Properties

Label 161.4.a.d.1.6
Level $161$
Weight $4$
Character 161.1
Self dual yes
Analytic conductor $9.499$
Analytic rank $0$
Dimension $12$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [161,4,Mod(1,161)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(161, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("161.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 161 = 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 161.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(9.49930751092\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 4 x^{11} - 76 x^{10} + 311 x^{9} + 1979 x^{8} - 8466 x^{7} - 19942 x^{6} + 95647 x^{5} + \cdots - 70656 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(0.285899\) of defining polynomial
Character \(\chi\) \(=\) 161.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.285899 q^{2} +8.01264 q^{3} -7.91826 q^{4} +1.18183 q^{5} +2.29081 q^{6} +7.00000 q^{7} -4.55102 q^{8} +37.2024 q^{9} +0.337884 q^{10} +31.7112 q^{11} -63.4462 q^{12} +72.6373 q^{13} +2.00129 q^{14} +9.46956 q^{15} +62.0450 q^{16} +20.0013 q^{17} +10.6361 q^{18} +13.6521 q^{19} -9.35802 q^{20} +56.0885 q^{21} +9.06621 q^{22} +23.0000 q^{23} -36.4657 q^{24} -123.603 q^{25} +20.7669 q^{26} +81.7482 q^{27} -55.4278 q^{28} -184.094 q^{29} +2.70734 q^{30} +38.7916 q^{31} +54.1468 q^{32} +254.090 q^{33} +5.71836 q^{34} +8.27280 q^{35} -294.578 q^{36} -275.999 q^{37} +3.90312 q^{38} +582.016 q^{39} -5.37852 q^{40} +369.378 q^{41} +16.0357 q^{42} -146.345 q^{43} -251.098 q^{44} +43.9668 q^{45} +6.57568 q^{46} +28.1535 q^{47} +497.144 q^{48} +49.0000 q^{49} -35.3381 q^{50} +160.263 q^{51} -575.161 q^{52} -159.958 q^{53} +23.3717 q^{54} +37.4772 q^{55} -31.8571 q^{56} +109.389 q^{57} -52.6323 q^{58} -271.921 q^{59} -74.9825 q^{60} +851.565 q^{61} +11.0905 q^{62} +260.417 q^{63} -480.879 q^{64} +85.8448 q^{65} +72.6443 q^{66} -526.926 q^{67} -158.376 q^{68} +184.291 q^{69} +2.36519 q^{70} -518.035 q^{71} -169.309 q^{72} -945.822 q^{73} -78.9079 q^{74} -990.389 q^{75} -108.101 q^{76} +221.978 q^{77} +166.398 q^{78} -291.790 q^{79} +73.3265 q^{80} -349.446 q^{81} +105.605 q^{82} -186.718 q^{83} -444.123 q^{84} +23.6381 q^{85} -41.8400 q^{86} -1475.08 q^{87} -144.318 q^{88} -1594.45 q^{89} +12.5701 q^{90} +508.461 q^{91} -182.120 q^{92} +310.823 q^{93} +8.04906 q^{94} +16.1344 q^{95} +433.858 q^{96} +1491.44 q^{97} +14.0091 q^{98} +1179.73 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 4 q^{2} + q^{3} + 72 q^{4} + 16 q^{5} - 15 q^{6} + 84 q^{7} - 21 q^{8} + 203 q^{9} + 106 q^{10} + 50 q^{11} - 139 q^{12} + 21 q^{13} + 28 q^{14} + 192 q^{15} + 516 q^{16} + 26 q^{17} + 251 q^{18}+ \cdots + 2400 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.285899 0.101081 0.0505403 0.998722i \(-0.483906\pi\)
0.0505403 + 0.998722i \(0.483906\pi\)
\(3\) 8.01264 1.54203 0.771017 0.636815i \(-0.219748\pi\)
0.771017 + 0.636815i \(0.219748\pi\)
\(4\) −7.91826 −0.989783
\(5\) 1.18183 0.105706 0.0528530 0.998602i \(-0.483169\pi\)
0.0528530 + 0.998602i \(0.483169\pi\)
\(6\) 2.29081 0.155870
\(7\) 7.00000 0.377964
\(8\) −4.55102 −0.201129
\(9\) 37.2024 1.37787
\(10\) 0.337884 0.0106848
\(11\) 31.7112 0.869208 0.434604 0.900622i \(-0.356888\pi\)
0.434604 + 0.900622i \(0.356888\pi\)
\(12\) −63.4462 −1.52628
\(13\) 72.6373 1.54969 0.774845 0.632152i \(-0.217828\pi\)
0.774845 + 0.632152i \(0.217828\pi\)
\(14\) 2.00129 0.0382049
\(15\) 9.46956 0.163002
\(16\) 62.0450 0.969453
\(17\) 20.0013 0.285355 0.142677 0.989769i \(-0.454429\pi\)
0.142677 + 0.989769i \(0.454429\pi\)
\(18\) 10.6361 0.139276
\(19\) 13.6521 0.164842 0.0824211 0.996598i \(-0.473735\pi\)
0.0824211 + 0.996598i \(0.473735\pi\)
\(20\) −9.35802 −0.104626
\(21\) 56.0885 0.582834
\(22\) 9.06621 0.0878601
\(23\) 23.0000 0.208514
\(24\) −36.4657 −0.310147
\(25\) −123.603 −0.988826
\(26\) 20.7669 0.156644
\(27\) 81.7482 0.582683
\(28\) −55.4278 −0.374103
\(29\) −184.094 −1.17881 −0.589403 0.807839i \(-0.700637\pi\)
−0.589403 + 0.807839i \(0.700637\pi\)
\(30\) 2.70734 0.0164764
\(31\) 38.7916 0.224748 0.112374 0.993666i \(-0.464155\pi\)
0.112374 + 0.993666i \(0.464155\pi\)
\(32\) 54.1468 0.299121
\(33\) 254.090 1.34035
\(34\) 5.71836 0.0288438
\(35\) 8.27280 0.0399531
\(36\) −294.578 −1.36379
\(37\) −275.999 −1.22632 −0.613162 0.789958i \(-0.710103\pi\)
−0.613162 + 0.789958i \(0.710103\pi\)
\(38\) 3.90312 0.0166624
\(39\) 582.016 2.38967
\(40\) −5.37852 −0.0212605
\(41\) 369.378 1.40701 0.703503 0.710693i \(-0.251618\pi\)
0.703503 + 0.710693i \(0.251618\pi\)
\(42\) 16.0357 0.0589132
\(43\) −146.345 −0.519010 −0.259505 0.965742i \(-0.583559\pi\)
−0.259505 + 0.965742i \(0.583559\pi\)
\(44\) −251.098 −0.860327
\(45\) 43.9668 0.145649
\(46\) 6.57568 0.0210768
\(47\) 28.1535 0.0873746 0.0436873 0.999045i \(-0.486089\pi\)
0.0436873 + 0.999045i \(0.486089\pi\)
\(48\) 497.144 1.49493
\(49\) 49.0000 0.142857
\(50\) −35.3381 −0.0999512
\(51\) 160.263 0.440027
\(52\) −575.161 −1.53386
\(53\) −159.958 −0.414565 −0.207282 0.978281i \(-0.566462\pi\)
−0.207282 + 0.978281i \(0.566462\pi\)
\(54\) 23.3717 0.0588980
\(55\) 37.4772 0.0918804
\(56\) −31.8571 −0.0760194
\(57\) 109.389 0.254192
\(58\) −52.6323 −0.119155
\(59\) −271.921 −0.600019 −0.300010 0.953936i \(-0.596990\pi\)
−0.300010 + 0.953936i \(0.596990\pi\)
\(60\) −74.9825 −0.161337
\(61\) 851.565 1.78741 0.893703 0.448659i \(-0.148098\pi\)
0.893703 + 0.448659i \(0.148098\pi\)
\(62\) 11.0905 0.0227176
\(63\) 260.417 0.520785
\(64\) −480.879 −0.939217
\(65\) 85.8448 0.163811
\(66\) 72.6443 0.135483
\(67\) −526.926 −0.960811 −0.480405 0.877047i \(-0.659510\pi\)
−0.480405 + 0.877047i \(0.659510\pi\)
\(68\) −158.376 −0.282439
\(69\) 184.291 0.321536
\(70\) 2.36519 0.00403848
\(71\) −518.035 −0.865908 −0.432954 0.901416i \(-0.642529\pi\)
−0.432954 + 0.901416i \(0.642529\pi\)
\(72\) −169.309 −0.277128
\(73\) −945.822 −1.51644 −0.758220 0.651999i \(-0.773931\pi\)
−0.758220 + 0.651999i \(0.773931\pi\)
\(74\) −78.9079 −0.123958
\(75\) −990.389 −1.52480
\(76\) −108.101 −0.163158
\(77\) 221.978 0.328530
\(78\) 166.398 0.241550
\(79\) −291.790 −0.415556 −0.207778 0.978176i \(-0.566623\pi\)
−0.207778 + 0.978176i \(0.566623\pi\)
\(80\) 73.3265 0.102477
\(81\) −349.446 −0.479350
\(82\) 105.605 0.142221
\(83\) −186.718 −0.246927 −0.123463 0.992349i \(-0.539400\pi\)
−0.123463 + 0.992349i \(0.539400\pi\)
\(84\) −444.123 −0.576879
\(85\) 23.6381 0.0301637
\(86\) −41.8400 −0.0524618
\(87\) −1475.08 −1.81776
\(88\) −144.318 −0.174822
\(89\) −1594.45 −1.89900 −0.949502 0.313762i \(-0.898410\pi\)
−0.949502 + 0.313762i \(0.898410\pi\)
\(90\) 12.5701 0.0147223
\(91\) 508.461 0.585728
\(92\) −182.120 −0.206384
\(93\) 310.823 0.346568
\(94\) 8.04906 0.00883188
\(95\) 16.1344 0.0174248
\(96\) 433.858 0.461255
\(97\) 1491.44 1.56116 0.780579 0.625057i \(-0.214924\pi\)
0.780579 + 0.625057i \(0.214924\pi\)
\(98\) 14.0091 0.0144401
\(99\) 1179.73 1.19765
\(100\) 978.723 0.978723
\(101\) 366.255 0.360829 0.180414 0.983591i \(-0.442256\pi\)
0.180414 + 0.983591i \(0.442256\pi\)
\(102\) 45.8192 0.0444782
\(103\) 84.9358 0.0812522 0.0406261 0.999174i \(-0.487065\pi\)
0.0406261 + 0.999174i \(0.487065\pi\)
\(104\) −330.574 −0.311687
\(105\) 66.2869 0.0616090
\(106\) −45.7319 −0.0419045
\(107\) 351.855 0.317898 0.158949 0.987287i \(-0.449189\pi\)
0.158949 + 0.987287i \(0.449189\pi\)
\(108\) −647.303 −0.576730
\(109\) 600.614 0.527784 0.263892 0.964552i \(-0.414994\pi\)
0.263892 + 0.964552i \(0.414994\pi\)
\(110\) 10.7147 0.00928733
\(111\) −2211.48 −1.89103
\(112\) 434.315 0.366419
\(113\) 1910.01 1.59008 0.795040 0.606557i \(-0.207450\pi\)
0.795040 + 0.606557i \(0.207450\pi\)
\(114\) 31.2743 0.0256939
\(115\) 27.1820 0.0220412
\(116\) 1457.70 1.16676
\(117\) 2702.28 2.13527
\(118\) −77.7421 −0.0606504
\(119\) 140.009 0.107854
\(120\) −43.0962 −0.0327844
\(121\) −325.400 −0.244478
\(122\) 243.462 0.180672
\(123\) 2959.70 2.16965
\(124\) −307.162 −0.222451
\(125\) −293.806 −0.210231
\(126\) 74.4530 0.0526412
\(127\) 1005.09 0.702264 0.351132 0.936326i \(-0.385797\pi\)
0.351132 + 0.936326i \(0.385797\pi\)
\(128\) −570.657 −0.394058
\(129\) −1172.61 −0.800330
\(130\) 24.5430 0.0165582
\(131\) −2320.66 −1.54776 −0.773882 0.633329i \(-0.781688\pi\)
−0.773882 + 0.633329i \(0.781688\pi\)
\(132\) −2011.95 −1.32665
\(133\) 95.5645 0.0623045
\(134\) −150.648 −0.0971194
\(135\) 96.6123 0.0615930
\(136\) −91.0264 −0.0573930
\(137\) −205.180 −0.127954 −0.0639771 0.997951i \(-0.520378\pi\)
−0.0639771 + 0.997951i \(0.520378\pi\)
\(138\) 52.6886 0.0325011
\(139\) 1770.21 1.08019 0.540097 0.841603i \(-0.318388\pi\)
0.540097 + 0.841603i \(0.318388\pi\)
\(140\) −65.5062 −0.0395449
\(141\) 225.584 0.134735
\(142\) −148.106 −0.0875265
\(143\) 2303.42 1.34700
\(144\) 2308.22 1.33578
\(145\) −217.567 −0.124607
\(146\) −270.410 −0.153283
\(147\) 392.619 0.220290
\(148\) 2185.43 1.21379
\(149\) −368.593 −0.202660 −0.101330 0.994853i \(-0.532310\pi\)
−0.101330 + 0.994853i \(0.532310\pi\)
\(150\) −283.151 −0.154128
\(151\) −2276.05 −1.22664 −0.613319 0.789835i \(-0.710166\pi\)
−0.613319 + 0.789835i \(0.710166\pi\)
\(152\) −62.1309 −0.0331545
\(153\) 744.097 0.393181
\(154\) 63.4635 0.0332080
\(155\) 45.8450 0.0237572
\(156\) −4608.56 −2.36526
\(157\) −807.171 −0.410314 −0.205157 0.978729i \(-0.565770\pi\)
−0.205157 + 0.978729i \(0.565770\pi\)
\(158\) −83.4224 −0.0420046
\(159\) −1281.69 −0.639273
\(160\) 63.9922 0.0316189
\(161\) 161.000 0.0788110
\(162\) −99.9064 −0.0484530
\(163\) 1437.21 0.690619 0.345310 0.938489i \(-0.387774\pi\)
0.345310 + 0.938489i \(0.387774\pi\)
\(164\) −2924.84 −1.39263
\(165\) 300.291 0.141683
\(166\) −53.3824 −0.0249595
\(167\) −825.363 −0.382446 −0.191223 0.981547i \(-0.561245\pi\)
−0.191223 + 0.981547i \(0.561245\pi\)
\(168\) −255.260 −0.117224
\(169\) 3079.18 1.40154
\(170\) 6.75812 0.00304897
\(171\) 507.890 0.227131
\(172\) 1158.80 0.513707
\(173\) −1946.81 −0.855567 −0.427783 0.903881i \(-0.640705\pi\)
−0.427783 + 0.903881i \(0.640705\pi\)
\(174\) −421.724 −0.183740
\(175\) −865.223 −0.373741
\(176\) 1967.52 0.842656
\(177\) −2178.81 −0.925250
\(178\) −455.852 −0.191952
\(179\) −4486.84 −1.87353 −0.936766 0.349955i \(-0.886197\pi\)
−0.936766 + 0.349955i \(0.886197\pi\)
\(180\) −348.141 −0.144161
\(181\) 3696.70 1.51809 0.759043 0.651040i \(-0.225667\pi\)
0.759043 + 0.651040i \(0.225667\pi\)
\(182\) 145.369 0.0592057
\(183\) 6823.29 2.75624
\(184\) −104.673 −0.0419382
\(185\) −326.183 −0.129630
\(186\) 88.8641 0.0350314
\(187\) 634.266 0.248033
\(188\) −222.927 −0.0864819
\(189\) 572.237 0.220233
\(190\) 4.61281 0.00176131
\(191\) −476.055 −0.180346 −0.0901732 0.995926i \(-0.528742\pi\)
−0.0901732 + 0.995926i \(0.528742\pi\)
\(192\) −3853.11 −1.44830
\(193\) 2944.00 1.09800 0.548999 0.835823i \(-0.315009\pi\)
0.548999 + 0.835823i \(0.315009\pi\)
\(194\) 426.400 0.157803
\(195\) 687.843 0.252603
\(196\) −387.995 −0.141398
\(197\) 2016.48 0.729282 0.364641 0.931148i \(-0.381192\pi\)
0.364641 + 0.931148i \(0.381192\pi\)
\(198\) 337.285 0.121059
\(199\) 4289.24 1.52792 0.763960 0.645264i \(-0.223252\pi\)
0.763960 + 0.645264i \(0.223252\pi\)
\(200\) 562.521 0.198881
\(201\) −4222.07 −1.48160
\(202\) 104.712 0.0364728
\(203\) −1288.66 −0.445547
\(204\) −1269.01 −0.435531
\(205\) 436.542 0.148729
\(206\) 24.2831 0.00821302
\(207\) 855.655 0.287305
\(208\) 4506.78 1.50235
\(209\) 432.924 0.143282
\(210\) 18.9514 0.00622748
\(211\) 1988.13 0.648665 0.324332 0.945943i \(-0.394860\pi\)
0.324332 + 0.945943i \(0.394860\pi\)
\(212\) 1266.59 0.410329
\(213\) −4150.83 −1.33526
\(214\) 100.595 0.0321334
\(215\) −172.955 −0.0548624
\(216\) −372.037 −0.117194
\(217\) 271.541 0.0849466
\(218\) 171.715 0.0533487
\(219\) −7578.53 −2.33840
\(220\) −296.754 −0.0909417
\(221\) 1452.84 0.442211
\(222\) −632.261 −0.191147
\(223\) 1580.63 0.474648 0.237324 0.971430i \(-0.423730\pi\)
0.237324 + 0.971430i \(0.423730\pi\)
\(224\) 379.027 0.113057
\(225\) −4598.34 −1.36247
\(226\) 546.072 0.160726
\(227\) −2405.09 −0.703223 −0.351611 0.936146i \(-0.614366\pi\)
−0.351611 + 0.936146i \(0.614366\pi\)
\(228\) −866.172 −0.251595
\(229\) −907.778 −0.261955 −0.130977 0.991385i \(-0.541812\pi\)
−0.130977 + 0.991385i \(0.541812\pi\)
\(230\) 7.77133 0.00222794
\(231\) 1778.63 0.506604
\(232\) 837.815 0.237092
\(233\) 1225.43 0.344551 0.172275 0.985049i \(-0.444888\pi\)
0.172275 + 0.985049i \(0.444888\pi\)
\(234\) 772.580 0.215834
\(235\) 33.2726 0.00923601
\(236\) 2153.14 0.593889
\(237\) −2338.01 −0.640801
\(238\) 40.0285 0.0109019
\(239\) −3705.62 −1.00292 −0.501458 0.865182i \(-0.667203\pi\)
−0.501458 + 0.865182i \(0.667203\pi\)
\(240\) 587.539 0.158023
\(241\) −4555.74 −1.21768 −0.608840 0.793293i \(-0.708365\pi\)
−0.608840 + 0.793293i \(0.708365\pi\)
\(242\) −93.0315 −0.0247120
\(243\) −5007.19 −1.32186
\(244\) −6742.92 −1.76914
\(245\) 57.9096 0.0151008
\(246\) 846.175 0.219310
\(247\) 991.650 0.255454
\(248\) −176.541 −0.0452032
\(249\) −1496.10 −0.380769
\(250\) −83.9990 −0.0212503
\(251\) 3971.26 0.998659 0.499330 0.866412i \(-0.333580\pi\)
0.499330 + 0.866412i \(0.333580\pi\)
\(252\) −2062.05 −0.515464
\(253\) 729.358 0.181242
\(254\) 287.355 0.0709853
\(255\) 189.404 0.0465134
\(256\) 3683.88 0.899385
\(257\) −7259.92 −1.76211 −0.881054 0.473016i \(-0.843165\pi\)
−0.881054 + 0.473016i \(0.843165\pi\)
\(258\) −335.249 −0.0808979
\(259\) −1931.99 −0.463507
\(260\) −679.742 −0.162138
\(261\) −6848.74 −1.62424
\(262\) −663.476 −0.156449
\(263\) 4800.96 1.12563 0.562813 0.826584i \(-0.309719\pi\)
0.562813 + 0.826584i \(0.309719\pi\)
\(264\) −1156.37 −0.269582
\(265\) −189.043 −0.0438219
\(266\) 27.3218 0.00629778
\(267\) −12775.7 −2.92833
\(268\) 4172.34 0.950994
\(269\) −1420.11 −0.321879 −0.160939 0.986964i \(-0.551452\pi\)
−0.160939 + 0.986964i \(0.551452\pi\)
\(270\) 27.6214 0.00622586
\(271\) 2645.39 0.592975 0.296487 0.955037i \(-0.404185\pi\)
0.296487 + 0.955037i \(0.404185\pi\)
\(272\) 1240.98 0.276638
\(273\) 4074.12 0.903211
\(274\) −58.6608 −0.0129337
\(275\) −3919.61 −0.859496
\(276\) −1459.26 −0.318251
\(277\) −5695.33 −1.23538 −0.617688 0.786424i \(-0.711930\pi\)
−0.617688 + 0.786424i \(0.711930\pi\)
\(278\) 506.100 0.109187
\(279\) 1443.14 0.309672
\(280\) −37.6497 −0.00803570
\(281\) −4990.88 −1.05954 −0.529770 0.848141i \(-0.677722\pi\)
−0.529770 + 0.848141i \(0.677722\pi\)
\(282\) 64.4942 0.0136191
\(283\) 7756.10 1.62916 0.814580 0.580052i \(-0.196968\pi\)
0.814580 + 0.580052i \(0.196968\pi\)
\(284\) 4101.94 0.857061
\(285\) 129.279 0.0268696
\(286\) 658.545 0.136156
\(287\) 2585.65 0.531798
\(288\) 2014.39 0.412149
\(289\) −4512.95 −0.918573
\(290\) −62.2024 −0.0125953
\(291\) 11950.3 2.40736
\(292\) 7489.27 1.50095
\(293\) 6638.53 1.32364 0.661821 0.749662i \(-0.269784\pi\)
0.661821 + 0.749662i \(0.269784\pi\)
\(294\) 112.250 0.0222671
\(295\) −321.364 −0.0634256
\(296\) 1256.08 0.246649
\(297\) 2592.33 0.506473
\(298\) −105.381 −0.0204850
\(299\) 1670.66 0.323133
\(300\) 7842.16 1.50922
\(301\) −1024.42 −0.196167
\(302\) −650.721 −0.123989
\(303\) 2934.67 0.556410
\(304\) 847.043 0.159807
\(305\) 1006.40 0.188939
\(306\) 212.737 0.0397430
\(307\) 1231.52 0.228946 0.114473 0.993426i \(-0.463482\pi\)
0.114473 + 0.993426i \(0.463482\pi\)
\(308\) −1757.68 −0.325173
\(309\) 680.560 0.125294
\(310\) 13.1071 0.00240139
\(311\) −2628.36 −0.479230 −0.239615 0.970868i \(-0.577021\pi\)
−0.239615 + 0.970868i \(0.577021\pi\)
\(312\) −2648.77 −0.480631
\(313\) −209.150 −0.0377695 −0.0188847 0.999822i \(-0.506012\pi\)
−0.0188847 + 0.999822i \(0.506012\pi\)
\(314\) −230.769 −0.0414748
\(315\) 307.768 0.0550500
\(316\) 2310.47 0.411310
\(317\) 7266.50 1.28747 0.643734 0.765250i \(-0.277385\pi\)
0.643734 + 0.765250i \(0.277385\pi\)
\(318\) −366.433 −0.0646181
\(319\) −5837.84 −1.02463
\(320\) −568.317 −0.0992808
\(321\) 2819.29 0.490210
\(322\) 46.0298 0.00796627
\(323\) 273.059 0.0470385
\(324\) 2767.01 0.474452
\(325\) −8978.21 −1.53237
\(326\) 410.897 0.0698082
\(327\) 4812.51 0.813860
\(328\) −1681.05 −0.282989
\(329\) 197.074 0.0330245
\(330\) 85.8530 0.0143214
\(331\) 1454.36 0.241506 0.120753 0.992683i \(-0.461469\pi\)
0.120753 + 0.992683i \(0.461469\pi\)
\(332\) 1478.48 0.244404
\(333\) −10267.8 −1.68971
\(334\) −235.971 −0.0386579
\(335\) −622.737 −0.101563
\(336\) 3480.01 0.565030
\(337\) −3890.15 −0.628812 −0.314406 0.949289i \(-0.601805\pi\)
−0.314406 + 0.949289i \(0.601805\pi\)
\(338\) 880.334 0.141668
\(339\) 15304.3 2.45196
\(340\) −187.173 −0.0298555
\(341\) 1230.13 0.195352
\(342\) 145.205 0.0229585
\(343\) 343.000 0.0539949
\(344\) 666.019 0.104388
\(345\) 217.800 0.0339883
\(346\) −556.591 −0.0864812
\(347\) −9933.78 −1.53681 −0.768406 0.639963i \(-0.778950\pi\)
−0.768406 + 0.639963i \(0.778950\pi\)
\(348\) 11680.1 1.79919
\(349\) 468.885 0.0719164 0.0359582 0.999353i \(-0.488552\pi\)
0.0359582 + 0.999353i \(0.488552\pi\)
\(350\) −247.367 −0.0377780
\(351\) 5937.96 0.902978
\(352\) 1717.06 0.259999
\(353\) −12345.7 −1.86146 −0.930732 0.365703i \(-0.880829\pi\)
−0.930732 + 0.365703i \(0.880829\pi\)
\(354\) −622.920 −0.0935249
\(355\) −612.229 −0.0915316
\(356\) 12625.3 1.87960
\(357\) 1121.84 0.166314
\(358\) −1282.78 −0.189378
\(359\) 10663.2 1.56764 0.783821 0.620986i \(-0.213268\pi\)
0.783821 + 0.620986i \(0.213268\pi\)
\(360\) −200.094 −0.0292941
\(361\) −6672.62 −0.972827
\(362\) 1056.88 0.153449
\(363\) −2607.31 −0.376993
\(364\) −4026.13 −0.579743
\(365\) −1117.80 −0.160297
\(366\) 1950.77 0.278602
\(367\) 1906.29 0.271138 0.135569 0.990768i \(-0.456714\pi\)
0.135569 + 0.990768i \(0.456714\pi\)
\(368\) 1427.03 0.202145
\(369\) 13741.8 1.93867
\(370\) −93.2556 −0.0131030
\(371\) −1119.71 −0.156691
\(372\) −2461.18 −0.343027
\(373\) 8444.04 1.17216 0.586080 0.810253i \(-0.300670\pi\)
0.586080 + 0.810253i \(0.300670\pi\)
\(374\) 181.336 0.0250713
\(375\) −2354.16 −0.324183
\(376\) −128.127 −0.0175735
\(377\) −13372.1 −1.82678
\(378\) 163.602 0.0222613
\(379\) 13721.8 1.85974 0.929868 0.367894i \(-0.119921\pi\)
0.929868 + 0.367894i \(0.119921\pi\)
\(380\) −127.756 −0.0172468
\(381\) 8053.45 1.08291
\(382\) −136.104 −0.0182295
\(383\) −7050.47 −0.940632 −0.470316 0.882498i \(-0.655860\pi\)
−0.470316 + 0.882498i \(0.655860\pi\)
\(384\) −4572.47 −0.607651
\(385\) 262.340 0.0347275
\(386\) 841.687 0.110986
\(387\) −5444.39 −0.715126
\(388\) −11809.6 −1.54521
\(389\) −4881.00 −0.636187 −0.318093 0.948059i \(-0.603043\pi\)
−0.318093 + 0.948059i \(0.603043\pi\)
\(390\) 196.654 0.0255332
\(391\) 460.030 0.0595006
\(392\) −223.000 −0.0287326
\(393\) −18594.6 −2.38671
\(394\) 576.511 0.0737163
\(395\) −344.845 −0.0439267
\(396\) −9341.43 −1.18542
\(397\) 3455.14 0.436798 0.218399 0.975860i \(-0.429917\pi\)
0.218399 + 0.975860i \(0.429917\pi\)
\(398\) 1226.29 0.154443
\(399\) 765.724 0.0960756
\(400\) −7668.96 −0.958620
\(401\) −13705.6 −1.70680 −0.853401 0.521256i \(-0.825464\pi\)
−0.853401 + 0.521256i \(0.825464\pi\)
\(402\) −1207.09 −0.149761
\(403\) 2817.72 0.348289
\(404\) −2900.10 −0.357142
\(405\) −412.985 −0.0506701
\(406\) −368.426 −0.0450362
\(407\) −8752.26 −1.06593
\(408\) −729.362 −0.0885019
\(409\) −2353.28 −0.284504 −0.142252 0.989830i \(-0.545434\pi\)
−0.142252 + 0.989830i \(0.545434\pi\)
\(410\) 124.807 0.0150336
\(411\) −1644.03 −0.197310
\(412\) −672.544 −0.0804220
\(413\) −1903.45 −0.226786
\(414\) 244.631 0.0290410
\(415\) −220.668 −0.0261016
\(416\) 3933.07 0.463545
\(417\) 14184.0 1.66569
\(418\) 123.773 0.0144830
\(419\) −10660.2 −1.24292 −0.621461 0.783445i \(-0.713460\pi\)
−0.621461 + 0.783445i \(0.713460\pi\)
\(420\) −524.877 −0.0609795
\(421\) 9970.25 1.15421 0.577103 0.816672i \(-0.304183\pi\)
0.577103 + 0.816672i \(0.304183\pi\)
\(422\) 568.404 0.0655674
\(423\) 1047.38 0.120391
\(424\) 727.972 0.0833808
\(425\) −2472.23 −0.282166
\(426\) −1186.72 −0.134969
\(427\) 5960.96 0.675576
\(428\) −2786.08 −0.314650
\(429\) 18456.4 2.07712
\(430\) −49.4476 −0.00554553
\(431\) 16523.6 1.84667 0.923334 0.383999i \(-0.125453\pi\)
0.923334 + 0.383999i \(0.125453\pi\)
\(432\) 5072.06 0.564883
\(433\) −13056.1 −1.44904 −0.724522 0.689251i \(-0.757940\pi\)
−0.724522 + 0.689251i \(0.757940\pi\)
\(434\) 77.6334 0.00858646
\(435\) −1743.29 −0.192148
\(436\) −4755.82 −0.522391
\(437\) 313.998 0.0343720
\(438\) −2166.70 −0.236367
\(439\) 494.593 0.0537714 0.0268857 0.999639i \(-0.491441\pi\)
0.0268857 + 0.999639i \(0.491441\pi\)
\(440\) −170.559 −0.0184798
\(441\) 1822.92 0.196838
\(442\) 415.366 0.0446990
\(443\) 16371.6 1.75584 0.877919 0.478809i \(-0.158931\pi\)
0.877919 + 0.478809i \(0.158931\pi\)
\(444\) 17511.1 1.87171
\(445\) −1884.36 −0.200736
\(446\) 451.900 0.0479778
\(447\) −2953.41 −0.312509
\(448\) −3366.15 −0.354991
\(449\) 7720.56 0.811483 0.405742 0.913988i \(-0.367013\pi\)
0.405742 + 0.913988i \(0.367013\pi\)
\(450\) −1314.66 −0.137719
\(451\) 11713.4 1.22298
\(452\) −15124.0 −1.57383
\(453\) −18237.2 −1.89152
\(454\) −687.614 −0.0710822
\(455\) 600.914 0.0619149
\(456\) −497.832 −0.0511253
\(457\) 6228.11 0.637503 0.318751 0.947838i \(-0.396736\pi\)
0.318751 + 0.947838i \(0.396736\pi\)
\(458\) −259.533 −0.0264786
\(459\) 1635.07 0.166271
\(460\) −215.235 −0.0218160
\(461\) −7684.61 −0.776373 −0.388186 0.921581i \(-0.626898\pi\)
−0.388186 + 0.921581i \(0.626898\pi\)
\(462\) 508.510 0.0512078
\(463\) 112.473 0.0112896 0.00564479 0.999984i \(-0.498203\pi\)
0.00564479 + 0.999984i \(0.498203\pi\)
\(464\) −11422.1 −1.14280
\(465\) 367.339 0.0366343
\(466\) 350.348 0.0348274
\(467\) 15068.1 1.49309 0.746543 0.665338i \(-0.231712\pi\)
0.746543 + 0.665338i \(0.231712\pi\)
\(468\) −21397.4 −2.11345
\(469\) −3688.49 −0.363152
\(470\) 9.51260 0.000933582 0
\(471\) −6467.57 −0.632717
\(472\) 1237.52 0.120681
\(473\) −4640.78 −0.451127
\(474\) −668.434 −0.0647726
\(475\) −1687.44 −0.163000
\(476\) −1108.63 −0.106752
\(477\) −5950.82 −0.571215
\(478\) −1059.43 −0.101375
\(479\) 11841.5 1.12954 0.564771 0.825247i \(-0.308964\pi\)
0.564771 + 0.825247i \(0.308964\pi\)
\(480\) 512.746 0.0487574
\(481\) −20047.8 −1.90042
\(482\) −1302.48 −0.123084
\(483\) 1290.04 0.121529
\(484\) 2576.60 0.241980
\(485\) 1762.62 0.165024
\(486\) −1431.55 −0.133614
\(487\) 2475.57 0.230346 0.115173 0.993345i \(-0.463258\pi\)
0.115173 + 0.993345i \(0.463258\pi\)
\(488\) −3875.49 −0.359498
\(489\) 11515.8 1.06496
\(490\) 16.5563 0.00152640
\(491\) −15348.6 −1.41074 −0.705370 0.708839i \(-0.749219\pi\)
−0.705370 + 0.708839i \(0.749219\pi\)
\(492\) −23435.7 −2.14748
\(493\) −3682.12 −0.336378
\(494\) 283.512 0.0258215
\(495\) 1394.24 0.126599
\(496\) 2406.82 0.217882
\(497\) −3626.25 −0.327282
\(498\) −427.734 −0.0384884
\(499\) 11367.2 1.01977 0.509884 0.860243i \(-0.329688\pi\)
0.509884 + 0.860243i \(0.329688\pi\)
\(500\) 2326.44 0.208083
\(501\) −6613.34 −0.589745
\(502\) 1135.38 0.100945
\(503\) 5193.92 0.460408 0.230204 0.973142i \(-0.426061\pi\)
0.230204 + 0.973142i \(0.426061\pi\)
\(504\) −1185.16 −0.104745
\(505\) 432.850 0.0381417
\(506\) 208.523 0.0183201
\(507\) 24672.3 2.16122
\(508\) −7958.59 −0.695089
\(509\) −977.024 −0.0850803 −0.0425401 0.999095i \(-0.513545\pi\)
−0.0425401 + 0.999095i \(0.513545\pi\)
\(510\) 54.1504 0.00470161
\(511\) −6620.76 −0.573161
\(512\) 5618.48 0.484969
\(513\) 1116.03 0.0960507
\(514\) −2075.61 −0.178115
\(515\) 100.380 0.00858884
\(516\) 9285.04 0.792153
\(517\) 892.781 0.0759467
\(518\) −552.355 −0.0468515
\(519\) −15599.1 −1.31931
\(520\) −390.681 −0.0329471
\(521\) 4297.99 0.361417 0.180709 0.983537i \(-0.442161\pi\)
0.180709 + 0.983537i \(0.442161\pi\)
\(522\) −1958.05 −0.164179
\(523\) −3663.60 −0.306306 −0.153153 0.988203i \(-0.548943\pi\)
−0.153153 + 0.988203i \(0.548943\pi\)
\(524\) 18375.6 1.53195
\(525\) −6932.72 −0.576321
\(526\) 1372.59 0.113779
\(527\) 775.883 0.0641328
\(528\) 15765.0 1.29940
\(529\) 529.000 0.0434783
\(530\) −54.0472 −0.00442955
\(531\) −10116.1 −0.826747
\(532\) −756.705 −0.0616679
\(533\) 26830.7 2.18042
\(534\) −3652.58 −0.295997
\(535\) 415.832 0.0336037
\(536\) 2398.05 0.193246
\(537\) −35951.5 −2.88905
\(538\) −406.007 −0.0325357
\(539\) 1553.85 0.124173
\(540\) −765.001 −0.0609637
\(541\) −13974.1 −1.11052 −0.555260 0.831677i \(-0.687381\pi\)
−0.555260 + 0.831677i \(0.687381\pi\)
\(542\) 756.316 0.0599383
\(543\) 29620.3 2.34094
\(544\) 1083.01 0.0853557
\(545\) 709.823 0.0557898
\(546\) 1164.79 0.0912972
\(547\) 6016.30 0.470271 0.235136 0.971963i \(-0.424447\pi\)
0.235136 + 0.971963i \(0.424447\pi\)
\(548\) 1624.67 0.126647
\(549\) 31680.3 2.46281
\(550\) −1120.61 −0.0868784
\(551\) −2513.26 −0.194317
\(552\) −838.711 −0.0646701
\(553\) −2042.53 −0.157065
\(554\) −1628.29 −0.124873
\(555\) −2613.59 −0.199893
\(556\) −14017.0 −1.06916
\(557\) −21806.8 −1.65886 −0.829429 0.558612i \(-0.811334\pi\)
−0.829429 + 0.558612i \(0.811334\pi\)
\(558\) 412.593 0.0313019
\(559\) −10630.1 −0.804304
\(560\) 513.285 0.0387326
\(561\) 5082.14 0.382475
\(562\) −1426.89 −0.107099
\(563\) −18584.8 −1.39122 −0.695610 0.718420i \(-0.744866\pi\)
−0.695610 + 0.718420i \(0.744866\pi\)
\(564\) −1786.23 −0.133358
\(565\) 2257.31 0.168081
\(566\) 2217.46 0.164676
\(567\) −2446.12 −0.181177
\(568\) 2357.59 0.174159
\(569\) 24992.8 1.84140 0.920698 0.390275i \(-0.127620\pi\)
0.920698 + 0.390275i \(0.127620\pi\)
\(570\) 36.9608 0.00271600
\(571\) −17594.5 −1.28950 −0.644752 0.764392i \(-0.723039\pi\)
−0.644752 + 0.764392i \(0.723039\pi\)
\(572\) −18239.0 −1.33324
\(573\) −3814.46 −0.278100
\(574\) 739.235 0.0537545
\(575\) −2842.88 −0.206185
\(576\) −17889.9 −1.29412
\(577\) −1666.39 −0.120230 −0.0601149 0.998191i \(-0.519147\pi\)
−0.0601149 + 0.998191i \(0.519147\pi\)
\(578\) −1290.25 −0.0928499
\(579\) 23589.2 1.69315
\(580\) 1722.76 0.123334
\(581\) −1307.02 −0.0933296
\(582\) 3416.59 0.243337
\(583\) −5072.46 −0.360343
\(584\) 4304.46 0.304999
\(585\) 3193.63 0.225710
\(586\) 1897.95 0.133795
\(587\) −6573.88 −0.462237 −0.231119 0.972926i \(-0.574239\pi\)
−0.231119 + 0.972926i \(0.574239\pi\)
\(588\) −3108.86 −0.218040
\(589\) 529.586 0.0370479
\(590\) −91.8778 −0.00641110
\(591\) 16157.4 1.12458
\(592\) −17124.3 −1.18886
\(593\) 5066.72 0.350869 0.175434 0.984491i \(-0.443867\pi\)
0.175434 + 0.984491i \(0.443867\pi\)
\(594\) 741.146 0.0511946
\(595\) 165.467 0.0114008
\(596\) 2918.62 0.200589
\(597\) 34368.1 2.35610
\(598\) 477.640 0.0326624
\(599\) 17004.2 1.15989 0.579944 0.814656i \(-0.303074\pi\)
0.579944 + 0.814656i \(0.303074\pi\)
\(600\) 4507.28 0.306681
\(601\) 16323.7 1.10791 0.553956 0.832546i \(-0.313117\pi\)
0.553956 + 0.832546i \(0.313117\pi\)
\(602\) −292.880 −0.0198287
\(603\) −19602.9 −1.32387
\(604\) 18022.4 1.21411
\(605\) −384.567 −0.0258427
\(606\) 839.019 0.0562423
\(607\) 11372.7 0.760470 0.380235 0.924890i \(-0.375843\pi\)
0.380235 + 0.924890i \(0.375843\pi\)
\(608\) 739.216 0.0493078
\(609\) −10325.5 −0.687048
\(610\) 287.730 0.0190981
\(611\) 2044.99 0.135404
\(612\) −5891.95 −0.389164
\(613\) 12777.6 0.841898 0.420949 0.907084i \(-0.361697\pi\)
0.420949 + 0.907084i \(0.361697\pi\)
\(614\) 352.090 0.0231420
\(615\) 3497.85 0.229345
\(616\) −1010.23 −0.0660767
\(617\) −5633.07 −0.367551 −0.183775 0.982968i \(-0.558832\pi\)
−0.183775 + 0.982968i \(0.558832\pi\)
\(618\) 194.572 0.0126648
\(619\) −14391.6 −0.934488 −0.467244 0.884128i \(-0.654753\pi\)
−0.467244 + 0.884128i \(0.654753\pi\)
\(620\) −363.013 −0.0235144
\(621\) 1880.21 0.121498
\(622\) −751.446 −0.0484409
\(623\) −11161.1 −0.717756
\(624\) 36111.2 2.31667
\(625\) 15103.2 0.966604
\(626\) −59.7958 −0.00381776
\(627\) 3468.86 0.220946
\(628\) 6391.39 0.406121
\(629\) −5520.34 −0.349937
\(630\) 87.9906 0.00556449
\(631\) −10258.1 −0.647178 −0.323589 0.946198i \(-0.604889\pi\)
−0.323589 + 0.946198i \(0.604889\pi\)
\(632\) 1327.94 0.0835801
\(633\) 15930.1 1.00026
\(634\) 2077.49 0.130138
\(635\) 1187.85 0.0742335
\(636\) 10148.7 0.632741
\(637\) 3559.23 0.221384
\(638\) −1669.03 −0.103570
\(639\) −19272.2 −1.19311
\(640\) −674.419 −0.0416543
\(641\) 13645.9 0.840841 0.420421 0.907329i \(-0.361883\pi\)
0.420421 + 0.907329i \(0.361883\pi\)
\(642\) 806.033 0.0495507
\(643\) −963.797 −0.0591111 −0.0295555 0.999563i \(-0.509409\pi\)
−0.0295555 + 0.999563i \(0.509409\pi\)
\(644\) −1274.84 −0.0780058
\(645\) −1385.82 −0.0845997
\(646\) 78.0675 0.00475468
\(647\) 19063.8 1.15839 0.579194 0.815190i \(-0.303367\pi\)
0.579194 + 0.815190i \(0.303367\pi\)
\(648\) 1590.34 0.0964110
\(649\) −8622.95 −0.521542
\(650\) −2566.86 −0.154893
\(651\) 2175.76 0.130991
\(652\) −11380.2 −0.683563
\(653\) −18110.9 −1.08535 −0.542676 0.839942i \(-0.682589\pi\)
−0.542676 + 0.839942i \(0.682589\pi\)
\(654\) 1375.89 0.0822655
\(655\) −2742.62 −0.163608
\(656\) 22918.1 1.36402
\(657\) −35186.9 −2.08945
\(658\) 56.3434 0.00333814
\(659\) 14235.4 0.841479 0.420739 0.907182i \(-0.361771\pi\)
0.420739 + 0.907182i \(0.361771\pi\)
\(660\) −2377.78 −0.140235
\(661\) 19106.5 1.12429 0.562145 0.827039i \(-0.309976\pi\)
0.562145 + 0.827039i \(0.309976\pi\)
\(662\) 415.799 0.0244116
\(663\) 11641.1 0.681905
\(664\) 849.756 0.0496640
\(665\) 112.941 0.00658595
\(666\) −2935.56 −0.170797
\(667\) −4234.16 −0.245798
\(668\) 6535.44 0.378539
\(669\) 12665.0 0.731924
\(670\) −178.040 −0.0102661
\(671\) 27004.2 1.55363
\(672\) 3037.01 0.174338
\(673\) −17515.0 −1.00320 −0.501599 0.865100i \(-0.667255\pi\)
−0.501599 + 0.865100i \(0.667255\pi\)
\(674\) −1112.19 −0.0635608
\(675\) −10104.3 −0.576172
\(676\) −24381.7 −1.38722
\(677\) −16056.4 −0.911519 −0.455760 0.890103i \(-0.650632\pi\)
−0.455760 + 0.890103i \(0.650632\pi\)
\(678\) 4375.47 0.247845
\(679\) 10440.0 0.590062
\(680\) −107.578 −0.00606678
\(681\) −19271.1 −1.08439
\(682\) 351.693 0.0197463
\(683\) 32998.3 1.84867 0.924337 0.381578i \(-0.124619\pi\)
0.924337 + 0.381578i \(0.124619\pi\)
\(684\) −4021.61 −0.224810
\(685\) −242.488 −0.0135255
\(686\) 98.0634 0.00545784
\(687\) −7273.70 −0.403943
\(688\) −9079.98 −0.503155
\(689\) −11618.9 −0.642446
\(690\) 62.2688 0.00343556
\(691\) 17674.3 0.973025 0.486512 0.873674i \(-0.338269\pi\)
0.486512 + 0.873674i \(0.338269\pi\)
\(692\) 15415.3 0.846825
\(693\) 8258.13 0.452670
\(694\) −2840.06 −0.155342
\(695\) 2092.08 0.114183
\(696\) 6713.11 0.365603
\(697\) 7388.06 0.401496
\(698\) 134.054 0.00726935
\(699\) 9818.89 0.531309
\(700\) 6851.06 0.369923
\(701\) 4964.87 0.267505 0.133752 0.991015i \(-0.457297\pi\)
0.133752 + 0.991015i \(0.457297\pi\)
\(702\) 1697.66 0.0912736
\(703\) −3767.96 −0.202150
\(704\) −15249.3 −0.816375
\(705\) 266.601 0.0142422
\(706\) −3529.63 −0.188158
\(707\) 2563.78 0.136380
\(708\) 17252.4 0.915796
\(709\) 17982.2 0.952518 0.476259 0.879305i \(-0.341993\pi\)
0.476259 + 0.879305i \(0.341993\pi\)
\(710\) −175.036 −0.00925207
\(711\) −10855.3 −0.572580
\(712\) 7256.37 0.381944
\(713\) 892.207 0.0468631
\(714\) 320.734 0.0168112
\(715\) 2722.24 0.142386
\(716\) 35528.0 1.85439
\(717\) −29691.8 −1.54653
\(718\) 3048.61 0.158458
\(719\) −13551.7 −0.702913 −0.351457 0.936204i \(-0.614314\pi\)
−0.351457 + 0.936204i \(0.614314\pi\)
\(720\) 2727.92 0.141199
\(721\) 594.551 0.0307104
\(722\) −1907.70 −0.0983340
\(723\) −36503.5 −1.87770
\(724\) −29271.5 −1.50258
\(725\) 22754.6 1.16563
\(726\) −745.428 −0.0381067
\(727\) −12568.5 −0.641185 −0.320592 0.947217i \(-0.603882\pi\)
−0.320592 + 0.947217i \(0.603882\pi\)
\(728\) −2314.02 −0.117807
\(729\) −30685.7 −1.55900
\(730\) −319.578 −0.0162029
\(731\) −2927.10 −0.148102
\(732\) −54028.6 −2.72808
\(733\) −600.152 −0.0302416 −0.0151208 0.999886i \(-0.504813\pi\)
−0.0151208 + 0.999886i \(0.504813\pi\)
\(734\) 545.007 0.0274068
\(735\) 464.009 0.0232860
\(736\) 1245.38 0.0623711
\(737\) −16709.5 −0.835144
\(738\) 3928.76 0.195962
\(739\) −26422.8 −1.31526 −0.657631 0.753340i \(-0.728441\pi\)
−0.657631 + 0.753340i \(0.728441\pi\)
\(740\) 2582.81 0.128305
\(741\) 7945.73 0.393919
\(742\) −320.123 −0.0158384
\(743\) −16071.3 −0.793539 −0.396770 0.917918i \(-0.629869\pi\)
−0.396770 + 0.917918i \(0.629869\pi\)
\(744\) −1414.56 −0.0697048
\(745\) −435.614 −0.0214224
\(746\) 2414.14 0.118483
\(747\) −6946.35 −0.340232
\(748\) −5022.28 −0.245498
\(749\) 2462.99 0.120154
\(750\) −673.054 −0.0327686
\(751\) 15571.2 0.756592 0.378296 0.925685i \(-0.376510\pi\)
0.378296 + 0.925685i \(0.376510\pi\)
\(752\) 1746.78 0.0847055
\(753\) 31820.2 1.53997
\(754\) −3823.07 −0.184652
\(755\) −2689.90 −0.129663
\(756\) −4531.12 −0.217983
\(757\) −2225.91 −0.106872 −0.0534360 0.998571i \(-0.517017\pi\)
−0.0534360 + 0.998571i \(0.517017\pi\)
\(758\) 3923.04 0.187983
\(759\) 5844.08 0.279482
\(760\) −73.4280 −0.00350462
\(761\) −23803.6 −1.13388 −0.566938 0.823761i \(-0.691872\pi\)
−0.566938 + 0.823761i \(0.691872\pi\)
\(762\) 2302.47 0.109462
\(763\) 4204.30 0.199483
\(764\) 3769.53 0.178504
\(765\) 879.395 0.0415615
\(766\) −2015.72 −0.0950797
\(767\) −19751.6 −0.929844
\(768\) 29517.6 1.38688
\(769\) −20561.7 −0.964208 −0.482104 0.876114i \(-0.660127\pi\)
−0.482104 + 0.876114i \(0.660127\pi\)
\(770\) 75.0029 0.00351028
\(771\) −58171.1 −2.71723
\(772\) −23311.4 −1.08678
\(773\) 33772.8 1.57144 0.785719 0.618583i \(-0.212293\pi\)
0.785719 + 0.618583i \(0.212293\pi\)
\(774\) −1556.55 −0.0722854
\(775\) −4794.77 −0.222236
\(776\) −6787.55 −0.313993
\(777\) −15480.4 −0.714742
\(778\) −1395.47 −0.0643062
\(779\) 5042.78 0.231934
\(780\) −5446.52 −0.250022
\(781\) −16427.5 −0.752654
\(782\) 131.522 0.00601436
\(783\) −15049.3 −0.686870
\(784\) 3040.20 0.138493
\(785\) −953.937 −0.0433726
\(786\) −5316.19 −0.241250
\(787\) −19747.7 −0.894448 −0.447224 0.894422i \(-0.647587\pi\)
−0.447224 + 0.894422i \(0.647587\pi\)
\(788\) −15967.1 −0.721831
\(789\) 38468.3 1.73575
\(790\) −98.5910 −0.00444014
\(791\) 13370.1 0.600994
\(792\) −5368.99 −0.240882
\(793\) 61855.4 2.76992
\(794\) 987.823 0.0441518
\(795\) −1514.73 −0.0675749
\(796\) −33963.3 −1.51231
\(797\) 39699.9 1.76442 0.882209 0.470858i \(-0.156056\pi\)
0.882209 + 0.470858i \(0.156056\pi\)
\(798\) 218.920 0.00971138
\(799\) 563.107 0.0249328
\(800\) −6692.72 −0.295779
\(801\) −59317.3 −2.61657
\(802\) −3918.43 −0.172525
\(803\) −29993.2 −1.31810
\(804\) 33431.5 1.46646
\(805\) 190.274 0.00833079
\(806\) 805.583 0.0352053
\(807\) −11378.8 −0.496348
\(808\) −1666.83 −0.0725729
\(809\) 2046.60 0.0889426 0.0444713 0.999011i \(-0.485840\pi\)
0.0444713 + 0.999011i \(0.485840\pi\)
\(810\) −118.072 −0.00512177
\(811\) 32153.8 1.39220 0.696099 0.717946i \(-0.254918\pi\)
0.696099 + 0.717946i \(0.254918\pi\)
\(812\) 10203.9 0.440995
\(813\) 21196.6 0.914387
\(814\) −2502.26 −0.107745
\(815\) 1698.53 0.0730025
\(816\) 9943.53 0.426585
\(817\) −1997.91 −0.0855547
\(818\) −672.801 −0.0287579
\(819\) 18916.0 0.807054
\(820\) −3456.65 −0.147209
\(821\) 29207.4 1.24159 0.620796 0.783972i \(-0.286810\pi\)
0.620796 + 0.783972i \(0.286810\pi\)
\(822\) −470.028 −0.0199442
\(823\) −1692.71 −0.0716939 −0.0358470 0.999357i \(-0.511413\pi\)
−0.0358470 + 0.999357i \(0.511413\pi\)
\(824\) −386.545 −0.0163421
\(825\) −31406.4 −1.32537
\(826\) −544.195 −0.0229237
\(827\) 4139.01 0.174036 0.0870179 0.996207i \(-0.472266\pi\)
0.0870179 + 0.996207i \(0.472266\pi\)
\(828\) −6775.30 −0.284370
\(829\) 1063.54 0.0445577 0.0222789 0.999752i \(-0.492908\pi\)
0.0222789 + 0.999752i \(0.492908\pi\)
\(830\) −63.0889 −0.00263837
\(831\) −45634.6 −1.90499
\(832\) −34929.8 −1.45549
\(833\) 980.065 0.0407650
\(834\) 4055.20 0.168369
\(835\) −975.437 −0.0404268
\(836\) −3428.00 −0.141818
\(837\) 3171.14 0.130957
\(838\) −3047.74 −0.125635
\(839\) 25032.6 1.03006 0.515030 0.857172i \(-0.327781\pi\)
0.515030 + 0.857172i \(0.327781\pi\)
\(840\) −301.673 −0.0123913
\(841\) 9501.58 0.389585
\(842\) 2850.49 0.116668
\(843\) −39990.1 −1.63385
\(844\) −15742.5 −0.642037
\(845\) 3639.06 0.148151
\(846\) 299.444 0.0121692
\(847\) −2277.80 −0.0924039
\(848\) −9924.59 −0.401901
\(849\) 62146.8 2.51222
\(850\) −706.808 −0.0285216
\(851\) −6347.98 −0.255706
\(852\) 32867.4 1.32162
\(853\) −13526.9 −0.542967 −0.271484 0.962443i \(-0.587514\pi\)
−0.271484 + 0.962443i \(0.587514\pi\)
\(854\) 1704.23 0.0682877
\(855\) 600.239 0.0240090
\(856\) −1601.30 −0.0639384
\(857\) −9459.85 −0.377062 −0.188531 0.982067i \(-0.560373\pi\)
−0.188531 + 0.982067i \(0.560373\pi\)
\(858\) 5276.68 0.209957
\(859\) 35172.1 1.39704 0.698520 0.715591i \(-0.253842\pi\)
0.698520 + 0.715591i \(0.253842\pi\)
\(860\) 1369.50 0.0543019
\(861\) 20717.9 0.820050
\(862\) 4724.08 0.186662
\(863\) −46996.6 −1.85375 −0.926873 0.375376i \(-0.877514\pi\)
−0.926873 + 0.375376i \(0.877514\pi\)
\(864\) 4426.40 0.174293
\(865\) −2300.79 −0.0904385
\(866\) −3732.73 −0.146470
\(867\) −36160.6 −1.41647
\(868\) −2150.13 −0.0840787
\(869\) −9253.00 −0.361204
\(870\) −498.405 −0.0194224
\(871\) −38274.5 −1.48896
\(872\) −2733.41 −0.106152
\(873\) 55485.0 2.15107
\(874\) 89.7717 0.00347434
\(875\) −2056.64 −0.0794597
\(876\) 60008.8 2.31451
\(877\) 10896.9 0.419570 0.209785 0.977748i \(-0.432724\pi\)
0.209785 + 0.977748i \(0.432724\pi\)
\(878\) 141.404 0.00543524
\(879\) 53192.2 2.04110
\(880\) 2325.27 0.0890737
\(881\) 17667.1 0.675617 0.337809 0.941215i \(-0.390314\pi\)
0.337809 + 0.941215i \(0.390314\pi\)
\(882\) 521.171 0.0198965
\(883\) −23576.2 −0.898531 −0.449265 0.893398i \(-0.648314\pi\)
−0.449265 + 0.893398i \(0.648314\pi\)
\(884\) −11504.0 −0.437693
\(885\) −2574.98 −0.0978044
\(886\) 4680.62 0.177481
\(887\) 16348.3 0.618853 0.309427 0.950923i \(-0.399863\pi\)
0.309427 + 0.950923i \(0.399863\pi\)
\(888\) 10064.5 0.380340
\(889\) 7035.65 0.265431
\(890\) −538.738 −0.0202905
\(891\) −11081.4 −0.416655
\(892\) −12515.8 −0.469799
\(893\) 384.353 0.0144030
\(894\) −844.377 −0.0315886
\(895\) −5302.68 −0.198044
\(896\) −3994.60 −0.148940
\(897\) 13386.4 0.498281
\(898\) 2207.30 0.0820252
\(899\) −7141.30 −0.264934
\(900\) 36410.8 1.34855
\(901\) −3199.37 −0.118298
\(902\) 3348.86 0.123620
\(903\) −8208.28 −0.302496
\(904\) −8692.51 −0.319810
\(905\) 4368.87 0.160471
\(906\) −5214.00 −0.191196
\(907\) 26708.2 0.977764 0.488882 0.872350i \(-0.337405\pi\)
0.488882 + 0.872350i \(0.337405\pi\)
\(908\) 19044.1 0.696038
\(909\) 13625.5 0.497174
\(910\) 171.801 0.00625839
\(911\) 34641.5 1.25985 0.629926 0.776655i \(-0.283085\pi\)
0.629926 + 0.776655i \(0.283085\pi\)
\(912\) 6787.05 0.246427
\(913\) −5921.04 −0.214631
\(914\) 1780.61 0.0644392
\(915\) 8063.95 0.291351
\(916\) 7188.03 0.259278
\(917\) −16244.6 −0.585000
\(918\) 467.465 0.0168068
\(919\) −21866.1 −0.784871 −0.392435 0.919780i \(-0.628367\pi\)
−0.392435 + 0.919780i \(0.628367\pi\)
\(920\) −123.706 −0.00443312
\(921\) 9867.72 0.353043
\(922\) −2197.02 −0.0784762
\(923\) −37628.7 −1.34189
\(924\) −14083.7 −0.501428
\(925\) 34114.4 1.21262
\(926\) 32.1560 0.00114116
\(927\) 3159.82 0.111955
\(928\) −9968.09 −0.352606
\(929\) 26857.0 0.948491 0.474245 0.880393i \(-0.342721\pi\)
0.474245 + 0.880393i \(0.342721\pi\)
\(930\) 105.022 0.00370302
\(931\) 668.952 0.0235489
\(932\) −9703.24 −0.341030
\(933\) −21060.1 −0.738989
\(934\) 4307.97 0.150922
\(935\) 749.593 0.0262185
\(936\) −12298.1 −0.429463
\(937\) −8735.68 −0.304570 −0.152285 0.988337i \(-0.548663\pi\)
−0.152285 + 0.988337i \(0.548663\pi\)
\(938\) −1054.54 −0.0367077
\(939\) −1675.84 −0.0582418
\(940\) −263.461 −0.00914165
\(941\) −49431.8 −1.71247 −0.856233 0.516590i \(-0.827201\pi\)
−0.856233 + 0.516590i \(0.827201\pi\)
\(942\) −1849.07 −0.0639555
\(943\) 8495.70 0.293381
\(944\) −16871.4 −0.581690
\(945\) 676.286 0.0232800
\(946\) −1326.80 −0.0456003
\(947\) −1469.30 −0.0504180 −0.0252090 0.999682i \(-0.508025\pi\)
−0.0252090 + 0.999682i \(0.508025\pi\)
\(948\) 18512.9 0.634254
\(949\) −68702.0 −2.35001
\(950\) −482.438 −0.0164762
\(951\) 58223.8 1.98532
\(952\) −637.185 −0.0216925
\(953\) −39795.3 −1.35267 −0.676336 0.736593i \(-0.736433\pi\)
−0.676336 + 0.736593i \(0.736433\pi\)
\(954\) −1701.34 −0.0577388
\(955\) −562.616 −0.0190637
\(956\) 29342.1 0.992668
\(957\) −46776.5 −1.58001
\(958\) 3385.47 0.114175
\(959\) −1436.26 −0.0483621
\(960\) −4553.72 −0.153094
\(961\) −28286.2 −0.949489
\(962\) −5731.66 −0.192096
\(963\) 13089.9 0.438022
\(964\) 36073.5 1.20524
\(965\) 3479.30 0.116065
\(966\) 368.820 0.0122843
\(967\) 50334.2 1.67388 0.836938 0.547298i \(-0.184343\pi\)
0.836938 + 0.547298i \(0.184343\pi\)
\(968\) 1480.90 0.0491714
\(969\) 2187.93 0.0725349
\(970\) 503.932 0.0166807
\(971\) −48446.8 −1.60116 −0.800582 0.599223i \(-0.795476\pi\)
−0.800582 + 0.599223i \(0.795476\pi\)
\(972\) 39648.2 1.30835
\(973\) 12391.4 0.408275
\(974\) 707.763 0.0232836
\(975\) −71939.1 −2.36297
\(976\) 52835.3 1.73281
\(977\) −14711.2 −0.481734 −0.240867 0.970558i \(-0.577432\pi\)
−0.240867 + 0.970558i \(0.577432\pi\)
\(978\) 3292.37 0.107647
\(979\) −50561.9 −1.65063
\(980\) −458.543 −0.0149466
\(981\) 22344.3 0.727215
\(982\) −4388.16 −0.142599
\(983\) −7190.14 −0.233296 −0.116648 0.993173i \(-0.537215\pi\)
−0.116648 + 0.993173i \(0.537215\pi\)
\(984\) −13469.6 −0.436378
\(985\) 2383.14 0.0770894
\(986\) −1052.72 −0.0340013
\(987\) 1579.09 0.0509249
\(988\) −7852.14 −0.252844
\(989\) −3365.94 −0.108221
\(990\) 398.613 0.0127967
\(991\) 41963.2 1.34511 0.672555 0.740047i \(-0.265197\pi\)
0.672555 + 0.740047i \(0.265197\pi\)
\(992\) 2100.44 0.0672268
\(993\) 11653.2 0.372411
\(994\) −1036.74 −0.0330819
\(995\) 5069.14 0.161510
\(996\) 11846.5 0.376879
\(997\) 61082.8 1.94033 0.970166 0.242443i \(-0.0779488\pi\)
0.970166 + 0.242443i \(0.0779488\pi\)
\(998\) 3249.86 0.103079
\(999\) −22562.4 −0.714558
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 161.4.a.d.1.6 12
3.2 odd 2 1449.4.a.o.1.7 12
7.6 odd 2 1127.4.a.h.1.6 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
161.4.a.d.1.6 12 1.1 even 1 trivial
1127.4.a.h.1.6 12 7.6 odd 2
1449.4.a.o.1.7 12 3.2 odd 2