Properties

Label 161.4.a.d.1.8
Level $161$
Weight $4$
Character 161.1
Self dual yes
Analytic conductor $9.499$
Analytic rank $0$
Dimension $12$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [161,4,Mod(1,161)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(161, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("161.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 161 = 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 161.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(9.49930751092\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 4 x^{11} - 76 x^{10} + 311 x^{9} + 1979 x^{8} - 8466 x^{7} - 19942 x^{6} + 95647 x^{5} + \cdots - 70656 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.8
Root \(2.11879\) of defining polynomial
Character \(\chi\) \(=\) 161.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.11879 q^{2} -9.53944 q^{3} -3.51074 q^{4} -13.8523 q^{5} -20.2120 q^{6} +7.00000 q^{7} -24.3888 q^{8} +64.0009 q^{9} -29.3501 q^{10} +44.5055 q^{11} +33.4905 q^{12} -14.0229 q^{13} +14.8315 q^{14} +132.143 q^{15} -23.5887 q^{16} +73.5438 q^{17} +135.604 q^{18} -144.613 q^{19} +48.6320 q^{20} -66.7761 q^{21} +94.2977 q^{22} +23.0000 q^{23} +232.656 q^{24} +66.8868 q^{25} -29.7116 q^{26} -352.967 q^{27} -24.5752 q^{28} -151.668 q^{29} +279.984 q^{30} +267.975 q^{31} +145.131 q^{32} -424.558 q^{33} +155.824 q^{34} -96.9662 q^{35} -224.691 q^{36} +217.992 q^{37} -306.405 q^{38} +133.771 q^{39} +337.842 q^{40} +292.091 q^{41} -141.484 q^{42} +258.749 q^{43} -156.247 q^{44} -886.560 q^{45} +48.7321 q^{46} -134.287 q^{47} +225.023 q^{48} +49.0000 q^{49} +141.719 q^{50} -701.567 q^{51} +49.2310 q^{52} -358.121 q^{53} -747.863 q^{54} -616.505 q^{55} -170.722 q^{56} +1379.53 q^{57} -321.353 q^{58} +726.500 q^{59} -463.921 q^{60} -22.6555 q^{61} +567.781 q^{62} +448.006 q^{63} +496.211 q^{64} +194.250 q^{65} -899.547 q^{66} +441.251 q^{67} -258.194 q^{68} -219.407 q^{69} -205.451 q^{70} -42.7849 q^{71} -1560.90 q^{72} -414.175 q^{73} +461.878 q^{74} -638.062 q^{75} +507.700 q^{76} +311.539 q^{77} +283.432 q^{78} +1245.64 q^{79} +326.759 q^{80} +1639.09 q^{81} +618.878 q^{82} -235.942 q^{83} +234.434 q^{84} -1018.75 q^{85} +548.234 q^{86} +1446.83 q^{87} -1085.44 q^{88} -229.308 q^{89} -1878.43 q^{90} -98.1606 q^{91} -80.7471 q^{92} -2556.33 q^{93} -284.525 q^{94} +2003.23 q^{95} -1384.47 q^{96} -548.410 q^{97} +103.821 q^{98} +2848.39 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 4 q^{2} + q^{3} + 72 q^{4} + 16 q^{5} - 15 q^{6} + 84 q^{7} - 21 q^{8} + 203 q^{9} + 106 q^{10} + 50 q^{11} - 139 q^{12} + 21 q^{13} + 28 q^{14} + 192 q^{15} + 516 q^{16} + 26 q^{17} + 251 q^{18}+ \cdots + 2400 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.11879 0.749104 0.374552 0.927206i \(-0.377796\pi\)
0.374552 + 0.927206i \(0.377796\pi\)
\(3\) −9.53944 −1.83587 −0.917933 0.396736i \(-0.870143\pi\)
−0.917933 + 0.396736i \(0.870143\pi\)
\(4\) −3.51074 −0.438843
\(5\) −13.8523 −1.23899 −0.619495 0.785001i \(-0.712662\pi\)
−0.619495 + 0.785001i \(0.712662\pi\)
\(6\) −20.2120 −1.37525
\(7\) 7.00000 0.377964
\(8\) −24.3888 −1.07784
\(9\) 64.0009 2.37040
\(10\) −29.3501 −0.928132
\(11\) 44.5055 1.21990 0.609951 0.792439i \(-0.291189\pi\)
0.609951 + 0.792439i \(0.291189\pi\)
\(12\) 33.4905 0.805657
\(13\) −14.0229 −0.299174 −0.149587 0.988749i \(-0.547794\pi\)
−0.149587 + 0.988749i \(0.547794\pi\)
\(14\) 14.8315 0.283135
\(15\) 132.143 2.27462
\(16\) −23.5887 −0.368574
\(17\) 73.5438 1.04924 0.524618 0.851338i \(-0.324208\pi\)
0.524618 + 0.851338i \(0.324208\pi\)
\(18\) 135.604 1.77568
\(19\) −144.613 −1.74613 −0.873067 0.487599i \(-0.837873\pi\)
−0.873067 + 0.487599i \(0.837873\pi\)
\(20\) 48.6320 0.543722
\(21\) −66.7761 −0.693892
\(22\) 94.2977 0.913833
\(23\) 23.0000 0.208514
\(24\) 232.656 1.97878
\(25\) 66.8868 0.535094
\(26\) −29.7116 −0.224113
\(27\) −352.967 −2.51587
\(28\) −24.5752 −0.165867
\(29\) −151.668 −0.971176 −0.485588 0.874188i \(-0.661395\pi\)
−0.485588 + 0.874188i \(0.661395\pi\)
\(30\) 279.984 1.70393
\(31\) 267.975 1.55257 0.776285 0.630382i \(-0.217102\pi\)
0.776285 + 0.630382i \(0.217102\pi\)
\(32\) 145.131 0.801743
\(33\) −424.558 −2.23958
\(34\) 155.824 0.785986
\(35\) −96.9662 −0.468294
\(36\) −224.691 −1.04023
\(37\) 217.992 0.968584 0.484292 0.874906i \(-0.339077\pi\)
0.484292 + 0.874906i \(0.339077\pi\)
\(38\) −306.405 −1.30804
\(39\) 133.771 0.549244
\(40\) 337.842 1.33544
\(41\) 292.091 1.11261 0.556304 0.830979i \(-0.312219\pi\)
0.556304 + 0.830979i \(0.312219\pi\)
\(42\) −141.484 −0.519797
\(43\) 258.749 0.917647 0.458824 0.888527i \(-0.348271\pi\)
0.458824 + 0.888527i \(0.348271\pi\)
\(44\) −156.247 −0.535345
\(45\) −886.560 −2.93690
\(46\) 48.7321 0.156199
\(47\) −134.287 −0.416761 −0.208380 0.978048i \(-0.566819\pi\)
−0.208380 + 0.978048i \(0.566819\pi\)
\(48\) 225.023 0.676652
\(49\) 49.0000 0.142857
\(50\) 141.719 0.400841
\(51\) −701.567 −1.92625
\(52\) 49.2310 0.131291
\(53\) −358.121 −0.928145 −0.464072 0.885797i \(-0.653612\pi\)
−0.464072 + 0.885797i \(0.653612\pi\)
\(54\) −747.863 −1.88465
\(55\) −616.505 −1.51145
\(56\) −170.722 −0.407386
\(57\) 1379.53 3.20567
\(58\) −321.353 −0.727512
\(59\) 726.500 1.60309 0.801545 0.597935i \(-0.204012\pi\)
0.801545 + 0.597935i \(0.204012\pi\)
\(60\) −463.921 −0.998200
\(61\) −22.6555 −0.0475531 −0.0237765 0.999717i \(-0.507569\pi\)
−0.0237765 + 0.999717i \(0.507569\pi\)
\(62\) 567.781 1.16304
\(63\) 448.006 0.895928
\(64\) 496.211 0.969163
\(65\) 194.250 0.370674
\(66\) −899.547 −1.67768
\(67\) 441.251 0.804587 0.402294 0.915511i \(-0.368213\pi\)
0.402294 + 0.915511i \(0.368213\pi\)
\(68\) −258.194 −0.460450
\(69\) −219.407 −0.382804
\(70\) −205.451 −0.350801
\(71\) −42.7849 −0.0715159 −0.0357580 0.999360i \(-0.511385\pi\)
−0.0357580 + 0.999360i \(0.511385\pi\)
\(72\) −1560.90 −2.55492
\(73\) −414.175 −0.664048 −0.332024 0.943271i \(-0.607731\pi\)
−0.332024 + 0.943271i \(0.607731\pi\)
\(74\) 461.878 0.725570
\(75\) −638.062 −0.982361
\(76\) 507.700 0.766279
\(77\) 311.539 0.461079
\(78\) 283.432 0.411441
\(79\) 1245.64 1.77399 0.886997 0.461775i \(-0.152787\pi\)
0.886997 + 0.461775i \(0.152787\pi\)
\(80\) 326.759 0.456659
\(81\) 1639.09 2.24840
\(82\) 618.878 0.833459
\(83\) −235.942 −0.312024 −0.156012 0.987755i \(-0.549864\pi\)
−0.156012 + 0.987755i \(0.549864\pi\)
\(84\) 234.434 0.304510
\(85\) −1018.75 −1.29999
\(86\) 548.234 0.687413
\(87\) 1446.83 1.78295
\(88\) −1085.44 −1.31486
\(89\) −229.308 −0.273108 −0.136554 0.990633i \(-0.543603\pi\)
−0.136554 + 0.990633i \(0.543603\pi\)
\(90\) −1878.43 −2.20005
\(91\) −98.1606 −0.113077
\(92\) −80.7471 −0.0915051
\(93\) −2556.33 −2.85031
\(94\) −284.525 −0.312197
\(95\) 2003.23 2.16344
\(96\) −1384.47 −1.47189
\(97\) −548.410 −0.574047 −0.287024 0.957924i \(-0.592666\pi\)
−0.287024 + 0.957924i \(0.592666\pi\)
\(98\) 103.821 0.107015
\(99\) 2848.39 2.89166
\(100\) −234.822 −0.234822
\(101\) 650.714 0.641074 0.320537 0.947236i \(-0.396137\pi\)
0.320537 + 0.947236i \(0.396137\pi\)
\(102\) −1486.47 −1.44297
\(103\) −440.196 −0.421105 −0.210552 0.977583i \(-0.567526\pi\)
−0.210552 + 0.977583i \(0.567526\pi\)
\(104\) 342.003 0.322463
\(105\) 925.003 0.859725
\(106\) −758.781 −0.695277
\(107\) −1727.26 −1.56056 −0.780282 0.625428i \(-0.784924\pi\)
−0.780282 + 0.625428i \(0.784924\pi\)
\(108\) 1239.18 1.10407
\(109\) 574.975 0.505254 0.252627 0.967564i \(-0.418706\pi\)
0.252627 + 0.967564i \(0.418706\pi\)
\(110\) −1306.24 −1.13223
\(111\) −2079.52 −1.77819
\(112\) −165.121 −0.139308
\(113\) −1821.69 −1.51655 −0.758274 0.651936i \(-0.773957\pi\)
−0.758274 + 0.651936i \(0.773957\pi\)
\(114\) 2922.93 2.40138
\(115\) −318.603 −0.258347
\(116\) 532.469 0.426194
\(117\) −897.481 −0.709163
\(118\) 1539.30 1.20088
\(119\) 514.807 0.396574
\(120\) −3222.82 −2.45168
\(121\) 649.741 0.488160
\(122\) −48.0022 −0.0356222
\(123\) −2786.38 −2.04260
\(124\) −940.791 −0.681335
\(125\) 805.003 0.576013
\(126\) 949.229 0.671143
\(127\) 1831.16 1.27944 0.639722 0.768606i \(-0.279050\pi\)
0.639722 + 0.768606i \(0.279050\pi\)
\(128\) −109.682 −0.0757392
\(129\) −2468.32 −1.68468
\(130\) 411.575 0.277673
\(131\) 1414.78 0.943584 0.471792 0.881710i \(-0.343607\pi\)
0.471792 + 0.881710i \(0.343607\pi\)
\(132\) 1490.51 0.982822
\(133\) −1012.29 −0.659977
\(134\) 934.916 0.602719
\(135\) 4889.42 3.11714
\(136\) −1793.65 −1.13091
\(137\) 1761.45 1.09847 0.549237 0.835667i \(-0.314919\pi\)
0.549237 + 0.835667i \(0.314919\pi\)
\(138\) −464.877 −0.286760
\(139\) 553.261 0.337605 0.168802 0.985650i \(-0.446010\pi\)
0.168802 + 0.985650i \(0.446010\pi\)
\(140\) 340.424 0.205508
\(141\) 1281.02 0.765117
\(142\) −90.6520 −0.0535729
\(143\) −624.098 −0.364963
\(144\) −1509.70 −0.873668
\(145\) 2100.96 1.20328
\(146\) −877.548 −0.497441
\(147\) −467.432 −0.262267
\(148\) −765.313 −0.425056
\(149\) −2178.19 −1.19761 −0.598806 0.800894i \(-0.704358\pi\)
−0.598806 + 0.800894i \(0.704358\pi\)
\(150\) −1351.92 −0.735891
\(151\) 2997.34 1.61537 0.807683 0.589617i \(-0.200721\pi\)
0.807683 + 0.589617i \(0.200721\pi\)
\(152\) 3526.95 1.88206
\(153\) 4706.87 2.48711
\(154\) 660.084 0.345397
\(155\) −3712.07 −1.92362
\(156\) −469.636 −0.241032
\(157\) 1672.84 0.850363 0.425182 0.905108i \(-0.360210\pi\)
0.425182 + 0.905108i \(0.360210\pi\)
\(158\) 2639.25 1.32891
\(159\) 3416.27 1.70395
\(160\) −2010.40 −0.993351
\(161\) 161.000 0.0788110
\(162\) 3472.88 1.68429
\(163\) 3152.11 1.51468 0.757338 0.653023i \(-0.226500\pi\)
0.757338 + 0.653023i \(0.226500\pi\)
\(164\) −1025.46 −0.488260
\(165\) 5881.11 2.77481
\(166\) −499.910 −0.233738
\(167\) 1302.51 0.603541 0.301771 0.953381i \(-0.402422\pi\)
0.301771 + 0.953381i \(0.402422\pi\)
\(168\) 1628.59 0.747907
\(169\) −2000.36 −0.910495
\(170\) −2158.52 −0.973829
\(171\) −9255.38 −4.13904
\(172\) −908.401 −0.402703
\(173\) 1687.46 0.741590 0.370795 0.928715i \(-0.379085\pi\)
0.370795 + 0.928715i \(0.379085\pi\)
\(174\) 3065.53 1.33561
\(175\) 468.208 0.202247
\(176\) −1049.83 −0.449624
\(177\) −6930.41 −2.94306
\(178\) −485.855 −0.204586
\(179\) 2056.74 0.858815 0.429408 0.903111i \(-0.358722\pi\)
0.429408 + 0.903111i \(0.358722\pi\)
\(180\) 3112.49 1.28884
\(181\) 3211.59 1.31887 0.659435 0.751762i \(-0.270796\pi\)
0.659435 + 0.751762i \(0.270796\pi\)
\(182\) −207.981 −0.0847066
\(183\) 216.121 0.0873011
\(184\) −560.943 −0.224746
\(185\) −3019.69 −1.20006
\(186\) −5416.31 −2.13518
\(187\) 3273.11 1.27996
\(188\) 471.447 0.182893
\(189\) −2470.77 −0.950911
\(190\) 4244.42 1.62064
\(191\) −117.239 −0.0444141 −0.0222070 0.999753i \(-0.507069\pi\)
−0.0222070 + 0.999753i \(0.507069\pi\)
\(192\) −4733.58 −1.77925
\(193\) −3443.46 −1.28428 −0.642138 0.766589i \(-0.721952\pi\)
−0.642138 + 0.766589i \(0.721952\pi\)
\(194\) −1161.96 −0.430021
\(195\) −1853.04 −0.680507
\(196\) −172.026 −0.0626919
\(197\) −5035.34 −1.82108 −0.910541 0.413418i \(-0.864335\pi\)
−0.910541 + 0.413418i \(0.864335\pi\)
\(198\) 6035.13 2.16615
\(199\) 1094.67 0.389945 0.194973 0.980809i \(-0.437538\pi\)
0.194973 + 0.980809i \(0.437538\pi\)
\(200\) −1631.29 −0.576748
\(201\) −4209.28 −1.47711
\(202\) 1378.72 0.480231
\(203\) −1061.68 −0.367070
\(204\) 2463.02 0.845323
\(205\) −4046.13 −1.37851
\(206\) −932.682 −0.315451
\(207\) 1472.02 0.494263
\(208\) 330.783 0.110268
\(209\) −6436.09 −2.13011
\(210\) 1959.88 0.644023
\(211\) −385.635 −0.125821 −0.0629105 0.998019i \(-0.520038\pi\)
−0.0629105 + 0.998019i \(0.520038\pi\)
\(212\) 1257.27 0.407310
\(213\) 408.144 0.131294
\(214\) −3659.69 −1.16902
\(215\) −3584.27 −1.13696
\(216\) 8608.45 2.71172
\(217\) 1875.82 0.586817
\(218\) 1218.25 0.378487
\(219\) 3951.00 1.21910
\(220\) 2164.39 0.663287
\(221\) −1031.30 −0.313904
\(222\) −4406.05 −1.33205
\(223\) 2595.36 0.779365 0.389682 0.920949i \(-0.372585\pi\)
0.389682 + 0.920949i \(0.372585\pi\)
\(224\) 1015.92 0.303030
\(225\) 4280.81 1.26839
\(226\) −3859.76 −1.13605
\(227\) −1542.42 −0.450985 −0.225493 0.974245i \(-0.572399\pi\)
−0.225493 + 0.974245i \(0.572399\pi\)
\(228\) −4843.17 −1.40679
\(229\) 3735.57 1.07796 0.538981 0.842318i \(-0.318810\pi\)
0.538981 + 0.842318i \(0.318810\pi\)
\(230\) −675.053 −0.193529
\(231\) −2971.90 −0.846480
\(232\) 3699.01 1.04678
\(233\) 1302.43 0.366201 0.183100 0.983094i \(-0.441387\pi\)
0.183100 + 0.983094i \(0.441387\pi\)
\(234\) −1901.57 −0.531237
\(235\) 1860.19 0.516362
\(236\) −2550.56 −0.703505
\(237\) −11882.7 −3.25681
\(238\) 1090.77 0.297075
\(239\) −2933.35 −0.793901 −0.396951 0.917840i \(-0.629932\pi\)
−0.396951 + 0.917840i \(0.629932\pi\)
\(240\) −3117.09 −0.838365
\(241\) −5856.33 −1.56531 −0.782654 0.622457i \(-0.786135\pi\)
−0.782654 + 0.622457i \(0.786135\pi\)
\(242\) 1376.66 0.365683
\(243\) −6105.85 −1.61189
\(244\) 79.5376 0.0208683
\(245\) −678.764 −0.176998
\(246\) −5903.75 −1.53012
\(247\) 2027.90 0.522399
\(248\) −6535.59 −1.67343
\(249\) 2250.75 0.572834
\(250\) 1705.63 0.431494
\(251\) 1074.97 0.270324 0.135162 0.990823i \(-0.456844\pi\)
0.135162 + 0.990823i \(0.456844\pi\)
\(252\) −1572.83 −0.393172
\(253\) 1023.63 0.254367
\(254\) 3879.84 0.958437
\(255\) 9718.33 2.38661
\(256\) −4202.08 −1.02590
\(257\) −1924.24 −0.467046 −0.233523 0.972351i \(-0.575025\pi\)
−0.233523 + 0.972351i \(0.575025\pi\)
\(258\) −5229.84 −1.26200
\(259\) 1525.94 0.366090
\(260\) −681.963 −0.162668
\(261\) −9706.91 −2.30208
\(262\) 2997.61 0.706843
\(263\) 1355.10 0.317716 0.158858 0.987301i \(-0.449219\pi\)
0.158858 + 0.987301i \(0.449219\pi\)
\(264\) 10354.5 2.41391
\(265\) 4960.80 1.14996
\(266\) −2144.83 −0.494391
\(267\) 2187.47 0.501390
\(268\) −1549.12 −0.353087
\(269\) 6417.79 1.45464 0.727322 0.686296i \(-0.240765\pi\)
0.727322 + 0.686296i \(0.240765\pi\)
\(270\) 10359.6 2.33506
\(271\) −159.049 −0.0356513 −0.0178257 0.999841i \(-0.505674\pi\)
−0.0178257 + 0.999841i \(0.505674\pi\)
\(272\) −1734.81 −0.386721
\(273\) 936.397 0.207595
\(274\) 3732.14 0.822871
\(275\) 2976.83 0.652763
\(276\) 770.282 0.167991
\(277\) −4435.96 −0.962206 −0.481103 0.876664i \(-0.659764\pi\)
−0.481103 + 0.876664i \(0.659764\pi\)
\(278\) 1172.24 0.252901
\(279\) 17150.6 3.68022
\(280\) 2364.89 0.504747
\(281\) 4684.51 0.994499 0.497250 0.867608i \(-0.334343\pi\)
0.497250 + 0.867608i \(0.334343\pi\)
\(282\) 2714.21 0.573152
\(283\) 8081.92 1.69760 0.848799 0.528716i \(-0.177326\pi\)
0.848799 + 0.528716i \(0.177326\pi\)
\(284\) 150.207 0.0313843
\(285\) −19109.7 −3.97179
\(286\) −1322.33 −0.273395
\(287\) 2044.63 0.420526
\(288\) 9288.51 1.90045
\(289\) 495.696 0.100895
\(290\) 4451.48 0.901380
\(291\) 5231.52 1.05387
\(292\) 1454.06 0.291413
\(293\) −1228.27 −0.244901 −0.122451 0.992475i \(-0.539075\pi\)
−0.122451 + 0.992475i \(0.539075\pi\)
\(294\) −990.389 −0.196465
\(295\) −10063.7 −1.98621
\(296\) −5316.56 −1.04398
\(297\) −15709.0 −3.06912
\(298\) −4615.12 −0.897136
\(299\) −322.528 −0.0623821
\(300\) 2240.07 0.431102
\(301\) 1811.24 0.346838
\(302\) 6350.73 1.21008
\(303\) −6207.44 −1.17693
\(304\) 3411.24 0.643580
\(305\) 313.831 0.0589178
\(306\) 9972.85 1.86310
\(307\) −5765.16 −1.07178 −0.535888 0.844289i \(-0.680023\pi\)
−0.535888 + 0.844289i \(0.680023\pi\)
\(308\) −1093.73 −0.202342
\(309\) 4199.22 0.773092
\(310\) −7865.09 −1.44099
\(311\) −3700.45 −0.674705 −0.337352 0.941378i \(-0.609531\pi\)
−0.337352 + 0.941378i \(0.609531\pi\)
\(312\) −3262.52 −0.591999
\(313\) 2567.89 0.463725 0.231863 0.972749i \(-0.425518\pi\)
0.231863 + 0.972749i \(0.425518\pi\)
\(314\) 3544.39 0.637011
\(315\) −6205.92 −1.11004
\(316\) −4373.13 −0.778505
\(317\) −6942.20 −1.23001 −0.615004 0.788524i \(-0.710846\pi\)
−0.615004 + 0.788524i \(0.710846\pi\)
\(318\) 7238.35 1.27643
\(319\) −6750.08 −1.18474
\(320\) −6873.68 −1.20078
\(321\) 16477.1 2.86498
\(322\) 341.125 0.0590377
\(323\) −10635.4 −1.83211
\(324\) −5754.42 −0.986697
\(325\) −937.950 −0.160086
\(326\) 6678.64 1.13465
\(327\) −5484.94 −0.927578
\(328\) −7123.74 −1.19922
\(329\) −940.008 −0.157521
\(330\) 12460.8 2.07862
\(331\) 7221.99 1.19926 0.599632 0.800276i \(-0.295313\pi\)
0.599632 + 0.800276i \(0.295313\pi\)
\(332\) 828.332 0.136930
\(333\) 13951.7 2.29593
\(334\) 2759.74 0.452115
\(335\) −6112.34 −0.996875
\(336\) 1575.16 0.255750
\(337\) 3896.04 0.629766 0.314883 0.949131i \(-0.398035\pi\)
0.314883 + 0.949131i \(0.398035\pi\)
\(338\) −4238.33 −0.682055
\(339\) 17377.9 2.78418
\(340\) 3576.58 0.570492
\(341\) 11926.4 1.89398
\(342\) −19610.2 −3.10057
\(343\) 343.000 0.0539949
\(344\) −6310.58 −0.989080
\(345\) 3039.30 0.474291
\(346\) 3575.36 0.555528
\(347\) −7244.93 −1.12083 −0.560415 0.828212i \(-0.689358\pi\)
−0.560415 + 0.828212i \(0.689358\pi\)
\(348\) −5079.45 −0.782435
\(349\) −7008.45 −1.07494 −0.537469 0.843283i \(-0.680620\pi\)
−0.537469 + 0.843283i \(0.680620\pi\)
\(350\) 992.032 0.151504
\(351\) 4949.64 0.752685
\(352\) 6459.13 0.978048
\(353\) −8242.56 −1.24280 −0.621398 0.783495i \(-0.713435\pi\)
−0.621398 + 0.783495i \(0.713435\pi\)
\(354\) −14684.0 −2.20466
\(355\) 592.670 0.0886075
\(356\) 805.042 0.119852
\(357\) −4910.97 −0.728056
\(358\) 4357.79 0.643342
\(359\) 1159.24 0.170424 0.0852119 0.996363i \(-0.472843\pi\)
0.0852119 + 0.996363i \(0.472843\pi\)
\(360\) 21622.2 3.16552
\(361\) 14054.0 2.04899
\(362\) 6804.67 0.987971
\(363\) −6198.16 −0.896196
\(364\) 344.617 0.0496232
\(365\) 5737.28 0.822748
\(366\) 457.914 0.0653976
\(367\) 3374.09 0.479908 0.239954 0.970784i \(-0.422868\pi\)
0.239954 + 0.970784i \(0.422868\pi\)
\(368\) −542.541 −0.0768530
\(369\) 18694.1 2.63733
\(370\) −6398.08 −0.898974
\(371\) −2506.84 −0.350806
\(372\) 8974.62 1.25084
\(373\) 4442.14 0.616637 0.308318 0.951283i \(-0.400234\pi\)
0.308318 + 0.951283i \(0.400234\pi\)
\(374\) 6935.01 0.958826
\(375\) −7679.27 −1.05748
\(376\) 3275.10 0.449203
\(377\) 2126.84 0.290551
\(378\) −5235.04 −0.712331
\(379\) 3403.89 0.461335 0.230667 0.973033i \(-0.425909\pi\)
0.230667 + 0.973033i \(0.425909\pi\)
\(380\) −7032.83 −0.949412
\(381\) −17468.3 −2.34889
\(382\) −248.404 −0.0332708
\(383\) 4078.07 0.544072 0.272036 0.962287i \(-0.412303\pi\)
0.272036 + 0.962287i \(0.412303\pi\)
\(384\) 1046.30 0.139047
\(385\) −4315.53 −0.571273
\(386\) −7295.95 −0.962057
\(387\) 16560.1 2.17519
\(388\) 1925.33 0.251917
\(389\) 13167.6 1.71625 0.858126 0.513440i \(-0.171629\pi\)
0.858126 + 0.513440i \(0.171629\pi\)
\(390\) −3926.19 −0.509771
\(391\) 1691.51 0.218781
\(392\) −1195.05 −0.153978
\(393\) −13496.2 −1.73229
\(394\) −10668.8 −1.36418
\(395\) −17255.0 −2.19796
\(396\) −9999.97 −1.26898
\(397\) 7505.93 0.948896 0.474448 0.880284i \(-0.342648\pi\)
0.474448 + 0.880284i \(0.342648\pi\)
\(398\) 2319.37 0.292110
\(399\) 9656.71 1.21163
\(400\) −1577.77 −0.197222
\(401\) −648.404 −0.0807475 −0.0403737 0.999185i \(-0.512855\pi\)
−0.0403737 + 0.999185i \(0.512855\pi\)
\(402\) −8918.57 −1.10651
\(403\) −3757.80 −0.464489
\(404\) −2284.49 −0.281331
\(405\) −22705.2 −2.78575
\(406\) −2249.47 −0.274974
\(407\) 9701.83 1.18158
\(408\) 17110.4 2.07620
\(409\) 7769.06 0.939255 0.469627 0.882865i \(-0.344388\pi\)
0.469627 + 0.882865i \(0.344388\pi\)
\(410\) −8572.89 −1.03265
\(411\) −16803.2 −2.01665
\(412\) 1545.42 0.184799
\(413\) 5085.50 0.605911
\(414\) 3118.90 0.370254
\(415\) 3268.34 0.386594
\(416\) −2035.16 −0.239861
\(417\) −5277.80 −0.619796
\(418\) −13636.7 −1.59568
\(419\) −14158.6 −1.65082 −0.825409 0.564535i \(-0.809056\pi\)
−0.825409 + 0.564535i \(0.809056\pi\)
\(420\) −3247.45 −0.377284
\(421\) 5008.04 0.579755 0.289877 0.957064i \(-0.406385\pi\)
0.289877 + 0.957064i \(0.406385\pi\)
\(422\) −817.079 −0.0942530
\(423\) −8594.48 −0.987891
\(424\) 8734.14 1.00039
\(425\) 4919.11 0.561440
\(426\) 864.769 0.0983526
\(427\) −158.588 −0.0179734
\(428\) 6063.96 0.684842
\(429\) 5953.55 0.670023
\(430\) −7594.31 −0.851698
\(431\) 4166.53 0.465649 0.232825 0.972519i \(-0.425203\pi\)
0.232825 + 0.972519i \(0.425203\pi\)
\(432\) 8326.05 0.927285
\(433\) 10367.8 1.15068 0.575340 0.817914i \(-0.304870\pi\)
0.575340 + 0.817914i \(0.304870\pi\)
\(434\) 3974.47 0.439587
\(435\) −20042.0 −2.20906
\(436\) −2018.59 −0.221727
\(437\) −3326.11 −0.364094
\(438\) 8371.32 0.913235
\(439\) 6128.16 0.666244 0.333122 0.942884i \(-0.391898\pi\)
0.333122 + 0.942884i \(0.391898\pi\)
\(440\) 15035.8 1.62910
\(441\) 3136.04 0.338629
\(442\) −2185.11 −0.235147
\(443\) −11220.6 −1.20340 −0.601700 0.798723i \(-0.705510\pi\)
−0.601700 + 0.798723i \(0.705510\pi\)
\(444\) 7300.65 0.780346
\(445\) 3176.45 0.338378
\(446\) 5499.02 0.583825
\(447\) 20778.7 2.19865
\(448\) 3473.48 0.366309
\(449\) 5409.68 0.568594 0.284297 0.958736i \(-0.408240\pi\)
0.284297 + 0.958736i \(0.408240\pi\)
\(450\) 9070.13 0.950155
\(451\) 12999.6 1.35727
\(452\) 6395.47 0.665526
\(453\) −28593.0 −2.96560
\(454\) −3268.05 −0.337835
\(455\) 1359.75 0.140101
\(456\) −33645.1 −3.45521
\(457\) 7975.08 0.816321 0.408160 0.912910i \(-0.366170\pi\)
0.408160 + 0.912910i \(0.366170\pi\)
\(458\) 7914.87 0.807505
\(459\) −25958.6 −2.63974
\(460\) 1118.53 0.113374
\(461\) 6865.48 0.693617 0.346808 0.937936i \(-0.387265\pi\)
0.346808 + 0.937936i \(0.387265\pi\)
\(462\) −6296.83 −0.634102
\(463\) −780.070 −0.0783000 −0.0391500 0.999233i \(-0.512465\pi\)
−0.0391500 + 0.999233i \(0.512465\pi\)
\(464\) 3577.66 0.357950
\(465\) 35411.1 3.53150
\(466\) 2759.56 0.274322
\(467\) −9986.86 −0.989586 −0.494793 0.869011i \(-0.664756\pi\)
−0.494793 + 0.869011i \(0.664756\pi\)
\(468\) 3150.82 0.311211
\(469\) 3088.75 0.304105
\(470\) 3941.34 0.386809
\(471\) −15957.9 −1.56115
\(472\) −17718.5 −1.72788
\(473\) 11515.8 1.11944
\(474\) −25176.9 −2.43969
\(475\) −9672.72 −0.934347
\(476\) −1807.36 −0.174034
\(477\) −22920.0 −2.20008
\(478\) −6215.13 −0.594715
\(479\) −4096.33 −0.390743 −0.195372 0.980729i \(-0.562591\pi\)
−0.195372 + 0.980729i \(0.562591\pi\)
\(480\) 19178.1 1.82366
\(481\) −3056.88 −0.289775
\(482\) −12408.3 −1.17258
\(483\) −1535.85 −0.144686
\(484\) −2281.07 −0.214226
\(485\) 7596.75 0.711238
\(486\) −12937.0 −1.20748
\(487\) −5209.38 −0.484722 −0.242361 0.970186i \(-0.577922\pi\)
−0.242361 + 0.970186i \(0.577922\pi\)
\(488\) 552.540 0.0512548
\(489\) −30069.3 −2.78074
\(490\) −1438.16 −0.132590
\(491\) 7398.09 0.679982 0.339991 0.940429i \(-0.389576\pi\)
0.339991 + 0.940429i \(0.389576\pi\)
\(492\) 9782.27 0.896380
\(493\) −11154.3 −1.01899
\(494\) 4296.70 0.391331
\(495\) −39456.8 −3.58273
\(496\) −6321.18 −0.572237
\(497\) −299.494 −0.0270305
\(498\) 4768.86 0.429112
\(499\) 1724.59 0.154716 0.0773581 0.997003i \(-0.475352\pi\)
0.0773581 + 0.997003i \(0.475352\pi\)
\(500\) −2826.16 −0.252779
\(501\) −12425.2 −1.10802
\(502\) 2277.63 0.202501
\(503\) 7101.08 0.629467 0.314733 0.949180i \(-0.398085\pi\)
0.314733 + 0.949180i \(0.398085\pi\)
\(504\) −10926.3 −0.965670
\(505\) −9013.90 −0.794284
\(506\) 2168.85 0.190547
\(507\) 19082.3 1.67155
\(508\) −6428.74 −0.561475
\(509\) 15701.5 1.36730 0.683651 0.729809i \(-0.260391\pi\)
0.683651 + 0.729809i \(0.260391\pi\)
\(510\) 20591.1 1.78782
\(511\) −2899.22 −0.250987
\(512\) −8025.86 −0.692766
\(513\) 51043.8 4.39306
\(514\) −4077.05 −0.349866
\(515\) 6097.74 0.521745
\(516\) 8665.63 0.739309
\(517\) −5976.51 −0.508407
\(518\) 3233.14 0.274240
\(519\) −16097.4 −1.36146
\(520\) −4737.53 −0.399528
\(521\) 13698.5 1.15190 0.575951 0.817485i \(-0.304632\pi\)
0.575951 + 0.817485i \(0.304632\pi\)
\(522\) −20566.9 −1.72450
\(523\) −2295.23 −0.191899 −0.0959496 0.995386i \(-0.530589\pi\)
−0.0959496 + 0.995386i \(0.530589\pi\)
\(524\) −4966.91 −0.414085
\(525\) −4466.44 −0.371298
\(526\) 2871.17 0.238002
\(527\) 19707.9 1.62901
\(528\) 10014.8 0.825449
\(529\) 529.000 0.0434783
\(530\) 10510.9 0.861441
\(531\) 46496.7 3.79997
\(532\) 3553.90 0.289626
\(533\) −4095.97 −0.332863
\(534\) 4634.78 0.375593
\(535\) 23926.5 1.93352
\(536\) −10761.6 −0.867219
\(537\) −19620.1 −1.57667
\(538\) 13597.9 1.08968
\(539\) 2180.77 0.174272
\(540\) −17165.5 −1.36794
\(541\) −12730.4 −1.01169 −0.505845 0.862625i \(-0.668819\pi\)
−0.505845 + 0.862625i \(0.668819\pi\)
\(542\) −336.990 −0.0267066
\(543\) −30636.7 −2.42127
\(544\) 10673.5 0.841217
\(545\) −7964.74 −0.626004
\(546\) 1984.03 0.155510
\(547\) −11507.3 −0.899482 −0.449741 0.893159i \(-0.648484\pi\)
−0.449741 + 0.893159i \(0.648484\pi\)
\(548\) −6184.00 −0.482057
\(549\) −1449.97 −0.112720
\(550\) 6307.27 0.488987
\(551\) 21933.3 1.69581
\(552\) 5351.08 0.412603
\(553\) 8719.49 0.670507
\(554\) −9398.86 −0.720793
\(555\) 28806.1 2.20316
\(556\) −1942.36 −0.148155
\(557\) −23246.7 −1.76840 −0.884198 0.467113i \(-0.845294\pi\)
−0.884198 + 0.467113i \(0.845294\pi\)
\(558\) 36338.5 2.75687
\(559\) −3628.42 −0.274536
\(560\) 2287.31 0.172601
\(561\) −31223.6 −2.34984
\(562\) 9925.47 0.744984
\(563\) 20304.4 1.51995 0.759973 0.649954i \(-0.225212\pi\)
0.759973 + 0.649954i \(0.225212\pi\)
\(564\) −4497.34 −0.335766
\(565\) 25234.6 1.87899
\(566\) 17123.9 1.27168
\(567\) 11473.6 0.849817
\(568\) 1043.47 0.0770830
\(569\) −14444.8 −1.06425 −0.532126 0.846665i \(-0.678607\pi\)
−0.532126 + 0.846665i \(0.678607\pi\)
\(570\) −40489.3 −2.97528
\(571\) −17953.1 −1.31579 −0.657894 0.753111i \(-0.728552\pi\)
−0.657894 + 0.753111i \(0.728552\pi\)
\(572\) 2191.05 0.160162
\(573\) 1118.39 0.0815382
\(574\) 4332.14 0.315018
\(575\) 1538.40 0.111575
\(576\) 31758.0 2.29731
\(577\) 18672.1 1.34719 0.673596 0.739100i \(-0.264749\pi\)
0.673596 + 0.739100i \(0.264749\pi\)
\(578\) 1050.27 0.0755806
\(579\) 32848.6 2.35776
\(580\) −7375.93 −0.528050
\(581\) −1651.59 −0.117934
\(582\) 11084.5 0.789461
\(583\) −15938.3 −1.13225
\(584\) 10101.2 0.715740
\(585\) 12432.2 0.878646
\(586\) −2602.43 −0.183456
\(587\) 9717.16 0.683254 0.341627 0.939836i \(-0.389022\pi\)
0.341627 + 0.939836i \(0.389022\pi\)
\(588\) 1641.04 0.115094
\(589\) −38752.7 −2.71100
\(590\) −21322.9 −1.48788
\(591\) 48034.3 3.34326
\(592\) −5142.14 −0.356995
\(593\) −11670.0 −0.808145 −0.404073 0.914727i \(-0.632406\pi\)
−0.404073 + 0.914727i \(0.632406\pi\)
\(594\) −33284.0 −2.29909
\(595\) −7131.27 −0.491351
\(596\) 7647.06 0.525564
\(597\) −10442.5 −0.715887
\(598\) −683.367 −0.0467307
\(599\) 6190.98 0.422298 0.211149 0.977454i \(-0.432279\pi\)
0.211149 + 0.977454i \(0.432279\pi\)
\(600\) 15561.6 1.05883
\(601\) −18340.9 −1.24482 −0.622412 0.782690i \(-0.713847\pi\)
−0.622412 + 0.782690i \(0.713847\pi\)
\(602\) 3837.63 0.259818
\(603\) 28240.4 1.90720
\(604\) −10522.9 −0.708892
\(605\) −9000.42 −0.604825
\(606\) −13152.3 −0.881640
\(607\) −14258.8 −0.953451 −0.476726 0.879052i \(-0.658176\pi\)
−0.476726 + 0.879052i \(0.658176\pi\)
\(608\) −20987.9 −1.39995
\(609\) 10127.8 0.673892
\(610\) 664.941 0.0441355
\(611\) 1883.10 0.124684
\(612\) −16524.6 −1.09145
\(613\) 12882.2 0.848790 0.424395 0.905477i \(-0.360487\pi\)
0.424395 + 0.905477i \(0.360487\pi\)
\(614\) −12215.2 −0.802872
\(615\) 38597.8 2.53076
\(616\) −7598.06 −0.496971
\(617\) −18468.1 −1.20502 −0.602509 0.798112i \(-0.705832\pi\)
−0.602509 + 0.798112i \(0.705832\pi\)
\(618\) 8897.26 0.579126
\(619\) 7333.17 0.476163 0.238082 0.971245i \(-0.423481\pi\)
0.238082 + 0.971245i \(0.423481\pi\)
\(620\) 13032.1 0.844166
\(621\) −8118.25 −0.524596
\(622\) −7840.46 −0.505424
\(623\) −1605.16 −0.103225
\(624\) −3155.49 −0.202437
\(625\) −19512.0 −1.24877
\(626\) 5440.82 0.347378
\(627\) 61396.7 3.91060
\(628\) −5872.91 −0.373176
\(629\) 16031.9 1.01627
\(630\) −13149.0 −0.831539
\(631\) 27310.0 1.72297 0.861486 0.507782i \(-0.169534\pi\)
0.861486 + 0.507782i \(0.169534\pi\)
\(632\) −30379.7 −1.91209
\(633\) 3678.74 0.230990
\(634\) −14709.0 −0.921405
\(635\) −25365.8 −1.58522
\(636\) −11993.6 −0.747766
\(637\) −687.124 −0.0427392
\(638\) −14302.0 −0.887493
\(639\) −2738.27 −0.169522
\(640\) 1519.35 0.0938400
\(641\) 16514.0 1.01757 0.508786 0.860893i \(-0.330095\pi\)
0.508786 + 0.860893i \(0.330095\pi\)
\(642\) 34911.4 2.14617
\(643\) 18670.4 1.14508 0.572541 0.819876i \(-0.305958\pi\)
0.572541 + 0.819876i \(0.305958\pi\)
\(644\) −565.230 −0.0345857
\(645\) 34191.9 2.08730
\(646\) −22534.2 −1.37244
\(647\) −25559.8 −1.55311 −0.776553 0.630052i \(-0.783034\pi\)
−0.776553 + 0.630052i \(0.783034\pi\)
\(648\) −39975.4 −2.42343
\(649\) 32333.3 1.95561
\(650\) −1987.32 −0.119921
\(651\) −17894.3 −1.07732
\(652\) −11066.2 −0.664705
\(653\) −9362.94 −0.561103 −0.280551 0.959839i \(-0.590517\pi\)
−0.280551 + 0.959839i \(0.590517\pi\)
\(654\) −11621.4 −0.694852
\(655\) −19597.9 −1.16909
\(656\) −6890.05 −0.410078
\(657\) −26507.5 −1.57406
\(658\) −1991.68 −0.117999
\(659\) 12620.9 0.746040 0.373020 0.927823i \(-0.378322\pi\)
0.373020 + 0.927823i \(0.378322\pi\)
\(660\) −20647.1 −1.21771
\(661\) −3724.18 −0.219143 −0.109572 0.993979i \(-0.534948\pi\)
−0.109572 + 0.993979i \(0.534948\pi\)
\(662\) 15301.9 0.898374
\(663\) 9838.03 0.576286
\(664\) 5754.34 0.336313
\(665\) 14022.6 0.817704
\(666\) 29560.6 1.71989
\(667\) −3488.37 −0.202504
\(668\) −4572.78 −0.264860
\(669\) −24758.3 −1.43081
\(670\) −12950.8 −0.746763
\(671\) −1008.29 −0.0580101
\(672\) −9691.28 −0.556323
\(673\) 13315.3 0.762655 0.381328 0.924440i \(-0.375467\pi\)
0.381328 + 0.924440i \(0.375467\pi\)
\(674\) 8254.89 0.471760
\(675\) −23608.9 −1.34623
\(676\) 7022.74 0.399564
\(677\) 13682.3 0.776738 0.388369 0.921504i \(-0.373039\pi\)
0.388369 + 0.921504i \(0.373039\pi\)
\(678\) 36820.0 2.08564
\(679\) −3838.87 −0.216969
\(680\) 24846.2 1.40119
\(681\) 14713.8 0.827949
\(682\) 25269.4 1.41879
\(683\) −15886.7 −0.890028 −0.445014 0.895524i \(-0.646801\pi\)
−0.445014 + 0.895524i \(0.646801\pi\)
\(684\) 32493.3 1.81639
\(685\) −24400.2 −1.36100
\(686\) 726.744 0.0404478
\(687\) −35635.2 −1.97899
\(688\) −6103.56 −0.338221
\(689\) 5021.91 0.277677
\(690\) 6439.62 0.355293
\(691\) −35181.9 −1.93688 −0.968439 0.249250i \(-0.919816\pi\)
−0.968439 + 0.249250i \(0.919816\pi\)
\(692\) −5924.23 −0.325442
\(693\) 19938.7 1.09294
\(694\) −15350.5 −0.839618
\(695\) −7663.96 −0.418288
\(696\) −35286.5 −1.92174
\(697\) 21481.5 1.16739
\(698\) −14849.4 −0.805241
\(699\) −12424.4 −0.672295
\(700\) −1643.76 −0.0887545
\(701\) 9560.76 0.515128 0.257564 0.966261i \(-0.417080\pi\)
0.257564 + 0.966261i \(0.417080\pi\)
\(702\) 10487.2 0.563839
\(703\) −31524.5 −1.69128
\(704\) 22084.1 1.18228
\(705\) −17745.1 −0.947971
\(706\) −17464.2 −0.930984
\(707\) 4555.00 0.242303
\(708\) 24330.9 1.29154
\(709\) −9643.28 −0.510806 −0.255403 0.966835i \(-0.582208\pi\)
−0.255403 + 0.966835i \(0.582208\pi\)
\(710\) 1255.74 0.0663762
\(711\) 79722.1 4.20508
\(712\) 5592.55 0.294368
\(713\) 6163.42 0.323733
\(714\) −10405.3 −0.545390
\(715\) 8645.21 0.452185
\(716\) −7220.69 −0.376885
\(717\) 27982.5 1.45750
\(718\) 2456.17 0.127665
\(719\) −35086.6 −1.81990 −0.909951 0.414715i \(-0.863881\pi\)
−0.909951 + 0.414715i \(0.863881\pi\)
\(720\) 20912.8 1.08247
\(721\) −3081.37 −0.159163
\(722\) 29777.4 1.53490
\(723\) 55866.1 2.87370
\(724\) −11275.1 −0.578777
\(725\) −10144.6 −0.519671
\(726\) −13132.6 −0.671344
\(727\) 13894.3 0.708817 0.354408 0.935091i \(-0.384682\pi\)
0.354408 + 0.935091i \(0.384682\pi\)
\(728\) 2394.02 0.121880
\(729\) 13991.0 0.710817
\(730\) 12156.1 0.616324
\(731\) 19029.4 0.962828
\(732\) −758.744 −0.0383115
\(733\) −221.058 −0.0111391 −0.00556956 0.999984i \(-0.501773\pi\)
−0.00556956 + 0.999984i \(0.501773\pi\)
\(734\) 7148.99 0.359501
\(735\) 6475.02 0.324945
\(736\) 3338.01 0.167175
\(737\) 19638.1 0.981517
\(738\) 39608.7 1.97563
\(739\) 14595.1 0.726509 0.363255 0.931690i \(-0.381666\pi\)
0.363255 + 0.931690i \(0.381666\pi\)
\(740\) 10601.4 0.526640
\(741\) −19345.1 −0.959054
\(742\) −5311.47 −0.262790
\(743\) 1605.23 0.0792598 0.0396299 0.999214i \(-0.487382\pi\)
0.0396299 + 0.999214i \(0.487382\pi\)
\(744\) 62345.8 3.07219
\(745\) 30173.0 1.48383
\(746\) 9411.96 0.461925
\(747\) −15100.5 −0.739622
\(748\) −11491.0 −0.561703
\(749\) −12090.8 −0.589837
\(750\) −16270.7 −0.792165
\(751\) −7676.69 −0.373004 −0.186502 0.982455i \(-0.559715\pi\)
−0.186502 + 0.982455i \(0.559715\pi\)
\(752\) 3167.66 0.153607
\(753\) −10254.6 −0.496279
\(754\) 4506.31 0.217653
\(755\) −41520.2 −2.00142
\(756\) 8674.25 0.417301
\(757\) −30629.5 −1.47061 −0.735303 0.677739i \(-0.762960\pi\)
−0.735303 + 0.677739i \(0.762960\pi\)
\(758\) 7212.11 0.345588
\(759\) −9764.82 −0.466984
\(760\) −48856.4 −2.33185
\(761\) −18125.8 −0.863418 −0.431709 0.902013i \(-0.642089\pi\)
−0.431709 + 0.902013i \(0.642089\pi\)
\(762\) −37011.5 −1.75956
\(763\) 4024.83 0.190968
\(764\) 411.595 0.0194908
\(765\) −65201.1 −3.08150
\(766\) 8640.56 0.407567
\(767\) −10187.7 −0.479603
\(768\) 40085.5 1.88341
\(769\) −17335.3 −0.812908 −0.406454 0.913671i \(-0.633235\pi\)
−0.406454 + 0.913671i \(0.633235\pi\)
\(770\) −9143.69 −0.427943
\(771\) 18356.2 0.857433
\(772\) 12089.1 0.563596
\(773\) 8133.01 0.378427 0.189213 0.981936i \(-0.439406\pi\)
0.189213 + 0.981936i \(0.439406\pi\)
\(774\) 35087.4 1.62945
\(775\) 17924.0 0.830772
\(776\) 13375.1 0.618733
\(777\) −14556.6 −0.672093
\(778\) 27899.2 1.28565
\(779\) −42240.2 −1.94276
\(780\) 6505.54 0.298636
\(781\) −1904.16 −0.0872424
\(782\) 3583.94 0.163890
\(783\) 53534.0 2.44336
\(784\) −1155.85 −0.0526534
\(785\) −23172.7 −1.05359
\(786\) −28595.5 −1.29767
\(787\) −9653.43 −0.437240 −0.218620 0.975810i \(-0.570155\pi\)
−0.218620 + 0.975810i \(0.570155\pi\)
\(788\) 17677.8 0.799169
\(789\) −12926.9 −0.583283
\(790\) −36559.7 −1.64650
\(791\) −12751.8 −0.573201
\(792\) −69468.9 −3.11675
\(793\) 317.697 0.0142267
\(794\) 15903.5 0.710822
\(795\) −47323.3 −2.11117
\(796\) −3843.11 −0.171125
\(797\) −9485.40 −0.421569 −0.210784 0.977533i \(-0.567602\pi\)
−0.210784 + 0.977533i \(0.567602\pi\)
\(798\) 20460.5 0.907636
\(799\) −9875.97 −0.437280
\(800\) 9707.35 0.429008
\(801\) −14675.9 −0.647376
\(802\) −1373.83 −0.0604883
\(803\) −18433.1 −0.810073
\(804\) 14777.7 0.648221
\(805\) −2230.22 −0.0976460
\(806\) −7961.97 −0.347951
\(807\) −61222.1 −2.67053
\(808\) −15870.1 −0.690977
\(809\) 13793.8 0.599461 0.299730 0.954024i \(-0.403103\pi\)
0.299730 + 0.954024i \(0.403103\pi\)
\(810\) −48107.4 −2.08682
\(811\) −17233.5 −0.746176 −0.373088 0.927796i \(-0.621701\pi\)
−0.373088 + 0.927796i \(0.621701\pi\)
\(812\) 3727.28 0.161086
\(813\) 1517.23 0.0654511
\(814\) 20556.1 0.885124
\(815\) −43664.0 −1.87667
\(816\) 16549.1 0.709967
\(817\) −37418.5 −1.60234
\(818\) 16461.0 0.703600
\(819\) −6282.36 −0.268039
\(820\) 14204.9 0.604949
\(821\) 13256.2 0.563515 0.281757 0.959486i \(-0.409083\pi\)
0.281757 + 0.959486i \(0.409083\pi\)
\(822\) −35602.5 −1.51068
\(823\) 15413.4 0.652827 0.326414 0.945227i \(-0.394160\pi\)
0.326414 + 0.945227i \(0.394160\pi\)
\(824\) 10735.9 0.453885
\(825\) −28397.3 −1.19838
\(826\) 10775.1 0.453890
\(827\) 22153.8 0.931515 0.465757 0.884913i \(-0.345782\pi\)
0.465757 + 0.884913i \(0.345782\pi\)
\(828\) −5167.88 −0.216904
\(829\) −19856.9 −0.831917 −0.415959 0.909384i \(-0.636554\pi\)
−0.415959 + 0.909384i \(0.636554\pi\)
\(830\) 6924.92 0.289599
\(831\) 42316.6 1.76648
\(832\) −6958.34 −0.289949
\(833\) 3603.65 0.149891
\(834\) −11182.5 −0.464292
\(835\) −18042.8 −0.747781
\(836\) 22595.5 0.934785
\(837\) −94586.4 −3.90607
\(838\) −29999.1 −1.23663
\(839\) 6674.01 0.274627 0.137314 0.990528i \(-0.456153\pi\)
0.137314 + 0.990528i \(0.456153\pi\)
\(840\) −22559.7 −0.926648
\(841\) −1385.69 −0.0568164
\(842\) 10611.0 0.434297
\(843\) −44687.6 −1.82577
\(844\) 1353.87 0.0552157
\(845\) 27709.6 1.12809
\(846\) −18209.9 −0.740033
\(847\) 4548.19 0.184507
\(848\) 8447.61 0.342090
\(849\) −77097.0 −3.11656
\(850\) 10422.5 0.420577
\(851\) 5013.81 0.201964
\(852\) −1432.89 −0.0576173
\(853\) 6439.37 0.258476 0.129238 0.991614i \(-0.458747\pi\)
0.129238 + 0.991614i \(0.458747\pi\)
\(854\) −336.015 −0.0134639
\(855\) 128208. 5.12823
\(856\) 42125.7 1.68204
\(857\) 28218.7 1.12478 0.562389 0.826873i \(-0.309883\pi\)
0.562389 + 0.826873i \(0.309883\pi\)
\(858\) 12614.3 0.501917
\(859\) 23175.0 0.920515 0.460257 0.887785i \(-0.347757\pi\)
0.460257 + 0.887785i \(0.347757\pi\)
\(860\) 12583.5 0.498945
\(861\) −19504.7 −0.772029
\(862\) 8827.99 0.348820
\(863\) 12418.8 0.489850 0.244925 0.969542i \(-0.421237\pi\)
0.244925 + 0.969542i \(0.421237\pi\)
\(864\) −51226.5 −2.01708
\(865\) −23375.2 −0.918822
\(866\) 21967.1 0.861979
\(867\) −4728.66 −0.185229
\(868\) −6585.54 −0.257520
\(869\) 55437.9 2.16410
\(870\) −42464.7 −1.65481
\(871\) −6187.63 −0.240712
\(872\) −14023.0 −0.544584
\(873\) −35098.7 −1.36072
\(874\) −7047.31 −0.272745
\(875\) 5635.02 0.217712
\(876\) −13870.9 −0.534995
\(877\) 19551.0 0.752785 0.376392 0.926460i \(-0.377165\pi\)
0.376392 + 0.926460i \(0.377165\pi\)
\(878\) 12984.3 0.499086
\(879\) 11717.0 0.449605
\(880\) 14542.6 0.557079
\(881\) 15487.9 0.592283 0.296141 0.955144i \(-0.404300\pi\)
0.296141 + 0.955144i \(0.404300\pi\)
\(882\) 6644.60 0.253668
\(883\) 16387.2 0.624545 0.312273 0.949992i \(-0.398910\pi\)
0.312273 + 0.949992i \(0.398910\pi\)
\(884\) 3620.63 0.137755
\(885\) 96002.2 3.64642
\(886\) −23774.0 −0.901471
\(887\) −26831.2 −1.01567 −0.507837 0.861453i \(-0.669555\pi\)
−0.507837 + 0.861453i \(0.669555\pi\)
\(888\) 50717.0 1.91661
\(889\) 12818.1 0.483584
\(890\) 6730.22 0.253480
\(891\) 72948.4 2.74283
\(892\) −9111.66 −0.342019
\(893\) 19419.7 0.727721
\(894\) 44025.6 1.64702
\(895\) −28490.6 −1.06406
\(896\) −767.774 −0.0286267
\(897\) 3076.73 0.114525
\(898\) 11462.0 0.425936
\(899\) −40643.3 −1.50782
\(900\) −15028.8 −0.556624
\(901\) −26337.6 −0.973842
\(902\) 27543.5 1.01674
\(903\) −17278.2 −0.636748
\(904\) 44428.8 1.63460
\(905\) −44488.0 −1.63407
\(906\) −60582.4 −2.22154
\(907\) −15223.9 −0.557332 −0.278666 0.960388i \(-0.589892\pi\)
−0.278666 + 0.960388i \(0.589892\pi\)
\(908\) 5415.03 0.197912
\(909\) 41646.3 1.51960
\(910\) 2881.02 0.104951
\(911\) −4708.31 −0.171233 −0.0856165 0.996328i \(-0.527286\pi\)
−0.0856165 + 0.996328i \(0.527286\pi\)
\(912\) −32541.3 −1.18153
\(913\) −10500.7 −0.380638
\(914\) 16897.5 0.611509
\(915\) −2993.77 −0.108165
\(916\) −13114.6 −0.473056
\(917\) 9903.43 0.356641
\(918\) −55000.7 −1.97744
\(919\) 7774.56 0.279063 0.139532 0.990218i \(-0.455440\pi\)
0.139532 + 0.990218i \(0.455440\pi\)
\(920\) 7770.36 0.278458
\(921\) 54996.4 1.96764
\(922\) 14546.5 0.519591
\(923\) 599.970 0.0213957
\(924\) 10433.6 0.371472
\(925\) 14580.8 0.518284
\(926\) −1652.80 −0.0586549
\(927\) −28172.9 −0.998188
\(928\) −22011.8 −0.778634
\(929\) −48808.1 −1.72373 −0.861863 0.507141i \(-0.830702\pi\)
−0.861863 + 0.507141i \(0.830702\pi\)
\(930\) 75028.5 2.64546
\(931\) −7086.05 −0.249448
\(932\) −4572.48 −0.160705
\(933\) 35300.2 1.23867
\(934\) −21160.0 −0.741303
\(935\) −45340.1 −1.58586
\(936\) 21888.5 0.764367
\(937\) −21650.7 −0.754852 −0.377426 0.926040i \(-0.623191\pi\)
−0.377426 + 0.926040i \(0.623191\pi\)
\(938\) 6544.41 0.227807
\(939\) −24496.3 −0.851337
\(940\) −6530.63 −0.226602
\(941\) −16762.2 −0.580693 −0.290346 0.956922i \(-0.593770\pi\)
−0.290346 + 0.956922i \(0.593770\pi\)
\(942\) −33811.5 −1.16947
\(943\) 6718.09 0.231995
\(944\) −17137.2 −0.590857
\(945\) 34225.9 1.17817
\(946\) 24399.4 0.838577
\(947\) 25007.7 0.858123 0.429062 0.903275i \(-0.358844\pi\)
0.429062 + 0.903275i \(0.358844\pi\)
\(948\) 41717.2 1.42923
\(949\) 5807.95 0.198666
\(950\) −20494.4 −0.699923
\(951\) 66224.7 2.25813
\(952\) −12555.5 −0.427444
\(953\) 24152.3 0.820955 0.410478 0.911871i \(-0.365362\pi\)
0.410478 + 0.911871i \(0.365362\pi\)
\(954\) −48562.7 −1.64809
\(955\) 1624.03 0.0550285
\(956\) 10298.2 0.348398
\(957\) 64392.0 2.17502
\(958\) −8679.25 −0.292707
\(959\) 12330.1 0.415184
\(960\) 65571.0 2.20447
\(961\) 42019.5 1.41048
\(962\) −6476.89 −0.217072
\(963\) −110546. −3.69916
\(964\) 20560.1 0.686925
\(965\) 47699.8 1.59120
\(966\) −3254.14 −0.108385
\(967\) 51912.2 1.72635 0.863177 0.504901i \(-0.168471\pi\)
0.863177 + 0.504901i \(0.168471\pi\)
\(968\) −15846.4 −0.526160
\(969\) 101456. 3.36350
\(970\) 16095.9 0.532791
\(971\) 27659.9 0.914159 0.457079 0.889426i \(-0.348896\pi\)
0.457079 + 0.889426i \(0.348896\pi\)
\(972\) 21436.1 0.707369
\(973\) 3872.83 0.127603
\(974\) −11037.6 −0.363107
\(975\) 8947.51 0.293897
\(976\) 534.414 0.0175268
\(977\) 8244.82 0.269985 0.134992 0.990847i \(-0.456899\pi\)
0.134992 + 0.990847i \(0.456899\pi\)
\(978\) −63710.5 −2.08306
\(979\) −10205.5 −0.333165
\(980\) 2382.97 0.0776745
\(981\) 36798.9 1.19765
\(982\) 15675.0 0.509378
\(983\) −60043.5 −1.94821 −0.974105 0.226097i \(-0.927403\pi\)
−0.974105 + 0.226097i \(0.927403\pi\)
\(984\) 67956.5 2.20160
\(985\) 69751.2 2.25630
\(986\) −23633.5 −0.763332
\(987\) 8967.15 0.289187
\(988\) −7119.45 −0.229251
\(989\) 5951.22 0.191343
\(990\) −83600.6 −2.68384
\(991\) 50596.7 1.62186 0.810928 0.585146i \(-0.198963\pi\)
0.810928 + 0.585146i \(0.198963\pi\)
\(992\) 38891.4 1.24476
\(993\) −68893.7 −2.20169
\(994\) −634.564 −0.0202486
\(995\) −15163.7 −0.483138
\(996\) −7901.82 −0.251384
\(997\) −48191.9 −1.53084 −0.765422 0.643528i \(-0.777470\pi\)
−0.765422 + 0.643528i \(0.777470\pi\)
\(998\) 3654.04 0.115899
\(999\) −76943.9 −2.43684
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 161.4.a.d.1.8 12
3.2 odd 2 1449.4.a.o.1.5 12
7.6 odd 2 1127.4.a.h.1.8 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
161.4.a.d.1.8 12 1.1 even 1 trivial
1127.4.a.h.1.8 12 7.6 odd 2
1449.4.a.o.1.5 12 3.2 odd 2