 57.5085 1.38344
\(13\) −78.8059 −1.68129 −0.840647 0.541583i \(-0.817825\pi\)
−0.840647 + 0.541583i \(0.817825\pi\)
\(14\) 26.3557 0.503133
\(15\) 11.6706 0.200889
\(16\) −75.2649 −1.17601
\(17\) 118.652 1.69278 0.846392 0.532561i \(-0.178770\pi\)
0.846392 + 0.532561i \(0.178770\pi\)
\(18\) 224.798 2.94363
\(19\) 2.87339 0.0346948 0.0173474 0.999850i \(-0.494478\pi\)
0.0173474 + 0.999850i \(0.494478\pi\)
\(20\) 7.74068 0.0865434
\(21\) 65.1811 0.677318
\(22\) −159.691 −1.54755
\(23\) 23.0000 0.208514
\(24\) −63.9470 −0.543880
\(25\) −123.429 −0.987433
\(26\) −296.713 −2.23808
\(27\) 304.541 2.17070
\(28\) 43.2322 0.291790
\(29\) −112.162 −0.718206 −0.359103 0.933298i \(-0.616917\pi\)
−0.359103 + 0.933298i \(0.616917\pi\)
\(30\) 43.9411 0.267417
\(31\) 138.981 0.805216 0.402608 0.915372i \(-0.368104\pi\)
0.402608 + 0.915372i \(0.368104\pi\)
\(32\) −228.441 −1.26197
\(33\) −394.935 −2.08331
\(34\) 446.737 2.25338
\(35\) 8.77340 0.0423707
\(36\) 368.743 1.70714
\(37\) 389.082 1.72877 0.864387 0.502828i \(-0.167707\pi\)
0.864387 + 0.502828i \(0.167707\pi\)
\(38\) 10.8186 0.0461846
\(39\) −733.808 −3.01291
\(40\) −8.60729 −0.0340233
\(41\) −286.733 −1.09220 −0.546100 0.837720i \(-0.683888\pi\)
−0.546100 + 0.837720i \(0.683888\pi\)
\(42\) 245.414 0.901623
\(43\) −103.738 −0.367904 −0.183952 0.982935i \(-0.558889\pi\)
−0.183952 + 0.982935i \(0.558889\pi\)
\(44\) −261.945 −0.897495
\(45\) 74.8316 0.247894
\(46\) 86.5974 0.277567
\(47\) 515.555 1.60003 0.800016 0.599979i \(-0.204824\pi\)
0.800016 + 0.599979i \(0.204824\pi\)
\(48\) −700.836 −2.10744
\(49\) 49.0000 0.142857
\(50\) −464.724 −1.31444
\(51\) 1104.84 3.03349
\(52\) −486.707 −1.29796
\(53\) 424.566 1.10035 0.550176 0.835049i \(-0.314561\pi\)
0.550176 + 0.835049i \(0.314561\pi\)
\(54\) 1146.63 2.88956
\(55\) −53.1584 −0.130325
\(56\) −48.0723 −0.114713
\(57\) 26.7558 0.0621736
\(58\) −422.302 −0.956052
\(59\) −631.418 −1.39328 −0.696641 0.717420i \(-0.745323\pi\)
−0.696641 + 0.717420i \(0.745323\pi\)
\(60\) 72.0780 0.155087
\(61\) −365.728 −0.767651 −0.383825 0.923406i \(-0.625394\pi\)
−0.383825 + 0.923406i \(0.625394\pi\)
\(62\) 523.278 1.07188
\(63\) 417.939 0.835799
\(64\) −257.984 −0.503875
\(65\) −98.7709 −0.188477
\(66\) −1486.97 −2.77324
\(67\) −285.493 −0.520574 −0.260287 0.965531i \(-0.583817\pi\)
−0.260287 + 0.965531i \(0.583817\pi\)
\(68\) 732.797 1.30683
\(69\) 214.166 0.373661
\(70\) 33.0328 0.0564025
\(71\) 531.990 0.889234 0.444617 0.895721i \(-0.353340\pi\)
0.444617 + 0.895721i \(0.353340\pi\)
\(72\) −410.026 −0.671139
\(73\) 151.750 0.243301 0.121651 0.992573i \(-0.461181\pi\)
0.121651 + 0.992573i \(0.461181\pi\)
\(74\) 1464.93 2.30128
\(75\) −1149.32 −1.76949
\(76\) 17.7461 0.0267845
\(77\) −296.893 −0.439404
\(78\) −2762.86 −4.01068
\(79\) 115.823 0.164951 0.0824755 0.996593i \(-0.473717\pi\)
0.0824755 + 0.996593i \(0.473717\pi\)
\(80\) −94.3328 −0.131834
\(81\) 1223.70 1.67861
\(82\) −1079.58 −1.45390
\(83\) −979.050 −1.29476 −0.647378 0.762169i \(-0.724134\pi\)
−0.647378 + 0.762169i \(0.724134\pi\)
\(84\) 402.560 0.522891
\(85\) 148.712 0.189765
\(86\) −390.584 −0.489741
\(87\) −1044.41 −1.28704
\(88\) 291.272 0.352837
\(89\) 940.951 1.12068 0.560341 0.828262i \(-0.310670\pi\)
0.560341 + 0.828262i \(0.310670\pi\)
\(90\) 281.749 0.329988
\(91\) −551.641 −0.635470
\(92\) 142.049 0.160974
\(93\) 1294.13 1.44296
\(94\) 1941.12 2.12991
\(95\) 3.60135 0.00388937
\(96\) −2127.14 −2.26147
\(97\) −688.524 −0.720711 −0.360356 0.932815i \(-0.617345\pi\)
−0.360356 + 0.932815i \(0.617345\pi\)
\(98\) 184.490 0.190167
\(99\) −2532.31 −2.57077
\(100\) −762.301 −0.762301
\(101\) −1130.94 −1.11418 −0.557091 0.830452i \(-0.688082\pi\)
−0.557091 + 0.830452i \(0.688082\pi\)
\(102\) 4159.83 4.03808
\(103\) −353.658 −0.338320 −0.169160 0.985589i \(-0.554105\pi\)
−0.169160 + 0.985589i \(0.554105\pi\)
\(104\) 541.197 0.510276
\(105\) 81.6943 0.0759290
\(106\) 1598.54 1.46475
\(107\) −117.175 −0.105866 −0.0529332 0.998598i \(-0.516857\pi\)
−0.0529332 + 0.998598i \(0.516857\pi\)
\(108\) 1880.85 1.67579
\(109\) 1606.89 1.41204 0.706020 0.708192i \(-0.250489\pi\)
0.706020 + 0.708192i \(0.250489\pi\)
\(110\) −200.147 −0.173484
\(111\) 3622.96 3.09799
\(112\) −526.854 −0.444492
\(113\) 1522.58 1.26754 0.633770 0.773522i \(-0.281507\pi\)
0.633770 + 0.773522i \(0.281507\pi\)
\(114\) 100.739 0.0827634
\(115\) 28.8269 0.0233750
\(116\) −692.716 −0.554457
\(117\) −4705.15 −3.71788
\(118\) −2377.36 −1.85469
\(119\) 830.564 0.639812
\(120\) −80.1475 −0.0609703
\(121\) 467.887 0.351530
\(122\) −1377.01 −1.02187
\(123\) −2669.94 −1.95724
\(124\) 858.349 0.621629
\(125\) −311.367 −0.222796
\(126\) 1573.58 1.11259
\(127\) −71.6858 −0.0500873 −0.0250437 0.999686i \(-0.507972\pi\)
−0.0250437 + 0.999686i \(0.507972\pi\)
\(128\) 856.188 0.591227
\(129\) −965.963 −0.659289
\(130\) −371.883 −0.250894
\(131\) −967.035 −0.644964 −0.322482 0.946576i \(-0.604517\pi\)
−0.322482 + 0.946576i \(0.604517\pi\)
\(132\) −2439.13 −1.60832
\(133\) 20.1137 0.0131134
\(134\) −1074.91 −0.692971
\(135\) 381.694 0.243341
\(136\) −814.838 −0.513763
\(137\) 1082.60 0.675127 0.337564 0.941303i \(-0.390397\pi\)
0.337564 + 0.941303i \(0.390397\pi\)
\(138\) 806.359 0.497405
\(139\) −255.426 −0.155863 −0.0779314 0.996959i \(-0.524832\pi\)
−0.0779314 + 0.996959i \(0.524832\pi\)
\(140\) 54.1847 0.0327103
\(141\) 4800.64 2.86728
\(142\) 2003.00 1.18372
\(143\) 3342.42 1.95459
\(144\) −4493.74 −2.60054
\(145\) −140.578 −0.0805127
\(146\) 571.355 0.323874
\(147\) 456.268 0.256002
\(148\) 2402.98 1.33462
\(149\) −2650.45 −1.45727 −0.728635 0.684902i \(-0.759845\pi\)
−0.728635 + 0.684902i \(0.759845\pi\)
\(150\) −4327.31 −2.35549
\(151\) 2172.54 1.17085 0.585426 0.810726i \(-0.300927\pi\)
0.585426 + 0.810726i \(0.300927\pi\)
\(152\) −19.7329 −0.0105299
\(153\) 7084.18 3.74328
\(154\) −1117.83 −0.584919
\(155\) 174.191 0.0902667
\(156\) −4532.01 −2.32597
\(157\) 2023.80 1.02877 0.514384 0.857560i \(-0.328021\pi\)
0.514384 + 0.857560i \(0.328021\pi\)
\(158\) 436.087 0.219577
\(159\) 3953.38 1.97185
\(160\) −286.315 −0.141470
\(161\) 161.000 0.0788110
\(162\) 4607.38 2.23450
\(163\) 1620.72 0.778799 0.389400 0.921069i \(-0.372682\pi\)
0.389400 + 0.921069i \(0.372682\pi\)
\(164\) −1770.87 −0.843182
\(165\) −494.989 −0.233544
\(166\) −3686.23 −1.72353
\(167\) 2640.79 1.22365 0.611827 0.790991i \(-0.290435\pi\)
0.611827 + 0.790991i \(0.290435\pi\)
\(168\) −447.629 −0.205567
\(169\) 4013.37 1.82675
\(170\) 559.915 0.252609
\(171\) 171.558 0.0767212
\(172\) −640.687 −0.284023
\(173\) 2236.87 0.983040 0.491520 0.870866i \(-0.336441\pi\)
0.491520 + 0.870866i \(0.336441\pi\)
\(174\) −3932.30 −1.71326
\(175\) −864.004 −0.373215
\(176\) 3192.23 1.36718
\(177\) −5879.51 −2.49678
\(178\) 3542.78 1.49181
\(179\) −1714.83 −0.716046 −0.358023 0.933713i \(-0.616549\pi\)
−0.358023 + 0.933713i \(0.616549\pi\)
\(180\) 462.162 0.191375
\(181\) 1705.12 0.700224 0.350112 0.936708i \(-0.386144\pi\)
0.350112 + 0.936708i \(0.386144\pi\)
\(182\) −2076.99 −0.845916
\(183\) −3405.51 −1.37564
\(184\) −157.952 −0.0632845
\(185\) 487.653 0.193800
\(186\) 4872.54 1.92082
\(187\) −5032.42 −1.96795
\(188\) 3184.08 1.23523
\(189\) 2131.78 0.820447
\(190\) 13.5595 0.00517740
\(191\) −2397.25 −0.908161 −0.454081 0.890961i \(-0.650032\pi\)
−0.454081 + 0.890961i \(0.650032\pi\)
\(192\) −2402.24 −0.902951
\(193\) 2846.44 1.06161 0.530807 0.847493i \(-0.321889\pi\)
0.530807 + 0.847493i \(0.321889\pi\)
\(194\) −2592.36 −0.959386
\(195\) −919.713 −0.337754
\(196\) 302.625 0.110286
\(197\) −83.1615 −0.0300762 −0.0150381 0.999887i \(-0.504787\pi\)
−0.0150381 + 0.999887i \(0.504787\pi\)
\(198\) −9534.41 −3.42213
\(199\) −2537.27 −0.903830 −0.451915 0.892061i \(-0.649259\pi\)
−0.451915 + 0.892061i \(0.649259\pi\)
\(200\) 847.645 0.299688
\(201\) −2658.39 −0.932877
\(202\) −4258.09 −1.48316
\(203\) −785.135 −0.271457
\(204\) 6823.50 2.34187
\(205\) −359.375 −0.122438
\(206\) −1331.56 −0.450360
\(207\) 1373.23 0.461092
\(208\) 5931.32 1.97723
\(209\) −121.870 −0.0403346
\(210\) 307.588 0.101074
\(211\) −1216.06 −0.396764 −0.198382 0.980125i \(-0.563569\pi\)
−0.198382 + 0.980125i \(0.563569\pi\)
\(212\) 2622.13 0.849475
\(213\) 4953.67 1.59352
\(214\) −441.175 −0.140926
\(215\) −130.019 −0.0412429
\(216\) −2091.42 −0.658811
\(217\) 972.866 0.304343
\(218\) 6050.12 1.87966
\(219\) 1413.03 0.436000
\(220\) −328.308 −0.100611
\(221\) −9350.48 −2.84607
\(222\) 13640.8 4.12394
\(223\) −2262.87 −0.679521 −0.339760 0.940512i \(-0.610346\pi\)
−0.339760 + 0.940512i \(0.610346\pi\)
\(224\) −1599.08 −0.476979
\(225\) −7369.41 −2.18353
\(226\) 5732.66 1.68730
\(227\) 2860.43 0.836358 0.418179 0.908365i \(-0.362669\pi\)
0.418179 + 0.908365i \(0.362669\pi\)
\(228\) 165.245 0.0479982
\(229\) −2009.94 −0.580001 −0.290001 0.957026i \(-0.593656\pi\)
−0.290001 + 0.957026i \(0.593656\pi\)
\(230\) 108.536 0.0311160
\(231\) −2764.54 −0.787418
\(232\) 770.270 0.217977
\(233\) −3027.63 −0.851273 −0.425636 0.904894i \(-0.639950\pi\)
−0.425636 + 0.904894i \(0.639950\pi\)
\(234\) −17715.4 −4.94911
\(235\) 646.168 0.179367
\(236\) −3899.66 −1.07562
\(237\) 1078.50 0.295595
\(238\) 3127.16 0.851696
\(239\) 3644.32 0.986325 0.493162 0.869937i \(-0.335841\pi\)
0.493162 + 0.869937i \(0.335841\pi\)
\(240\) −878.388 −0.236249
\(241\) −3661.47 −0.978655 −0.489327 0.872100i \(-0.662758\pi\)
−0.489327 + 0.872100i \(0.662758\pi\)
\(242\) 1761.64 0.467945
\(243\) 3172.03 0.837390
\(244\) −2258.75 −0.592629
\(245\) 61.4138 0.0160146
\(246\) −10052.6 −2.60541
\(247\) −226.440 −0.0583322
\(248\) −954.446 −0.244385
\(249\) −9116.51 −2.32022
\(250\) −1172.33 −0.296579
\(251\) 607.560 0.152784 0.0763921 0.997078i \(-0.475660\pi\)
0.0763921 + 0.997078i \(0.475660\pi\)
\(252\) 2581.20 0.645240
\(253\) −975.506 −0.242409
\(254\) −269.905 −0.0666745
\(255\) 1384.74 0.340062
\(256\) 5287.51 1.29090
\(257\) −7302.77 −1.77251 −0.886254 0.463200i \(-0.846701\pi\)
−0.886254 + 0.463200i \(0.846701\pi\)
\(258\) −3636.95 −0.877623
\(259\) 2723.57 0.653415
\(260\) −610.011 −0.145505
\(261\) −6696.70 −1.58818
\(262\) −3640.99 −0.858554
\(263\) 1476.33 0.346138 0.173069 0.984910i \(-0.444632\pi\)
0.173069 + 0.984910i \(0.444632\pi\)
\(264\) 2712.20 0.632290
\(265\) 532.127 0.123352
\(266\) 75.7304 0.0174561
\(267\) 8761.75 2.00828
\(268\) −1763.21 −0.401885
\(269\) −5589.01 −1.26679 −0.633397 0.773827i \(-0.718340\pi\)
−0.633397 + 0.773827i \(0.718340\pi\)
\(270\) 1437.12 0.323927
\(271\) 795.786 0.178378 0.0891892 0.996015i \(-0.471572\pi\)
0.0891892 + 0.996015i \(0.471572\pi\)
\(272\) −8930.33 −1.99074
\(273\) −5136.66 −1.13877
\(274\) 4076.09 0.898706
\(275\) 5235.04 1.14794
\(276\) 1322.70 0.288467
\(277\) 4429.83 0.960876 0.480438 0.877029i \(-0.340478\pi\)
0.480438 + 0.877029i \(0.340478\pi\)
\(278\) −961.705 −0.207479
\(279\) 8297.93 1.78059
\(280\) −60.2511 −0.0128596
\(281\) −5245.76 −1.11365 −0.556825 0.830630i \(-0.687981\pi\)
−0.556825 + 0.830630i \(0.687981\pi\)
\(282\) 18074.9 3.81683
\(283\) 2121.97 0.445718 0.222859 0.974851i \(-0.428461\pi\)
0.222859 + 0.974851i \(0.428461\pi\)
\(284\) 3285.58 0.686491
\(285\) 33.5342 0.00696981
\(286\) 12584.6 2.60189
\(287\) −2007.13 −0.412813
\(288\) −13639.2 −2.79061
\(289\) 9165.28 1.86552
\(290\) −529.290 −0.107176
\(291\) −6411.24 −1.29153
\(292\) 937.211 0.187829
\(293\) −4903.22 −0.977642 −0.488821 0.872384i \(-0.662573\pi\)
−0.488821 + 0.872384i \(0.662573\pi\)
\(294\) 1717.90 0.340781
\(295\) −791.384 −0.156190
\(296\) −2672.00 −0.524686
\(297\) −12916.6 −2.52355
\(298\) −9979.22 −1.93987
\(299\) −1812.54 −0.350574
\(300\) −7098.23 −1.36606
\(301\) −726.165 −0.139055
\(302\) 8179.84 1.55860
\(303\) −10530.8 −1.99663
\(304\) −216.266 −0.0408016
\(305\) −458.383 −0.0860555
\(306\) 26672.7 4.98293
\(307\) 5260.17 0.977895 0.488947 0.872313i \(-0.337381\pi\)
0.488947 + 0.872313i \(0.337381\pi\)
\(308\) −1833.62 −0.339221
\(309\) −3293.12 −0.606275
\(310\) 655.847 0.120160
\(311\) −4894.95 −0.892498 −0.446249 0.894909i \(-0.647240\pi\)
−0.446249 + 0.894909i \(0.647240\pi\)
\(312\) 5039.40 0.914423
\(313\) 1253.39 0.226344 0.113172 0.993575i \(-0.463899\pi\)
0.113172 + 0.993575i \(0.463899\pi\)
\(314\) 7619.80 1.36946
\(315\) 523.821 0.0936952
\(316\) 715.327 0.127343
\(317\) −7917.48 −1.40281 −0.701404 0.712764i \(-0.747443\pi\)
−0.701404 + 0.712764i \(0.747443\pi\)
\(318\) 14884.9 2.62486
\(319\) 4757.17 0.834953
\(320\) −323.343 −0.0564856
\(321\) −1091.08 −0.189714
\(322\) 606.182 0.104911
\(323\) 340.934 0.0587308
\(324\) 7557.63 1.29589
\(325\) 9726.95 1.66017
\(326\) 6102.17 1.03671
\(327\) 14962.7 2.53040
\(328\) 1969.13 0.331485
\(329\) 3608.89 0.604755
\(330\) −1863.69 −0.310886
\(331\) −9641.15 −1.60098 −0.800492 0.599343i \(-0.795428\pi\)
−0.800492 + 0.599343i \(0.795428\pi\)
\(332\) −6046.64 −0.999555
\(333\) 23230.3 3.82287
\(334\) 9942.85 1.62889
\(335\) −357.820 −0.0583576
\(336\) −4905.85 −0.796536
\(337\) 8702.27 1.40666 0.703328 0.710866i \(-0.251697\pi\)
0.703328 + 0.710866i \(0.251697\pi\)
\(338\) 15110.8 2.43171
\(339\) 14177.6 2.27145
\(340\) 918.446 0.146499
\(341\) −5894.63 −0.936107
\(342\) 645.932 0.102129
\(343\) 343.000 0.0539949
\(344\) 712.416 0.111660
\(345\) 268.424 0.0418883
\(346\) 8422.05 1.30859
\(347\) −4064.10 −0.628738 −0.314369 0.949301i \(-0.601793\pi\)
−0.314369 + 0.949301i \(0.601793\pi\)
\(348\) −6450.28 −0.993596
\(349\) −7527.05 −1.15448 −0.577240 0.816574i \(-0.695870\pi\)
−0.577240 + 0.816574i \(0.695870\pi\)
\(350\) −3253.07 −0.496811
\(351\) −23999.6 −3.64958
\(352\) 9688.92 1.46711
\(353\) −3814.92 −0.575206 −0.287603 0.957750i \(-0.592858\pi\)
−0.287603 + 0.957750i \(0.592858\pi\)
\(354\) −22137.0 −3.32363
\(355\) 666.766 0.0996853
\(356\) 5811.34 0.865169
\(357\) 7733.86 1.14655
\(358\) −6456.51 −0.953176
\(359\) −3620.75 −0.532301 −0.266150 0.963932i \(-0.585752\pi\)
−0.266150 + 0.963932i \(0.585752\pi\)
\(360\) −513.903 −0.0752364
\(361\) −6850.74 −0.998796
\(362\) 6419.96 0.932114
\(363\) 4356.77 0.629948
\(364\) −3406.95 −0.490584
\(365\) 190.195 0.0272747
\(366\) −12822.1 −1.83121
\(367\) 4800.81 0.682834 0.341417 0.939912i \(-0.389093\pi\)
0.341417 + 0.939912i \(0.389093\pi\)
\(368\) −1731.09 −0.245216
\(369\) −17119.6 −2.41520
\(370\) 1836.06 0.257980
\(371\) 2971.96 0.415894
\(372\) 7992.59 1.11397
\(373\) −795.372 −0.110410 −0.0552048 0.998475i \(-0.517581\pi\)
−0.0552048 + 0.998475i \(0.517581\pi\)
\(374\) −18947.6 −2.61967
\(375\) −2899.32 −0.399254
\(376\) −3540.56 −0.485613
\(377\) 8839.04 1.20752
\(378\) 8026.39 1.09215
\(379\) 3398.29 0.460577 0.230288 0.973122i \(-0.426033\pi\)
0.230288 + 0.973122i \(0.426033\pi\)
\(380\) 22.2420 0.00300261
\(381\) −667.508 −0.0897572
\(382\) −9025.89 −1.20891
\(383\) 10443.2 1.39327 0.696633 0.717428i \(-0.254681\pi\)
0.696633 + 0.717428i \(0.254681\pi\)
\(384\) 7972.47 1.05949
\(385\) −372.109 −0.0492582
\(386\) 10717.2 1.41318
\(387\) −6193.73 −0.813552
\(388\) −4252.34 −0.556391
\(389\) −7512.80 −0.979213 −0.489607 0.871943i \(-0.662860\pi\)
−0.489607 + 0.871943i \(0.662860\pi\)
\(390\) −3462.82 −0.449607
\(391\) 2728.99 0.352970
\(392\) −336.506 −0.0433574
\(393\) −9004.63 −1.15578
\(394\) −313.112 −0.0400364
\(395\) 145.166 0.0184914
\(396\) −15639.6 −1.98465
\(397\) 1340.17 0.169424 0.0847118 0.996405i \(-0.473003\pi\)
0.0847118 + 0.996405i \(0.473003\pi\)
\(398\) −9553.09 −1.20315
\(399\) 187.291 0.0234994
\(400\) 9289.88 1.16124
\(401\) −7535.94 −0.938472 −0.469236 0.883073i \(-0.655471\pi\)
−0.469236 + 0.883073i \(0.655471\pi\)
\(402\) −10009.1 −1.24181
\(403\) −10952.5 −1.35381
\(404\) −6984.68 −0.860151
\(405\) 1533.72 0.188176
\(406\) −2956.12 −0.361354
\(407\) −16502.2 −2.00979
\(408\) −7587.43 −0.920671
\(409\) −6704.20 −0.810516 −0.405258 0.914202i \(-0.632818\pi\)
−0.405258 + 0.914202i \(0.632818\pi\)
\(410\) −1353.09 −0.162986
\(411\) 10080.7 1.20984
\(412\) −2184.20 −0.261184
\(413\) −4419.93 −0.526611
\(414\) 5170.35 0.613789
\(415\) −1227.09 −0.145145
\(416\) 18002.5 2.12174
\(417\) −2378.42 −0.279308
\(418\) −458.854 −0.0536920
\(419\) 8519.69 0.993352 0.496676 0.867936i \(-0.334554\pi\)
0.496676 + 0.867936i \(0.334554\pi\)
\(420\) 504.546 0.0586174
\(421\) −10566.8 −1.22326 −0.611631 0.791144i \(-0.709486\pi\)
−0.611631 + 0.791144i \(0.709486\pi\)
\(422\) −4578.60 −0.528159
\(423\) 30781.5 3.53818
\(424\) −2915.69 −0.333959
\(425\) −14645.1 −1.67151
\(426\) 18651.1 2.12124
\(427\) −2560.10 −0.290145
\(428\) −723.674 −0.0817292
\(429\) 31123.2 3.50266
\(430\) −489.536 −0.0549012
\(431\) 4540.75 0.507471 0.253736 0.967274i \(-0.418341\pi\)
0.253736 + 0.967274i \(0.418341\pi\)
\(432\) −22921.2 −2.55277
\(433\) −378.177 −0.0419724 −0.0209862 0.999780i \(-0.506681\pi\)
−0.0209862 + 0.999780i \(0.506681\pi\)
\(434\) 3662.94 0.405131
\(435\) −1309.00 −0.144280
\(436\) 9924.20 1.09010
\(437\) 66.0880 0.00723437
\(438\) 5320.22 0.580388
\(439\) −11835.7 −1.28676 −0.643382 0.765545i \(-0.722469\pi\)
−0.643382 + 0.765545i \(0.722469\pi\)
\(440\) 365.064 0.0395539
\(441\) 2925.57 0.315902
\(442\) −35205.5 −3.78859
\(443\) −5709.62 −0.612352 −0.306176 0.951975i \(-0.599050\pi\)
−0.306176 + 0.951975i \(0.599050\pi\)
\(444\) 22375.5 2.39166
\(445\) 1179.34 0.125631
\(446\) −8519.95 −0.904555
\(447\) −24679.9 −2.61145
\(448\) −1805.89 −0.190447
\(449\) −8495.56 −0.892940 −0.446470 0.894799i \(-0.647319\pi\)
−0.446470 + 0.894799i \(0.647319\pi\)
\(450\) −27746.6 −2.90664
\(451\) 12161.3 1.26974
\(452\) 9403.47 0.978544
\(453\) 20229.8 2.09819
\(454\) 10769.8 1.11333
\(455\) −691.396 −0.0712377
\(456\) −183.745 −0.0188698
\(457\) 12451.1 1.27448 0.637239 0.770667i \(-0.280077\pi\)
0.637239 + 0.770667i \(0.280077\pi\)
\(458\) −7567.62 −0.772078
\(459\) 36134.3 3.67452
\(460\) 178.036 0.0180455
\(461\) 7838.56 0.791927 0.395963 0.918266i \(-0.370411\pi\)
0.395963 + 0.918266i \(0.370411\pi\)
\(462\) −10408.8 −1.04818
\(463\) 13312.0 1.33620 0.668102 0.744070i \(-0.267107\pi\)
0.668102 + 0.744070i \(0.267107\pi\)
\(464\) 8441.88 0.844621
\(465\) 1621.99 0.161759
\(466\) −11399.3 −1.13319
\(467\) −15246.3 −1.51074 −0.755370 0.655298i \(-0.772543\pi\)
−0.755370 + 0.655298i \(0.772543\pi\)
\(468\) −29059.1 −2.87021
\(469\) −1998.45 −0.196759
\(470\) 2432.89 0.238768
\(471\) 18844.7 1.84357
\(472\) 4336.25 0.422864
\(473\) 4399.86 0.427708
\(474\) 4060.66 0.393486
\(475\) −354.660 −0.0342588
\(476\) 5129.58 0.493937
\(477\) 25349.0 2.43323
\(478\) 13721.3 1.31296
\(479\) 7348.08 0.700924 0.350462 0.936577i \(-0.386025\pi\)
0.350462 + 0.936577i \(0.386025\pi\)
\(480\) −2666.04 −0.253516
\(481\) −30661.9 −2.90658
\(482\) −13785.8 −1.30275
\(483\) 1499.16 0.141231
\(484\) 2889.68 0.271382
\(485\) −862.956 −0.0807935
\(486\) 11943.0 1.11471
\(487\) 9433.69 0.877785 0.438893 0.898539i \(-0.355371\pi\)
0.438893 + 0.898539i \(0.355371\pi\)
\(488\) 2511.63 0.232984
\(489\) 15091.4 1.39562
\(490\) 231.230 0.0213181
\(491\) 972.045 0.0893437 0.0446719 0.999002i \(-0.485776\pi\)
0.0446719 + 0.999002i \(0.485776\pi\)
\(492\) −16489.6 −1.51099
\(493\) −13308.3 −1.21577
\(494\) −852.572 −0.0776498
\(495\) −3173.85 −0.288190
\(496\) −10460.4 −0.946946
\(497\) 3723.93 0.336099
\(498\) −34324.6 −3.08860
\(499\) 6691.66 0.600320 0.300160 0.953889i \(-0.402960\pi\)
0.300160 + 0.953889i \(0.402960\pi\)
\(500\) −1923.01 −0.171999
\(501\) 24589.9 2.19281
\(502\) 2287.53 0.203381
\(503\) −18003.2 −1.59587 −0.797934 0.602745i \(-0.794074\pi\)
−0.797934 + 0.602745i \(0.794074\pi\)
\(504\) −2870.18 −0.253667
\(505\) −1417.45 −0.124902
\(506\) −3672.88 −0.322687
\(507\) 37370.9 3.27357
\(508\) −442.733 −0.0386675
\(509\) −15154.2 −1.31964 −0.659822 0.751422i \(-0.729368\pi\)
−0.659822 + 0.751422i \(0.729368\pi\)
\(510\) 5213.70 0.452679
\(511\) 1062.25 0.0919592
\(512\) 13058.5 1.12717
\(513\) 875.065 0.0753120
\(514\) −27495.7 −2.35950
\(515\) −443.255 −0.0379265
\(516\) −5965.81 −0.508973
\(517\) −21866.4 −1.86012
\(518\) 10254.5 0.869804
\(519\) 20828.8 1.76162
\(520\) 678.306 0.0572032
\(521\) −3265.62 −0.274606 −0.137303 0.990529i \(-0.543843\pi\)
−0.137303 + 0.990529i \(0.543843\pi\)
\(522\) −25213.8 −2.11413
\(523\) 14860.0 1.24242 0.621208 0.783646i \(-0.286642\pi\)
0.621208 + 0.783646i \(0.286642\pi\)
\(524\) −5972.43 −0.497914
\(525\) −8045.24 −0.668806
\(526\) 5558.53 0.460767
\(527\) 16490.3 1.36306
\(528\) 29724.7 2.45001
\(529\) 529.000 0.0434783
\(530\) 2003.52 0.164202
\(531\) −37699.2 −3.08099
\(532\) 124.223 0.0101236
\(533\) 22596.3 1.83631
\(534\) 32988.9 2.67335
\(535\) −146.860 −0.0118679
\(536\) 1960.61 0.157995
\(537\) −15967.8 −1.28316
\(538\) −21043.2 −1.68631
\(539\) −2078.25 −0.166079
\(540\) 2357.35 0.187860
\(541\) 19982.0 1.58797 0.793986 0.607935i \(-0.208002\pi\)
0.793986 + 0.607935i \(0.208002\pi\)
\(542\) 2996.22 0.237451
\(543\) 15877.4 1.25481
\(544\) −27104.9 −2.13624
\(545\) 2013.99 0.158293
\(546\) −19340.1 −1.51589
\(547\) −13306.5 −1.04012 −0.520059 0.854130i \(-0.674090\pi\)
−0.520059 + 0.854130i \(0.674090\pi\)
\(548\) 6686.14 0.521200
\(549\) −21836.0 −1.69752
\(550\) 19710.5 1.52810
\(551\) −322.286 −0.0249180
\(552\) −1470.78 −0.113407
\(553\) 810.763 0.0623456
\(554\) 16678.8 1.27908
\(555\) 4540.82 0.347292
\(556\) −1577.51 −0.120326
\(557\) −20718.0 −1.57603 −0.788016 0.615654i \(-0.788892\pi\)
−0.788016 + 0.615654i \(0.788892\pi\)
\(558\) 31242.6 2.37026
\(559\) 8175.15 0.618555
\(560\) −660.330 −0.0498286
\(561\) −46859.8 −3.52660
\(562\) −19750.8 −1.48245
\(563\) −13095.9 −0.980328 −0.490164 0.871630i \(-0.663063\pi\)
−0.490164 + 0.871630i \(0.663063\pi\)
\(564\) 29648.8 2.21355
\(565\) 1908.31 0.142094
\(566\) 7989.45 0.593324
\(567\) 8565.93 0.634454
\(568\) −3653.42 −0.269884
\(569\) −1067.59 −0.0786566 −0.0393283 0.999226i \(-0.512522\pi\)
−0.0393283 + 0.999226i \(0.512522\pi\)
\(570\) 126.260 0.00927798
\(571\) 1164.39 0.0853383 0.0426691 0.999089i \(-0.486414\pi\)
0.0426691 + 0.999089i \(0.486414\pi\)
\(572\) 20642.9 1.50895
\(573\) −22322.2 −1.62744
\(574\) −7557.07 −0.549522
\(575\) −2838.87 −0.205894
\(576\) −15403.1 −1.11423
\(577\) 9173.42 0.661862 0.330931 0.943655i \(-0.392637\pi\)
0.330931 + 0.943655i \(0.392637\pi\)
\(578\) 34508.3 2.48331
\(579\) 26504.9 1.90243
\(580\) −868.211 −0.0621560
\(581\) −6853.35 −0.489372
\(582\) −24139.0 −1.71923
\(583\) −18007.3 −1.27922
\(584\) −1042.14 −0.0738424
\(585\) −5897.17 −0.416783
\(586\) −18461.1 −1.30140
\(587\) 20093.3 1.41284 0.706422 0.707790i \(-0.250308\pi\)
0.706422 + 0.707790i \(0.250308\pi\)
\(588\) 2817.92 0.197634
\(589\) 399.347 0.0279368
\(590\) −2979.65 −0.207915
\(591\) −774.365 −0.0538970
\(592\) −29284.2 −2.03306
\(593\) 4833.05 0.334687 0.167344 0.985899i \(-0.446481\pi\)
0.167344 + 0.985899i \(0.446481\pi\)
\(594\) −48632.2 −3.35927
\(595\) 1040.98 0.0717245
\(596\) −16369.2 −1.12502
\(597\) −23626.0 −1.61968
\(598\) −6824.39 −0.466672
\(599\) 18617.2 1.26991 0.634956 0.772548i \(-0.281018\pi\)
0.634956 + 0.772548i \(0.281018\pi\)
\(600\) 7892.92 0.537045
\(601\) −19183.1 −1.30199 −0.650994 0.759083i \(-0.725648\pi\)
−0.650994 + 0.759083i \(0.725648\pi\)
\(602\) −2734.09 −0.185105
\(603\) −17045.5 −1.15115
\(604\) 13417.7 0.903902
\(605\) 586.423 0.0394074
\(606\) −39649.6 −2.65784
\(607\) −148.347 −0.00991961 −0.00495980 0.999988i \(-0.501579\pi\)
−0.00495980 + 0.999988i \(0.501579\pi\)
\(608\) −656.400 −0.0437838
\(609\) −7310.85 −0.486454
\(610\) −1725.86 −0.114554
\(611\) −40628.8 −2.69012
\(612\) 43752.1 2.88982
\(613\) 5019.62 0.330735 0.165367 0.986232i \(-0.447119\pi\)
0.165367 + 0.986232i \(0.447119\pi\)
\(614\) 19805.1 1.30174
\(615\) −3346.35 −0.219411
\(616\) 2038.90 0.133360
\(617\) 24911.0 1.62541 0.812707 0.582673i \(-0.197993\pi\)
0.812707 + 0.582673i \(0.197993\pi\)
\(618\) −12398.9 −0.807052
\(619\) 26324.7 1.70933 0.854667 0.519177i \(-0.173761\pi\)
0.854667 + 0.519177i \(0.173761\pi\)
\(620\) 1075.81 0.0696861
\(621\) 7004.43 0.452622
\(622\) −18430.0 −1.18806
\(623\) 6586.66 0.423578
\(624\) 55230.0 3.54322
\(625\) 15038.4 0.962457
\(626\) 4719.13 0.301301
\(627\) −1134.80 −0.0722802
\(628\) 12499.0 0.794211
\(629\) 46165.3 2.92644
\(630\) 1972.24 0.124724
\(631\) 4312.09 0.272047 0.136023 0.990706i \(-0.456568\pi\)
0.136023 + 0.990706i \(0.456568\pi\)
\(632\) −795.412 −0.0500630
\(633\) −11323.5 −0.711007
\(634\) −29810.1 −1.86737
\(635\) −89.8470 −0.00561491
\(636\) 24416.2 1.52227
\(637\) −3861.49 −0.240185
\(638\) 17911.2 1.11146
\(639\) 31762.8 1.96638
\(640\) 1073.10 0.0662780
\(641\) −7151.59 −0.440672 −0.220336 0.975424i \(-0.570715\pi\)
−0.220336 + 0.975424i \(0.570715\pi\)
\(642\) −4108.04 −0.252541
\(643\) 31125.0 1.90895 0.954473 0.298298i \(-0.0964190\pi\)
0.954473 + 0.298298i \(0.0964190\pi\)
\(644\) 994.340 0.0608424
\(645\) −1210.68 −0.0739079
\(646\) 1283.65 0.0781805
\(647\) −26953.4 −1.63779 −0.818893 0.573947i \(-0.805412\pi\)
−0.818893 + 0.573947i \(0.805412\pi\)
\(648\) −8403.75 −0.509461
\(649\) 26780.5 1.61977
\(650\) 36623.0 2.20996
\(651\) 9058.92 0.545387
\(652\) 10009.6 0.601235
\(653\) 20397.4 1.22238 0.611188 0.791485i \(-0.290692\pi\)
0.611188 + 0.791485i \(0.290692\pi\)
\(654\) 56336.2 3.36838
\(655\) −1212.03 −0.0723020
\(656\) 21581.0 1.28444
\(657\) 9060.32 0.538016
\(658\) 13587.8 0.805029
\(659\) −16996.5 −1.00469 −0.502343 0.864668i \(-0.667529\pi\)
−0.502343 + 0.864668i \(0.667529\pi\)
\(660\) −3057.06 −0.180297
\(661\) 9516.13 0.559962 0.279981 0.960006i \(-0.409672\pi\)
0.279981 + 0.960006i \(0.409672\pi\)
\(662\) −36300.0 −2.13118
\(663\) −87067.7 −5.10020
\(664\) 6723.59 0.392961
\(665\) 25.2094 0.00147004
\(666\) 87464.7 5.08887
\(667\) −2579.73 −0.149756
\(668\) 16309.6 0.944665
\(669\) −21070.9 −1.21771
\(670\) −1347.23 −0.0776837
\(671\) 15511.7 0.892435
\(672\) −14890.0 −0.854754
\(673\) −19493.6 −1.11653 −0.558263 0.829664i \(-0.688532\pi\)
−0.558263 + 0.829664i \(0.688532\pi\)
\(674\) 32765.0 1.87249
\(675\) −37589.2 −2.14342
\(676\) 24786.7 1.41026
\(677\) 9604.20 0.545228 0.272614 0.962123i \(-0.412112\pi\)
0.272614 + 0.962123i \(0.412112\pi\)
\(678\) 53380.1 3.02368
\(679\) −4819.66 −0.272403
\(680\) −1021.27 −0.0575941
\(681\) 26635.1 1.49877
\(682\) −22193.9 −1.24611
\(683\) 17113.2 0.958737 0.479369 0.877614i \(-0.340866\pi\)
0.479369 + 0.877614i \(0.340866\pi\)
\(684\) 1059.54 0.0592290
\(685\) 1356.86 0.0756834
\(686\) 1291.43 0.0718762
\(687\) −18715.7 −1.03937
\(688\) 7807.82 0.432660
\(689\) −33458.3 −1.85002
\(690\) 1010.64 0.0557603
\(691\) −7396.94 −0.407226 −0.203613 0.979051i \(-0.565268\pi\)
−0.203613 + 0.979051i \(0.565268\pi\)
\(692\) 13815.0 0.758910
\(693\) −17726.2 −0.971661
\(694\) −15301.8 −0.836955
\(695\) −320.136 −0.0174726
\(696\) 7172.43 0.390618
\(697\) −34021.5 −1.84886
\(698\) −28340.1 −1.53681
\(699\) −28192.0 −1.52549
\(700\) −5336.11 −0.288123
\(701\) 7089.35 0.381970 0.190985 0.981593i \(-0.438832\pi\)
0.190985 + 0.981593i \(0.438832\pi\)
\(702\) −90361.1 −4.85820
\(703\) 1117.98 0.0599795
\(704\) 10941.9 0.585782
\(705\) 6016.85 0.321429
\(706\) −14363.6 −0.765694
\(707\) −7916.55 −0.421121
\(708\) −36312.0 −1.92752
\(709\) 32194.9 1.70536 0.852682 0.522430i \(-0.174974\pi\)
0.852682 + 0.522430i \(0.174974\pi\)
\(710\) 2510.45 0.132698
\(711\) 6915.29 0.364759
\(712\) −6461.95 −0.340129
\(713\) 3196.56 0.167899
\(714\) 29118.8 1.52625
\(715\) 4189.20 0.219115
\(716\) −10590.8 −0.552789
\(717\) 33934.4 1.76751
\(718\) −13632.5 −0.708580
\(719\) 12572.2 0.652107 0.326053 0.945351i \(-0.394281\pi\)
0.326053 + 0.945351i \(0.394281\pi\)
\(720\) −5632.19 −0.291527
\(721\) −2475.61 −0.127873
\(722\) −25793.8 −1.32956
\(723\) −34094.0 −1.75376
\(724\) 10530.9 0.540575
\(725\) 13844.1 0.709181
\(726\) 16403.7 0.838565
\(727\) −26522.4 −1.35304 −0.676521 0.736424i \(-0.736513\pi\)
−0.676521 + 0.736424i \(0.736513\pi\)
\(728\) 3788.38 0.192866
\(729\) −3503.40 −0.177991
\(730\) 716.104 0.0363071
\(731\) −12308.7 −0.622782
\(732\) −21032.5 −1.06200
\(733\) 11845.3 0.596886 0.298443 0.954427i \(-0.403533\pi\)
0.298443 + 0.954427i \(0.403533\pi\)
\(734\) 18075.6 0.908966
\(735\) 571.860 0.0286985
\(736\) −5254.14 −0.263139
\(737\) 12108.7 0.605195
\(738\) −64457.0 −3.21503
\(739\) −581.255 −0.0289335 −0.0144667 0.999895i \(-0.504605\pi\)
−0.0144667 + 0.999895i \(0.504605\pi\)
\(740\) 3011.75 0.149614
\(741\) −2108.52 −0.104532
\(742\) 11189.8 0.553624
\(743\) 34358.5 1.69649 0.848246 0.529603i \(-0.177659\pi\)
0.848246 + 0.529603i \(0.177659\pi\)
\(744\) −8887.41 −0.437941
\(745\) −3321.92 −0.163364
\(746\) −2994.66 −0.146974
\(747\) −58454.8 −2.86312
\(748\) −31080.3 −1.51926
\(749\) −820.223 −0.0400137
\(750\) −10916.2 −0.531473
\(751\) 31565.6 1.53375 0.766875 0.641797i \(-0.221811\pi\)
0.766875 + 0.641797i \(0.221811\pi\)
\(752\) −38803.2 −1.88166
\(753\) 5657.34 0.273792
\(754\) 33279.9 1.60741
\(755\) 2722.94 0.131255
\(756\) 13165.9 0.633387
\(757\) 7911.75 0.379864 0.189932 0.981797i \(-0.439173\pi\)
0.189932 + 0.981797i \(0.439173\pi\)
\(758\) 12794.9 0.613104
\(759\) −9083.50 −0.434401
\(760\) −24.7321 −0.00118043
\(761\) 18428.9 0.877852 0.438926 0.898523i \(-0.355359\pi\)
0.438926 + 0.898523i \(0.355359\pi\)
\(762\) −2513.24 −0.119482
\(763\) 11248.2 0.533701
\(764\) −14805.5 −0.701103
\(765\) 8878.91 0.419631
\(766\) 39319.6 1.85467
\(767\) 49759.5 2.34252
\(768\) 49235.1 2.31331
\(769\) −19689.0 −0.923281 −0.461640 0.887067i \(-0.652739\pi\)
−0.461640 + 0.887067i \(0.652739\pi\)
\(770\) −1401.03 −0.0655709
\(771\) −68000.4 −3.17636
\(772\) 17579.7 0.819569
\(773\) −22405.8 −1.04254 −0.521269 0.853392i \(-0.674541\pi\)
−0.521269 + 0.853392i \(0.674541\pi\)
\(774\) −23320.0 −1.08297
\(775\) −17154.3 −0.795097
\(776\) 4728.41 0.218737
\(777\) 25360.8 1.17093
\(778\) −28286.5 −1.30350
\(779\) −823.897 −0.0378937
\(780\) −5680.17 −0.260747
\(781\) −22563.5 −1.03378
\(782\) 10275.0 0.469861
\(783\) −34157.9 −1.55901
\(784\) −3687.98 −0.168002
\(785\) 2536.51 0.115327
\(786\) −33903.4 −1.53854
\(787\) −36959.8 −1.67405 −0.837023 0.547168i \(-0.815706\pi\)
−0.837023 + 0.547168i \(0.815706\pi\)
\(788\) −513.607 −0.0232189
\(789\) 13746.9 0.620284
\(790\) 546.567 0.0246151
\(791\) 10658.0 0.479085
\(792\) 17390.6 0.780235
\(793\) 28821.5 1.29065
\(794\) 5045.88 0.225531
\(795\) 4954.95 0.221049
\(796\) −15670.2 −0.697760
\(797\) 18571.4 0.825385 0.412692 0.910870i \(-0.364588\pi\)
0.412692 + 0.910870i \(0.364588\pi\)
\(798\) 705.170 0.0312816
\(799\) 61171.6 2.70851
\(800\) 28196.2 1.24611
\(801\) 56180.0 2.47818
\(802\) −28373.6 −1.24926
\(803\) −6436.22 −0.282851
\(804\) −16418.3 −0.720183
\(805\) 201.788 0.00883491
\(806\) −41237.4 −1.80214
\(807\) −52042.5 −2.27011
\(808\) 7766.66 0.338156
\(809\) −30541.9 −1.32731 −0.663656 0.748038i \(-0.730996\pi\)
−0.663656 + 0.748038i \(0.730996\pi\)
\(810\) 5774.63 0.250493
\(811\) 11493.8 0.497661 0.248830 0.968547i \(-0.419954\pi\)
0.248830 + 0.968547i \(0.419954\pi\)
\(812\) −4849.01 −0.209565
\(813\) 7410.03 0.319657
\(814\) −62132.6 −2.67537
\(815\) 2031.31 0.0873053
\(816\) −83155.5 −3.56743
\(817\) −298.079 −0.0127644
\(818\) −25242.0 −1.07893
\(819\) −32936.1 −1.40523
\(820\) −2219.51 −0.0945227
\(821\) 7959.92 0.338372 0.169186 0.985584i \(-0.445886\pi\)
0.169186 + 0.985584i \(0.445886\pi\)
\(822\) 37954.8 1.61050
\(823\) 21475.9 0.909603 0.454802 0.890593i \(-0.349710\pi\)
0.454802 + 0.890593i \(0.349710\pi\)
\(824\) 2428.74 0.102681
\(825\) 48746.5 2.05713
\(826\) −16641.5 −0.701007
\(827\) −18521.4 −0.778783 −0.389392 0.921072i \(-0.627315\pi\)
−0.389392 + 0.921072i \(0.627315\pi\)
\(828\) 8481.09 0.355964
\(829\) −3374.12 −0.141361 −0.0706803 0.997499i \(-0.522517\pi\)
−0.0706803 + 0.997499i \(0.522517\pi\)
\(830\) −4620.11 −0.193212
\(831\) 41248.7 1.72190
\(832\) 20330.7 0.847162
\(833\) 5813.95 0.241826
\(834\) −8954.99 −0.371806
\(835\) 3309.81 0.137175
\(836\) −752.672 −0.0311384
\(837\) 42325.3 1.74788
\(838\) 32077.6 1.32232
\(839\) −4028.81 −0.165780 −0.0828902 0.996559i \(-0.526415\pi\)
−0.0828902 + 0.996559i \(0.526415\pi\)
\(840\) −561.033 −0.0230446
\(841\) −11808.7 −0.484179
\(842\) −39785.0 −1.62836
\(843\) −48846.3 −1.99568
\(844\) −7510.43 −0.306303
\(845\) 5030.14 0.204783
\(846\) 115896. 4.70990
\(847\) 3275.21 0.132866
\(848\) −31954.9 −1.29403
\(849\) 19758.9 0.798733
\(850\) −55140.4 −2.22506
\(851\) 8948.88 0.360474
\(852\) 30594.0 1.23020
\(853\) 19547.1 0.784621 0.392310 0.919833i \(-0.371676\pi\)
0.392310 + 0.919833i \(0.371676\pi\)
\(854\) −9639.04 −0.386231
\(855\) 215.021 0.00860064
\(856\) 804.693 0.0321307
\(857\) −15870.4 −0.632581 −0.316291 0.948662i \(-0.602437\pi\)
−0.316291 + 0.948662i \(0.602437\pi\)
\(858\) 117182. 4.66263
\(859\) 35606.1 1.41428 0.707139 0.707075i \(-0.249986\pi\)
0.707139 + 0.707075i \(0.249986\pi\)
\(860\) −803.001 −0.0318397
\(861\) −18689.6 −0.739767
\(862\) 17096.4 0.675528
\(863\) −30593.4 −1.20673 −0.603366 0.797464i \(-0.706174\pi\)
−0.603366 + 0.797464i \(0.706174\pi\)
\(864\) −69569.5 −2.73935
\(865\) 2803.57 0.110201
\(866\) −1423.88 −0.0558722
\(867\) 85343.3 3.34303
\(868\) 6008.44 0.234954
\(869\) −4912.45 −0.191764
\(870\) −4928.53 −0.192061
\(871\) 22498.5 0.875239
\(872\) −11035.3 −0.428557
\(873\) −41108.7 −1.59372
\(874\) 248.828 0.00963015
\(875\) −2179.57 −0.0842090
\(876\) 8726.92 0.336593
\(877\) 18579.7 0.715385 0.357692 0.933839i \(-0.383564\pi\)
0.357692 + 0.933839i \(0.383564\pi\)
\(878\) −44562.8 −1.71290
\(879\) −45656.7 −1.75195
\(880\) 4000.96 0.153264
\(881\) −2860.60 −0.109394 −0.0546971 0.998503i \(-0.517419\pi\)
−0.0546971 + 0.998503i \(0.517419\pi\)
\(882\) 11015.1 0.420519
\(883\) 1117.59 0.0425933 0.0212967 0.999773i \(-0.493221\pi\)
0.0212967 + 0.999773i \(0.493221\pi\)
\(884\) −57748.8 −2.19717
\(885\) −7369.04 −0.279896
\(886\) −21497.3 −0.815142
\(887\) 11829.3 0.447789 0.223895 0.974613i \(-0.428123\pi\)
0.223895 + 0.974613i \(0.428123\pi\)
\(888\) −24880.6 −0.940245
\(889\) −501.801 −0.0189312
\(890\) 4440.32 0.167236
\(891\) −51901.3 −1.95147
\(892\) −13975.6 −0.524592
\(893\) 1481.39 0.0555128
\(894\) −92922.3 −3.47627
\(895\) −2149.27 −0.0802705
\(896\) 5993.32 0.223463
\(897\) −16877.6 −0.628234
\(898\) −31986.7 −1.18865
\(899\) −15588.4 −0.578311
\(900\) −45513.6 −1.68569
\(901\) 50375.6 1.86266
\(902\) 45788.6 1.69024
\(903\) −6761.74 −0.249188
\(904\) −10456.2 −0.384701
\(905\) 2137.10 0.0784968
\(906\) 76167.3 2.79303
\(907\) 32567.9 1.19228 0.596140 0.802880i \(-0.296700\pi\)
0.596140 + 0.802880i \(0.296700\pi\)
\(908\) 17666.1 0.645671
\(909\) −67523.1 −2.46381
\(910\) −2603.18 −0.0948292
\(911\) 3223.08 0.117218 0.0586090 0.998281i \(-0.481333\pi\)
0.0586090 + 0.998281i \(0.481333\pi\)
\(912\) −2013.78 −0.0731171
\(913\) 41524.7 1.50522
\(914\) 46879.6 1.69654
\(915\) −4268.27 −0.154213
\(916\) −12413.4 −0.447763
\(917\) −6769.25 −0.243773
\(918\) 136050. 4.89140
\(919\) −40432.2 −1.45129 −0.725646 0.688069i \(-0.758459\pi\)
−0.725646 + 0.688069i \(0.758459\pi\)
\(920\) −197.968 −0.00709435
\(921\) 48980.5 1.75240
\(922\) 29513.0 1.05419
\(923\) −41924.0 −1.49506
\(924\) −17073.9 −0.607889
\(925\) −48024.0 −1.70705
\(926\) 50121.2 1.77871
\(927\) −21115.4 −0.748133
\(928\) 25622.4 0.906354
\(929\) −46858.0 −1.65486 −0.827429 0.561571i \(-0.810197\pi\)
−0.827429 + 0.561571i \(0.810197\pi\)
\(930\) 6106.97 0.215328
\(931\) 140.796 0.00495640
\(932\) −18698.7 −0.657185
\(933\) −45579.7 −1.59937
\(934\) −57404.0 −2.01105
\(935\) −6307.35 −0.220612
\(936\) 32312.5 1.12838
\(937\) −6908.84 −0.240877 −0.120439 0.992721i \(-0.538430\pi\)
−0.120439 + 0.992721i \(0.538430\pi\)
\(938\) −7524.37 −0.261918
\(939\) 11671.0 0.405612
\(940\) 3990.75 0.138472
\(941\) −11721.1 −0.406055 −0.203028 0.979173i \(-0.565078\pi\)
−0.203028 + 0.979173i \(0.565078\pi\)
\(942\) 70952.4 2.45409
\(943\) −6594.86 −0.227739
\(944\) 47523.7 1.63852
\(945\) 2671.86 0.0919741
\(946\) 16565.9 0.569350
\(947\) 53708.5 1.84297 0.921485 0.388414i \(-0.126977\pi\)
0.921485 + 0.388414i \(0.126977\pi\)
\(948\) 6660.83 0.228200
\(949\) −11958.8 −0.409061
\(950\) −1335.33 −0.0456042
\(951\) −73724.3 −2.51385
\(952\) −5703.87 −0.194184
\(953\) 40584.2 1.37949 0.689743 0.724054i \(-0.257723\pi\)
0.689743 + 0.724054i \(0.257723\pi\)
\(954\) 95441.6 3.23903
\(955\) −3004.58 −0.101807
\(956\) 22507.4 0.761445
\(957\) 44296.7 1.49625
\(958\) 27666.3 0.933046
\(959\) 7578.17 0.255174
\(960\) −3010.83 −0.101223
\(961\) −10475.3 −0.351627
\(962\) −115445. −3.86914
\(963\) −6995.98 −0.234104
\(964\) −22613.3 −0.755524
\(965\) 3567.57 0.119010
\(966\) 5644.51 0.188001
\(967\) 12480.6 0.415045 0.207523 0.978230i \(-0.433460\pi\)
0.207523 + 0.978230i \(0.433460\pi\)
\(968\) −3213.20 −0.106690
\(969\) 3174.63 0.105246
\(970\) −3249.12 −0.107550
\(971\) −1341.50 −0.0443366 −0.0221683 0.999754i \(-0.507057\pi\)
−0.0221683 + 0.999754i \(0.507057\pi\)
\(972\) 19590.5 0.646468
\(973\) −1787.98 −0.0589106
\(974\) 35518.9 1.16848
\(975\) 90573.3 2.97504
\(976\) 27526.5 0.902768
\(977\) −21010.5 −0.688009 −0.344005 0.938968i \(-0.611784\pi\)
−0.344005 + 0.938968i \(0.611784\pi\)
\(978\) 56820.8 1.85780
\(979\) −39908.8 −1.30285
\(980\) 379.293 0.0123633
\(981\) 95940.4 3.12247
\(982\) 3659.85 0.118931
\(983\) 28808.0 0.934722 0.467361 0.884067i \(-0.345205\pi\)
0.467361 + 0.884067i \(0.345205\pi\)
\(984\) 18335.7 0.594026
\(985\) −104.230 −0.00337162
\(986\) −50107.0 −1.61839
\(987\) 33604.5 1.08373
\(988\) −1398.50 −0.0450326
\(989\) −2385.97 −0.0767133
\(990\) −11949.9 −0.383629
\(991\) 14431.5 0.462595 0.231298 0.972883i \(-0.425703\pi\)
0.231298 + 0.972883i \(0.425703\pi\)
\(992\) −31748.9 −1.01616
\(993\) −89774.4 −2.86899
\(994\) 14021.0 0.447403
\(995\) −3180.07 −0.101322
\(996\) −56303.8 −1.79122
\(997\) −7627.63 −0.242296 −0.121148 0.992634i \(-0.538658\pi\)
−0.121148 + 0.992634i \(0.538658\pi\)
\(998\) 25194.8 0.799125
\(999\) 118491. 3.75265
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 161.4.a.d.1.9 12
3.2 odd 2 1449.4.a.o.1.4 12
7.6 odd 2 1127.4.a.h.1.9 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
161.4.a.d.1.9 12 1.1 even 1 trivial
1127.4.a.h.1.9 12 7.6 odd 2
1449.4.a.o.1.4 12 3.2 odd 2