Properties

Label 161.4.a.d.1.5
Level $161$
Weight $4$
Character 161.1
Self dual yes
Analytic conductor $9.499$
Analytic rank $0$
Dimension $12$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [161,4,Mod(1,161)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(161, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("161.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 161 = 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 161.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(9.49930751092\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 4 x^{11} - 76 x^{10} + 311 x^{9} + 1979 x^{8} - 8466 x^{7} - 19942 x^{6} + 95647 x^{5} + \cdots - 70656 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(-0.718333\) of defining polynomial
Character \(\chi\) \(=\) 161.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.718333 q^{2} -2.25536 q^{3} -7.48400 q^{4} -17.9779 q^{5} +1.62010 q^{6} +7.00000 q^{7} +11.1227 q^{8} -21.9133 q^{9} +12.9141 q^{10} -18.3935 q^{11} +16.8791 q^{12} +62.8842 q^{13} -5.02833 q^{14} +40.5466 q^{15} +51.8822 q^{16} -22.1460 q^{17} +15.7411 q^{18} +23.1154 q^{19} +134.546 q^{20} -15.7876 q^{21} +13.2126 q^{22} +23.0000 q^{23} -25.0857 q^{24} +198.203 q^{25} -45.1717 q^{26} +110.317 q^{27} -52.3880 q^{28} -35.1001 q^{29} -29.1260 q^{30} -194.716 q^{31} -126.250 q^{32} +41.4840 q^{33} +15.9082 q^{34} -125.845 q^{35} +163.999 q^{36} +189.086 q^{37} -16.6045 q^{38} -141.827 q^{39} -199.962 q^{40} -4.81239 q^{41} +11.3407 q^{42} +334.687 q^{43} +137.657 q^{44} +393.955 q^{45} -16.5216 q^{46} -45.0406 q^{47} -117.013 q^{48} +49.0000 q^{49} -142.376 q^{50} +49.9474 q^{51} -470.625 q^{52} +633.506 q^{53} -79.2446 q^{54} +330.676 q^{55} +77.8586 q^{56} -52.1336 q^{57} +25.2136 q^{58} -322.934 q^{59} -303.451 q^{60} -862.903 q^{61} +139.871 q^{62} -153.393 q^{63} -324.368 q^{64} -1130.52 q^{65} -29.7993 q^{66} +123.467 q^{67} +165.741 q^{68} -51.8734 q^{69} +90.3985 q^{70} +295.645 q^{71} -243.735 q^{72} +837.833 q^{73} -135.827 q^{74} -447.021 q^{75} -172.996 q^{76} -128.754 q^{77} +101.879 q^{78} -680.647 q^{79} -932.731 q^{80} +342.854 q^{81} +3.45690 q^{82} -775.559 q^{83} +118.154 q^{84} +398.138 q^{85} -240.416 q^{86} +79.1636 q^{87} -204.585 q^{88} +1351.26 q^{89} -282.990 q^{90} +440.189 q^{91} -172.132 q^{92} +439.155 q^{93} +32.3541 q^{94} -415.565 q^{95} +284.740 q^{96} +553.954 q^{97} -35.1983 q^{98} +403.063 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 4 q^{2} + q^{3} + 72 q^{4} + 16 q^{5} - 15 q^{6} + 84 q^{7} - 21 q^{8} + 203 q^{9} + 106 q^{10} + 50 q^{11} - 139 q^{12} + 21 q^{13} + 28 q^{14} + 192 q^{15} + 516 q^{16} + 26 q^{17} + 251 q^{18}+ \cdots + 2400 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.718333 −0.253969 −0.126984 0.991905i \(-0.540530\pi\)
−0.126984 + 0.991905i \(0.540530\pi\)
\(3\) −2.25536 −0.434045 −0.217023 0.976167i \(-0.569635\pi\)
−0.217023 + 0.976167i \(0.569635\pi\)
\(4\) −7.48400 −0.935500
\(5\) −17.9779 −1.60799 −0.803994 0.594637i \(-0.797296\pi\)
−0.803994 + 0.594637i \(0.797296\pi\)
\(6\) 1.62010 0.110234
\(7\) 7.00000 0.377964
\(8\) 11.1227 0.491557
\(9\) −21.9133 −0.811605
\(10\) 12.9141 0.408379
\(11\) −18.3935 −0.504168 −0.252084 0.967705i \(-0.581116\pi\)
−0.252084 + 0.967705i \(0.581116\pi\)
\(12\) 16.8791 0.406049
\(13\) 62.8842 1.34161 0.670805 0.741634i \(-0.265949\pi\)
0.670805 + 0.741634i \(0.265949\pi\)
\(14\) −5.02833 −0.0959912
\(15\) 40.5466 0.697939
\(16\) 51.8822 0.810660
\(17\) −22.1460 −0.315953 −0.157977 0.987443i \(-0.550497\pi\)
−0.157977 + 0.987443i \(0.550497\pi\)
\(18\) 15.7411 0.206122
\(19\) 23.1154 0.279107 0.139554 0.990215i \(-0.455433\pi\)
0.139554 + 0.990215i \(0.455433\pi\)
\(20\) 134.546 1.50427
\(21\) −15.7876 −0.164054
\(22\) 13.2126 0.128043
\(23\) 23.0000 0.208514
\(24\) −25.0857 −0.213358
\(25\) 198.203 1.58563
\(26\) −45.1717 −0.340727
\(27\) 110.317 0.786318
\(28\) −52.3880 −0.353586
\(29\) −35.1001 −0.224756 −0.112378 0.993666i \(-0.535847\pi\)
−0.112378 + 0.993666i \(0.535847\pi\)
\(30\) −29.1260 −0.177255
\(31\) −194.716 −1.12813 −0.564065 0.825731i \(-0.690763\pi\)
−0.564065 + 0.825731i \(0.690763\pi\)
\(32\) −126.250 −0.697439
\(33\) 41.4840 0.218832
\(34\) 15.9082 0.0802422
\(35\) −125.845 −0.607762
\(36\) 163.999 0.759256
\(37\) 189.086 0.840150 0.420075 0.907489i \(-0.362004\pi\)
0.420075 + 0.907489i \(0.362004\pi\)
\(38\) −16.6045 −0.0708845
\(39\) −141.827 −0.582319
\(40\) −199.962 −0.790417
\(41\) −4.81239 −0.0183310 −0.00916548 0.999958i \(-0.502918\pi\)
−0.00916548 + 0.999958i \(0.502918\pi\)
\(42\) 11.3407 0.0416645
\(43\) 334.687 1.18696 0.593480 0.804849i \(-0.297754\pi\)
0.593480 + 0.804849i \(0.297754\pi\)
\(44\) 137.657 0.471649
\(45\) 393.955 1.30505
\(46\) −16.5216 −0.0529562
\(47\) −45.0406 −0.139784 −0.0698919 0.997555i \(-0.522265\pi\)
−0.0698919 + 0.997555i \(0.522265\pi\)
\(48\) −117.013 −0.351863
\(49\) 49.0000 0.142857
\(50\) −142.376 −0.402700
\(51\) 49.9474 0.137138
\(52\) −470.625 −1.25508
\(53\) 633.506 1.64186 0.820931 0.571027i \(-0.193455\pi\)
0.820931 + 0.571027i \(0.193455\pi\)
\(54\) −79.2446 −0.199700
\(55\) 330.676 0.810696
\(56\) 77.8586 0.185791
\(57\) −52.1336 −0.121145
\(58\) 25.2136 0.0570811
\(59\) −322.934 −0.712583 −0.356292 0.934375i \(-0.615959\pi\)
−0.356292 + 0.934375i \(0.615959\pi\)
\(60\) −303.451 −0.652922
\(61\) −862.903 −1.81120 −0.905602 0.424128i \(-0.860581\pi\)
−0.905602 + 0.424128i \(0.860581\pi\)
\(62\) 139.871 0.286510
\(63\) −153.393 −0.306758
\(64\) −324.368 −0.633532
\(65\) −1130.52 −2.15729
\(66\) −29.7993 −0.0555764
\(67\) 123.467 0.225132 0.112566 0.993644i \(-0.464093\pi\)
0.112566 + 0.993644i \(0.464093\pi\)
\(68\) 165.741 0.295574
\(69\) −51.8734 −0.0905047
\(70\) 90.3985 0.154353
\(71\) 295.645 0.494177 0.247088 0.968993i \(-0.420526\pi\)
0.247088 + 0.968993i \(0.420526\pi\)
\(72\) −243.735 −0.398950
\(73\) 837.833 1.34330 0.671650 0.740868i \(-0.265586\pi\)
0.671650 + 0.740868i \(0.265586\pi\)
\(74\) −135.827 −0.213372
\(75\) −447.021 −0.688233
\(76\) −172.996 −0.261105
\(77\) −128.754 −0.190558
\(78\) 101.879 0.147891
\(79\) −680.647 −0.969352 −0.484676 0.874694i \(-0.661062\pi\)
−0.484676 + 0.874694i \(0.661062\pi\)
\(80\) −932.731 −1.30353
\(81\) 342.854 0.470307
\(82\) 3.45690 0.00465549
\(83\) −775.559 −1.02565 −0.512823 0.858494i \(-0.671400\pi\)
−0.512823 + 0.858494i \(0.671400\pi\)
\(84\) 118.154 0.153472
\(85\) 398.138 0.508049
\(86\) −240.416 −0.301451
\(87\) 79.1636 0.0975543
\(88\) −204.585 −0.247827
\(89\) 1351.26 1.60936 0.804680 0.593709i \(-0.202337\pi\)
0.804680 + 0.593709i \(0.202337\pi\)
\(90\) −282.990 −0.331442
\(91\) 440.189 0.507081
\(92\) −172.132 −0.195065
\(93\) 439.155 0.489659
\(94\) 32.3541 0.0355008
\(95\) −415.565 −0.448801
\(96\) 284.740 0.302720
\(97\) 553.954 0.579850 0.289925 0.957049i \(-0.406370\pi\)
0.289925 + 0.957049i \(0.406370\pi\)
\(98\) −35.1983 −0.0362813
\(99\) 403.063 0.409185
\(100\) −1483.35 −1.48335
\(101\) −1055.76 −1.04012 −0.520060 0.854130i \(-0.674090\pi\)
−0.520060 + 0.854130i \(0.674090\pi\)
\(102\) −35.8788 −0.0348288
\(103\) 1881.25 1.79966 0.899832 0.436237i \(-0.143689\pi\)
0.899832 + 0.436237i \(0.143689\pi\)
\(104\) 699.439 0.659477
\(105\) 283.826 0.263796
\(106\) −455.068 −0.416982
\(107\) −71.7338 −0.0648109 −0.0324055 0.999475i \(-0.510317\pi\)
−0.0324055 + 0.999475i \(0.510317\pi\)
\(108\) −825.615 −0.735601
\(109\) 1008.89 0.886555 0.443278 0.896384i \(-0.353816\pi\)
0.443278 + 0.896384i \(0.353816\pi\)
\(110\) −237.535 −0.205892
\(111\) −426.458 −0.364663
\(112\) 363.176 0.306401
\(113\) 675.845 0.562638 0.281319 0.959614i \(-0.409228\pi\)
0.281319 + 0.959614i \(0.409228\pi\)
\(114\) 37.4493 0.0307671
\(115\) −413.491 −0.335289
\(116\) 262.689 0.210259
\(117\) −1378.00 −1.08886
\(118\) 231.974 0.180974
\(119\) −155.022 −0.119419
\(120\) 450.986 0.343077
\(121\) −992.679 −0.745815
\(122\) 619.852 0.459990
\(123\) 10.8537 0.00795646
\(124\) 1457.25 1.05536
\(125\) −1316.04 −0.941680
\(126\) 110.187 0.0779069
\(127\) 2473.32 1.72812 0.864060 0.503389i \(-0.167914\pi\)
0.864060 + 0.503389i \(0.167914\pi\)
\(128\) 1243.00 0.858337
\(129\) −754.841 −0.515194
\(130\) 812.091 0.547885
\(131\) 226.627 0.151149 0.0755746 0.997140i \(-0.475921\pi\)
0.0755746 + 0.997140i \(0.475921\pi\)
\(132\) −310.466 −0.204717
\(133\) 161.808 0.105493
\(134\) −88.6902 −0.0571766
\(135\) −1983.27 −1.26439
\(136\) −246.323 −0.155309
\(137\) 1598.10 0.996604 0.498302 0.867004i \(-0.333957\pi\)
0.498302 + 0.867004i \(0.333957\pi\)
\(138\) 37.2623 0.0229854
\(139\) 1348.25 0.822713 0.411356 0.911475i \(-0.365055\pi\)
0.411356 + 0.911475i \(0.365055\pi\)
\(140\) 941.824 0.568562
\(141\) 101.583 0.0606725
\(142\) −212.371 −0.125506
\(143\) −1156.66 −0.676397
\(144\) −1136.91 −0.657935
\(145\) 631.025 0.361405
\(146\) −601.843 −0.341157
\(147\) −110.513 −0.0620064
\(148\) −1415.12 −0.785960
\(149\) 2111.14 1.16074 0.580372 0.814351i \(-0.302907\pi\)
0.580372 + 0.814351i \(0.302907\pi\)
\(150\) 321.109 0.174790
\(151\) 2190.80 1.18069 0.590347 0.807149i \(-0.298991\pi\)
0.590347 + 0.807149i \(0.298991\pi\)
\(152\) 257.105 0.137197
\(153\) 485.293 0.256429
\(154\) 92.4885 0.0483957
\(155\) 3500.57 1.81402
\(156\) 1061.43 0.544760
\(157\) −3692.90 −1.87723 −0.938616 0.344962i \(-0.887892\pi\)
−0.938616 + 0.344962i \(0.887892\pi\)
\(158\) 488.931 0.246185
\(159\) −1428.79 −0.712642
\(160\) 2269.70 1.12147
\(161\) 161.000 0.0788110
\(162\) −246.283 −0.119443
\(163\) 2191.25 1.05296 0.526479 0.850188i \(-0.323512\pi\)
0.526479 + 0.850188i \(0.323512\pi\)
\(164\) 36.0159 0.0171486
\(165\) −745.794 −0.351879
\(166\) 557.109 0.260482
\(167\) −806.219 −0.373576 −0.186788 0.982400i \(-0.559808\pi\)
−0.186788 + 0.982400i \(0.559808\pi\)
\(168\) −175.600 −0.0806417
\(169\) 1757.42 0.799917
\(170\) −285.996 −0.129029
\(171\) −506.535 −0.226525
\(172\) −2504.80 −1.11040
\(173\) −3354.93 −1.47440 −0.737198 0.675677i \(-0.763852\pi\)
−0.737198 + 0.675677i \(0.763852\pi\)
\(174\) −56.8658 −0.0247758
\(175\) 1387.42 0.599310
\(176\) −954.295 −0.408709
\(177\) 728.334 0.309293
\(178\) −970.652 −0.408727
\(179\) 2757.41 1.15139 0.575693 0.817666i \(-0.304732\pi\)
0.575693 + 0.817666i \(0.304732\pi\)
\(180\) −2948.36 −1.22087
\(181\) 460.932 0.189286 0.0946432 0.995511i \(-0.469829\pi\)
0.0946432 + 0.995511i \(0.469829\pi\)
\(182\) −316.202 −0.128783
\(183\) 1946.16 0.786144
\(184\) 255.821 0.102497
\(185\) −3399.36 −1.35095
\(186\) −315.460 −0.124358
\(187\) 407.343 0.159293
\(188\) 337.084 0.130768
\(189\) 772.222 0.297200
\(190\) 298.514 0.113981
\(191\) 380.563 0.144171 0.0720853 0.997398i \(-0.477035\pi\)
0.0720853 + 0.997398i \(0.477035\pi\)
\(192\) 731.569 0.274981
\(193\) −3261.69 −1.21649 −0.608243 0.793751i \(-0.708126\pi\)
−0.608243 + 0.793751i \(0.708126\pi\)
\(194\) −397.923 −0.147264
\(195\) 2549.74 0.936363
\(196\) −366.716 −0.133643
\(197\) −5263.59 −1.90363 −0.951815 0.306674i \(-0.900784\pi\)
−0.951815 + 0.306674i \(0.900784\pi\)
\(198\) −289.533 −0.103920
\(199\) 2418.94 0.861679 0.430840 0.902429i \(-0.358217\pi\)
0.430840 + 0.902429i \(0.358217\pi\)
\(200\) 2204.55 0.779425
\(201\) −278.462 −0.0977175
\(202\) 758.387 0.264158
\(203\) −245.701 −0.0849499
\(204\) −373.806 −0.128292
\(205\) 86.5165 0.0294760
\(206\) −1351.37 −0.457059
\(207\) −504.007 −0.169231
\(208\) 3262.57 1.08759
\(209\) −425.173 −0.140717
\(210\) −203.882 −0.0669961
\(211\) 3176.99 1.03655 0.518277 0.855213i \(-0.326574\pi\)
0.518277 + 0.855213i \(0.326574\pi\)
\(212\) −4741.16 −1.53596
\(213\) −666.786 −0.214495
\(214\) 51.5287 0.0164600
\(215\) −6016.95 −1.90862
\(216\) 1227.02 0.386520
\(217\) −1363.01 −0.426393
\(218\) −724.721 −0.225157
\(219\) −1889.62 −0.583053
\(220\) −2474.78 −0.758406
\(221\) −1392.63 −0.423886
\(222\) 306.339 0.0926131
\(223\) 4508.02 1.35372 0.676860 0.736112i \(-0.263340\pi\)
0.676860 + 0.736112i \(0.263340\pi\)
\(224\) −883.750 −0.263607
\(225\) −4343.29 −1.28690
\(226\) −485.481 −0.142893
\(227\) −2752.22 −0.804719 −0.402359 0.915482i \(-0.631810\pi\)
−0.402359 + 0.915482i \(0.631810\pi\)
\(228\) 390.168 0.113331
\(229\) −2075.35 −0.598876 −0.299438 0.954116i \(-0.596799\pi\)
−0.299438 + 0.954116i \(0.596799\pi\)
\(230\) 297.024 0.0851529
\(231\) 290.388 0.0827106
\(232\) −390.407 −0.110480
\(233\) 963.306 0.270851 0.135425 0.990788i \(-0.456760\pi\)
0.135425 + 0.990788i \(0.456760\pi\)
\(234\) 989.863 0.276536
\(235\) 809.733 0.224771
\(236\) 2416.84 0.666621
\(237\) 1535.11 0.420743
\(238\) 111.357 0.0303287
\(239\) −144.855 −0.0392045 −0.0196023 0.999808i \(-0.506240\pi\)
−0.0196023 + 0.999808i \(0.506240\pi\)
\(240\) 2103.65 0.565791
\(241\) 1299.20 0.347256 0.173628 0.984811i \(-0.444451\pi\)
0.173628 + 0.984811i \(0.444451\pi\)
\(242\) 713.074 0.189414
\(243\) −3751.83 −0.990453
\(244\) 6457.97 1.69438
\(245\) −880.915 −0.229713
\(246\) −7.79657 −0.00202069
\(247\) 1453.59 0.374453
\(248\) −2165.76 −0.554539
\(249\) 1749.17 0.445177
\(250\) 945.353 0.239157
\(251\) −6642.44 −1.67039 −0.835194 0.549956i \(-0.814645\pi\)
−0.835194 + 0.549956i \(0.814645\pi\)
\(252\) 1148.00 0.286972
\(253\) −423.050 −0.105126
\(254\) −1776.66 −0.438889
\(255\) −897.947 −0.220516
\(256\) 1702.06 0.415541
\(257\) 1118.87 0.271569 0.135784 0.990738i \(-0.456645\pi\)
0.135784 + 0.990738i \(0.456645\pi\)
\(258\) 542.227 0.130843
\(259\) 1323.60 0.317547
\(260\) 8460.83 2.01815
\(261\) 769.161 0.182413
\(262\) −162.794 −0.0383872
\(263\) 2778.98 0.651556 0.325778 0.945446i \(-0.394374\pi\)
0.325778 + 0.945446i \(0.394374\pi\)
\(264\) 461.413 0.107568
\(265\) −11389.1 −2.64009
\(266\) −116.232 −0.0267918
\(267\) −3047.58 −0.698535
\(268\) −924.025 −0.210611
\(269\) −3584.27 −0.812405 −0.406203 0.913783i \(-0.633147\pi\)
−0.406203 + 0.913783i \(0.633147\pi\)
\(270\) 1424.65 0.321116
\(271\) 2585.42 0.579531 0.289765 0.957098i \(-0.406423\pi\)
0.289765 + 0.957098i \(0.406423\pi\)
\(272\) −1148.99 −0.256130
\(273\) −992.787 −0.220096
\(274\) −1147.97 −0.253106
\(275\) −3645.65 −0.799422
\(276\) 388.220 0.0846671
\(277\) 2670.85 0.579334 0.289667 0.957127i \(-0.406455\pi\)
0.289667 + 0.957127i \(0.406455\pi\)
\(278\) −968.492 −0.208943
\(279\) 4266.87 0.915595
\(280\) −1399.73 −0.298750
\(281\) −5420.32 −1.15071 −0.575355 0.817904i \(-0.695136\pi\)
−0.575355 + 0.817904i \(0.695136\pi\)
\(282\) −72.9703 −0.0154089
\(283\) −2045.10 −0.429572 −0.214786 0.976661i \(-0.568905\pi\)
−0.214786 + 0.976661i \(0.568905\pi\)
\(284\) −2212.60 −0.462302
\(285\) 937.251 0.194800
\(286\) 830.866 0.171784
\(287\) −33.6867 −0.00692845
\(288\) 2766.56 0.566045
\(289\) −4422.55 −0.900174
\(290\) −453.286 −0.0917857
\(291\) −1249.37 −0.251681
\(292\) −6270.34 −1.25666
\(293\) −1467.01 −0.292505 −0.146252 0.989247i \(-0.546721\pi\)
−0.146252 + 0.989247i \(0.546721\pi\)
\(294\) 79.3850 0.0157477
\(295\) 5805.66 1.14583
\(296\) 2103.14 0.412981
\(297\) −2029.12 −0.396436
\(298\) −1516.50 −0.294793
\(299\) 1446.34 0.279745
\(300\) 3345.50 0.643842
\(301\) 2342.81 0.448629
\(302\) −1573.72 −0.299860
\(303\) 2381.13 0.451459
\(304\) 1199.28 0.226261
\(305\) 15513.2 2.91239
\(306\) −348.602 −0.0651250
\(307\) −595.238 −0.110658 −0.0553290 0.998468i \(-0.517621\pi\)
−0.0553290 + 0.998468i \(0.517621\pi\)
\(308\) 963.598 0.178267
\(309\) −4242.91 −0.781135
\(310\) −2514.58 −0.460704
\(311\) 5825.65 1.06219 0.531097 0.847311i \(-0.321780\pi\)
0.531097 + 0.847311i \(0.321780\pi\)
\(312\) −1577.49 −0.286243
\(313\) 2293.91 0.414248 0.207124 0.978315i \(-0.433590\pi\)
0.207124 + 0.978315i \(0.433590\pi\)
\(314\) 2652.73 0.476759
\(315\) 2757.68 0.493263
\(316\) 5093.96 0.906829
\(317\) −3414.25 −0.604933 −0.302466 0.953160i \(-0.597810\pi\)
−0.302466 + 0.953160i \(0.597810\pi\)
\(318\) 1026.34 0.180989
\(319\) 645.614 0.113315
\(320\) 5831.45 1.01871
\(321\) 161.786 0.0281309
\(322\) −115.652 −0.0200156
\(323\) −511.914 −0.0881847
\(324\) −2565.92 −0.439972
\(325\) 12463.8 2.12729
\(326\) −1574.05 −0.267419
\(327\) −2275.42 −0.384805
\(328\) −53.5266 −0.00901071
\(329\) −315.284 −0.0528333
\(330\) 535.728 0.0893662
\(331\) −9595.81 −1.59345 −0.796727 0.604339i \(-0.793437\pi\)
−0.796727 + 0.604339i \(0.793437\pi\)
\(332\) 5804.28 0.959492
\(333\) −4143.50 −0.681870
\(334\) 579.134 0.0948766
\(335\) −2219.67 −0.362010
\(336\) −819.093 −0.132992
\(337\) 8518.85 1.37701 0.688503 0.725233i \(-0.258268\pi\)
0.688503 + 0.725233i \(0.258268\pi\)
\(338\) −1262.41 −0.203154
\(339\) −1524.28 −0.244210
\(340\) −2979.66 −0.475279
\(341\) 3581.50 0.568766
\(342\) 363.861 0.0575302
\(343\) 343.000 0.0539949
\(344\) 3722.61 0.583458
\(345\) 932.572 0.145530
\(346\) 2409.96 0.374451
\(347\) −6995.99 −1.08232 −0.541159 0.840920i \(-0.682014\pi\)
−0.541159 + 0.840920i \(0.682014\pi\)
\(348\) −592.460 −0.0912621
\(349\) −628.588 −0.0964112 −0.0482056 0.998837i \(-0.515350\pi\)
−0.0482056 + 0.998837i \(0.515350\pi\)
\(350\) −996.631 −0.152206
\(351\) 6937.22 1.05493
\(352\) 2322.18 0.351626
\(353\) 2673.70 0.403135 0.201568 0.979475i \(-0.435396\pi\)
0.201568 + 0.979475i \(0.435396\pi\)
\(354\) −523.186 −0.0785509
\(355\) −5315.06 −0.794631
\(356\) −10112.8 −1.50556
\(357\) 349.632 0.0518332
\(358\) −1980.73 −0.292416
\(359\) 8255.64 1.21369 0.606847 0.794819i \(-0.292434\pi\)
0.606847 + 0.794819i \(0.292434\pi\)
\(360\) 4381.82 0.641507
\(361\) −6324.68 −0.922099
\(362\) −331.103 −0.0480729
\(363\) 2238.85 0.323717
\(364\) −3294.38 −0.474374
\(365\) −15062.4 −2.16001
\(366\) −1397.99 −0.199656
\(367\) 9283.37 1.32040 0.660201 0.751089i \(-0.270471\pi\)
0.660201 + 0.751089i \(0.270471\pi\)
\(368\) 1193.29 0.169034
\(369\) 105.456 0.0148775
\(370\) 2441.87 0.343100
\(371\) 4434.54 0.620566
\(372\) −3286.64 −0.458076
\(373\) 5216.26 0.724095 0.362048 0.932160i \(-0.382078\pi\)
0.362048 + 0.932160i \(0.382078\pi\)
\(374\) −292.608 −0.0404556
\(375\) 2968.14 0.408732
\(376\) −500.971 −0.0687117
\(377\) −2207.24 −0.301535
\(378\) −554.712 −0.0754797
\(379\) −9288.84 −1.25893 −0.629466 0.777028i \(-0.716726\pi\)
−0.629466 + 0.777028i \(0.716726\pi\)
\(380\) 3110.09 0.419853
\(381\) −5578.23 −0.750082
\(382\) −273.371 −0.0366149
\(383\) 6974.41 0.930485 0.465243 0.885183i \(-0.345967\pi\)
0.465243 + 0.885183i \(0.345967\pi\)
\(384\) −2803.43 −0.372557
\(385\) 2314.73 0.306414
\(386\) 2342.98 0.308950
\(387\) −7334.10 −0.963342
\(388\) −4145.79 −0.542450
\(389\) 13114.8 1.70937 0.854685 0.519147i \(-0.173750\pi\)
0.854685 + 0.519147i \(0.173750\pi\)
\(390\) −1831.56 −0.237807
\(391\) −509.359 −0.0658808
\(392\) 545.010 0.0702224
\(393\) −511.128 −0.0656055
\(394\) 3781.01 0.483463
\(395\) 12236.6 1.55871
\(396\) −3016.52 −0.382793
\(397\) 5433.86 0.686946 0.343473 0.939163i \(-0.388397\pi\)
0.343473 + 0.939163i \(0.388397\pi\)
\(398\) −1737.60 −0.218840
\(399\) −364.935 −0.0457885
\(400\) 10283.2 1.28540
\(401\) 10108.2 1.25880 0.629401 0.777081i \(-0.283300\pi\)
0.629401 + 0.777081i \(0.283300\pi\)
\(402\) 200.029 0.0248172
\(403\) −12244.5 −1.51351
\(404\) 7901.31 0.973032
\(405\) −6163.78 −0.756248
\(406\) 176.495 0.0215746
\(407\) −3477.95 −0.423577
\(408\) 555.548 0.0674110
\(409\) −6820.17 −0.824537 −0.412269 0.911062i \(-0.635263\pi\)
−0.412269 + 0.911062i \(0.635263\pi\)
\(410\) −62.1476 −0.00748598
\(411\) −3604.29 −0.432571
\(412\) −14079.3 −1.68358
\(413\) −2260.54 −0.269331
\(414\) 362.044 0.0429795
\(415\) 13942.9 1.64923
\(416\) −7939.12 −0.935691
\(417\) −3040.80 −0.357094
\(418\) 305.415 0.0357377
\(419\) 3919.38 0.456979 0.228489 0.973546i \(-0.426621\pi\)
0.228489 + 0.973546i \(0.426621\pi\)
\(420\) −2124.16 −0.246781
\(421\) 2303.44 0.266658 0.133329 0.991072i \(-0.457433\pi\)
0.133329 + 0.991072i \(0.457433\pi\)
\(422\) −2282.13 −0.263253
\(423\) 986.989 0.113449
\(424\) 7046.27 0.807068
\(425\) −4389.42 −0.500983
\(426\) 478.974 0.0544751
\(427\) −6040.32 −0.684571
\(428\) 536.856 0.0606306
\(429\) 2608.69 0.293587
\(430\) 4322.17 0.484729
\(431\) 14921.4 1.66761 0.833804 0.552060i \(-0.186158\pi\)
0.833804 + 0.552060i \(0.186158\pi\)
\(432\) 5723.51 0.637436
\(433\) −9738.92 −1.08088 −0.540442 0.841381i \(-0.681743\pi\)
−0.540442 + 0.841381i \(0.681743\pi\)
\(434\) 979.095 0.108290
\(435\) −1423.19 −0.156866
\(436\) −7550.56 −0.829372
\(437\) 531.654 0.0581978
\(438\) 1357.37 0.148077
\(439\) 2233.85 0.242861 0.121430 0.992600i \(-0.461252\pi\)
0.121430 + 0.992600i \(0.461252\pi\)
\(440\) 3677.99 0.398503
\(441\) −1073.75 −0.115944
\(442\) 1000.37 0.107654
\(443\) 17900.5 1.91982 0.959908 0.280314i \(-0.0904386\pi\)
0.959908 + 0.280314i \(0.0904386\pi\)
\(444\) 3191.61 0.341142
\(445\) −24292.7 −2.58783
\(446\) −3238.26 −0.343803
\(447\) −4761.38 −0.503816
\(448\) −2270.58 −0.239453
\(449\) −9083.00 −0.954685 −0.477342 0.878717i \(-0.658400\pi\)
−0.477342 + 0.878717i \(0.658400\pi\)
\(450\) 3119.93 0.326833
\(451\) 88.5167 0.00924188
\(452\) −5058.02 −0.526348
\(453\) −4941.06 −0.512475
\(454\) 1977.01 0.204374
\(455\) −7913.66 −0.815380
\(456\) −579.865 −0.0595497
\(457\) −2317.15 −0.237181 −0.118590 0.992943i \(-0.537838\pi\)
−0.118590 + 0.992943i \(0.537838\pi\)
\(458\) 1490.79 0.152096
\(459\) −2443.09 −0.248440
\(460\) 3094.56 0.313663
\(461\) 13510.0 1.36491 0.682455 0.730928i \(-0.260912\pi\)
0.682455 + 0.730928i \(0.260912\pi\)
\(462\) −208.595 −0.0210059
\(463\) −6111.87 −0.613483 −0.306742 0.951793i \(-0.599239\pi\)
−0.306742 + 0.951793i \(0.599239\pi\)
\(464\) −1821.07 −0.182201
\(465\) −7895.07 −0.787366
\(466\) −691.974 −0.0687877
\(467\) −10001.2 −0.991007 −0.495503 0.868606i \(-0.665016\pi\)
−0.495503 + 0.868606i \(0.665016\pi\)
\(468\) 10313.0 1.01863
\(469\) 864.267 0.0850920
\(470\) −581.657 −0.0570848
\(471\) 8328.84 0.814804
\(472\) −3591.88 −0.350275
\(473\) −6156.06 −0.598427
\(474\) −1102.72 −0.106856
\(475\) 4581.55 0.442559
\(476\) 1160.19 0.111716
\(477\) −13882.2 −1.33254
\(478\) 104.054 0.00995673
\(479\) −14608.7 −1.39350 −0.696751 0.717313i \(-0.745372\pi\)
−0.696751 + 0.717313i \(0.745372\pi\)
\(480\) −5119.01 −0.486770
\(481\) 11890.5 1.12715
\(482\) −933.257 −0.0881923
\(483\) −363.114 −0.0342075
\(484\) 7429.21 0.697710
\(485\) −9958.90 −0.932393
\(486\) 2695.06 0.251544
\(487\) −13204.4 −1.22864 −0.614321 0.789056i \(-0.710570\pi\)
−0.614321 + 0.789056i \(0.710570\pi\)
\(488\) −9597.78 −0.890310
\(489\) −4942.07 −0.457031
\(490\) 632.790 0.0583399
\(491\) −15306.6 −1.40688 −0.703439 0.710755i \(-0.748353\pi\)
−0.703439 + 0.710755i \(0.748353\pi\)
\(492\) −81.2291 −0.00744327
\(493\) 777.328 0.0710124
\(494\) −1044.16 −0.0950994
\(495\) −7246.20 −0.657965
\(496\) −10102.3 −0.914529
\(497\) 2069.51 0.186781
\(498\) −1256.48 −0.113061
\(499\) 5238.43 0.469948 0.234974 0.972002i \(-0.424499\pi\)
0.234974 + 0.972002i \(0.424499\pi\)
\(500\) 9849.22 0.880941
\(501\) 1818.32 0.162149
\(502\) 4771.48 0.424227
\(503\) 5990.64 0.531033 0.265516 0.964106i \(-0.414458\pi\)
0.265516 + 0.964106i \(0.414458\pi\)
\(504\) −1706.14 −0.150789
\(505\) 18980.3 1.67250
\(506\) 303.891 0.0266988
\(507\) −3963.62 −0.347200
\(508\) −18510.3 −1.61666
\(509\) −359.921 −0.0313422 −0.0156711 0.999877i \(-0.504988\pi\)
−0.0156711 + 0.999877i \(0.504988\pi\)
\(510\) 645.024 0.0560042
\(511\) 5864.83 0.507720
\(512\) −11166.7 −0.963871
\(513\) 2550.03 0.219467
\(514\) −803.721 −0.0689701
\(515\) −33820.9 −2.89384
\(516\) 5649.23 0.481964
\(517\) 828.453 0.0704745
\(518\) −950.787 −0.0806470
\(519\) 7566.59 0.639955
\(520\) −12574.4 −1.06043
\(521\) 4966.57 0.417638 0.208819 0.977954i \(-0.433038\pi\)
0.208819 + 0.977954i \(0.433038\pi\)
\(522\) −552.513 −0.0463273
\(523\) 13435.0 1.12327 0.561637 0.827384i \(-0.310172\pi\)
0.561637 + 0.827384i \(0.310172\pi\)
\(524\) −1696.08 −0.141400
\(525\) −3129.14 −0.260128
\(526\) −1996.23 −0.165475
\(527\) 4312.18 0.356436
\(528\) 2152.28 0.177398
\(529\) 529.000 0.0434783
\(530\) 8181.14 0.670502
\(531\) 7076.56 0.578336
\(532\) −1210.97 −0.0986883
\(533\) −302.623 −0.0245930
\(534\) 2189.18 0.177406
\(535\) 1289.62 0.104215
\(536\) 1373.28 0.110665
\(537\) −6218.96 −0.499754
\(538\) 2574.70 0.206326
\(539\) −901.281 −0.0720240
\(540\) 14842.8 1.18284
\(541\) 6849.14 0.544302 0.272151 0.962254i \(-0.412265\pi\)
0.272151 + 0.962254i \(0.412265\pi\)
\(542\) −1857.19 −0.147183
\(543\) −1039.57 −0.0821588
\(544\) 2795.94 0.220358
\(545\) −18137.7 −1.42557
\(546\) 713.151 0.0558975
\(547\) −15055.4 −1.17682 −0.588411 0.808562i \(-0.700246\pi\)
−0.588411 + 0.808562i \(0.700246\pi\)
\(548\) −11960.2 −0.932323
\(549\) 18909.1 1.46998
\(550\) 2618.79 0.203028
\(551\) −811.353 −0.0627310
\(552\) −576.970 −0.0444882
\(553\) −4764.53 −0.366381
\(554\) −1918.56 −0.147133
\(555\) 7666.80 0.586374
\(556\) −10090.3 −0.769648
\(557\) 20161.3 1.53368 0.766842 0.641836i \(-0.221827\pi\)
0.766842 + 0.641836i \(0.221827\pi\)
\(558\) −3065.03 −0.232533
\(559\) 21046.5 1.59244
\(560\) −6529.12 −0.492688
\(561\) −918.707 −0.0691405
\(562\) 3893.59 0.292244
\(563\) 20616.9 1.54334 0.771668 0.636026i \(-0.219423\pi\)
0.771668 + 0.636026i \(0.219423\pi\)
\(564\) −760.246 −0.0567591
\(565\) −12150.2 −0.904715
\(566\) 1469.06 0.109098
\(567\) 2399.98 0.177759
\(568\) 3288.35 0.242916
\(569\) 23857.7 1.75776 0.878880 0.477044i \(-0.158292\pi\)
0.878880 + 0.477044i \(0.158292\pi\)
\(570\) −673.258 −0.0494731
\(571\) 24625.2 1.80479 0.902393 0.430914i \(-0.141809\pi\)
0.902393 + 0.430914i \(0.141809\pi\)
\(572\) 8656.44 0.632769
\(573\) −858.309 −0.0625766
\(574\) 24.1983 0.00175961
\(575\) 4558.67 0.330626
\(576\) 7107.99 0.514177
\(577\) 19748.2 1.42484 0.712418 0.701756i \(-0.247600\pi\)
0.712418 + 0.701756i \(0.247600\pi\)
\(578\) 3176.86 0.228616
\(579\) 7356.31 0.528010
\(580\) −4722.59 −0.338095
\(581\) −5428.91 −0.387658
\(582\) 897.462 0.0639192
\(583\) −11652.4 −0.827774
\(584\) 9318.93 0.660308
\(585\) 24773.5 1.75087
\(586\) 1053.80 0.0742871
\(587\) 18563.0 1.30524 0.652620 0.757686i \(-0.273670\pi\)
0.652620 + 0.757686i \(0.273670\pi\)
\(588\) 827.078 0.0580070
\(589\) −4500.93 −0.314869
\(590\) −4170.39 −0.291004
\(591\) 11871.3 0.826261
\(592\) 9810.20 0.681076
\(593\) 26236.5 1.81687 0.908434 0.418029i \(-0.137279\pi\)
0.908434 + 0.418029i \(0.137279\pi\)
\(594\) 1457.58 0.100683
\(595\) 2786.97 0.192024
\(596\) −15799.7 −1.08588
\(597\) −5455.59 −0.374008
\(598\) −1038.95 −0.0710465
\(599\) 2243.07 0.153004 0.0765020 0.997069i \(-0.475625\pi\)
0.0765020 + 0.997069i \(0.475625\pi\)
\(600\) −4972.06 −0.338306
\(601\) −19178.3 −1.30167 −0.650833 0.759221i \(-0.725580\pi\)
−0.650833 + 0.759221i \(0.725580\pi\)
\(602\) −1682.92 −0.113938
\(603\) −2705.57 −0.182718
\(604\) −16396.0 −1.10454
\(605\) 17846.2 1.19926
\(606\) −1710.44 −0.114657
\(607\) −14436.6 −0.965345 −0.482673 0.875801i \(-0.660334\pi\)
−0.482673 + 0.875801i \(0.660334\pi\)
\(608\) −2918.32 −0.194660
\(609\) 554.145 0.0368721
\(610\) −11143.6 −0.739658
\(611\) −2832.34 −0.187535
\(612\) −3631.93 −0.239889
\(613\) 14204.2 0.935892 0.467946 0.883757i \(-0.344994\pi\)
0.467946 + 0.883757i \(0.344994\pi\)
\(614\) 427.579 0.0281037
\(615\) −195.126 −0.0127939
\(616\) −1432.09 −0.0936699
\(617\) −20382.5 −1.32993 −0.664967 0.746873i \(-0.731554\pi\)
−0.664967 + 0.746873i \(0.731554\pi\)
\(618\) 3047.82 0.198384
\(619\) −734.331 −0.0476821 −0.0238411 0.999716i \(-0.507590\pi\)
−0.0238411 + 0.999716i \(0.507590\pi\)
\(620\) −26198.3 −1.69701
\(621\) 2537.30 0.163959
\(622\) −4184.76 −0.269764
\(623\) 9458.80 0.608281
\(624\) −7358.29 −0.472063
\(625\) −1115.88 −0.0714160
\(626\) −1647.79 −0.105206
\(627\) 958.920 0.0610775
\(628\) 27637.7 1.75615
\(629\) −4187.50 −0.265448
\(630\) −1980.93 −0.125273
\(631\) −11127.8 −0.702045 −0.351022 0.936367i \(-0.614166\pi\)
−0.351022 + 0.936367i \(0.614166\pi\)
\(632\) −7570.61 −0.476492
\(633\) −7165.27 −0.449911
\(634\) 2452.57 0.153634
\(635\) −44464.9 −2.77880
\(636\) 10693.0 0.666677
\(637\) 3081.32 0.191659
\(638\) −463.765 −0.0287785
\(639\) −6478.56 −0.401076
\(640\) −22346.5 −1.38019
\(641\) 15706.2 0.967797 0.483898 0.875124i \(-0.339220\pi\)
0.483898 + 0.875124i \(0.339220\pi\)
\(642\) −116.216 −0.00714436
\(643\) 31960.4 1.96018 0.980089 0.198560i \(-0.0636265\pi\)
0.980089 + 0.198560i \(0.0636265\pi\)
\(644\) −1204.92 −0.0737277
\(645\) 13570.4 0.828426
\(646\) 367.725 0.0223962
\(647\) 15337.9 0.931984 0.465992 0.884789i \(-0.345697\pi\)
0.465992 + 0.884789i \(0.345697\pi\)
\(648\) 3813.45 0.231183
\(649\) 5939.88 0.359262
\(650\) −8953.19 −0.540266
\(651\) 3074.09 0.185074
\(652\) −16399.3 −0.985042
\(653\) −7200.15 −0.431491 −0.215746 0.976450i \(-0.569218\pi\)
−0.215746 + 0.976450i \(0.569218\pi\)
\(654\) 1634.51 0.0977285
\(655\) −4074.28 −0.243046
\(656\) −249.678 −0.0148602
\(657\) −18359.7 −1.09023
\(658\) 226.479 0.0134180
\(659\) 9759.90 0.576922 0.288461 0.957492i \(-0.406856\pi\)
0.288461 + 0.957492i \(0.406856\pi\)
\(660\) 5581.52 0.329182
\(661\) −19117.6 −1.12494 −0.562471 0.826817i \(-0.690149\pi\)
−0.562471 + 0.826817i \(0.690149\pi\)
\(662\) 6892.98 0.404688
\(663\) 3140.90 0.183986
\(664\) −8626.28 −0.504163
\(665\) −2908.96 −0.169631
\(666\) 2976.41 0.173174
\(667\) −807.303 −0.0468649
\(668\) 6033.74 0.349480
\(669\) −10167.2 −0.587575
\(670\) 1594.46 0.0919393
\(671\) 15871.8 0.913151
\(672\) 1993.18 0.114417
\(673\) −20223.7 −1.15835 −0.579173 0.815205i \(-0.696624\pi\)
−0.579173 + 0.815205i \(0.696624\pi\)
\(674\) −6119.37 −0.349717
\(675\) 21865.3 1.24681
\(676\) −13152.5 −0.748323
\(677\) −18004.4 −1.02210 −0.511051 0.859550i \(-0.670744\pi\)
−0.511051 + 0.859550i \(0.670744\pi\)
\(678\) 1094.94 0.0620218
\(679\) 3877.68 0.219163
\(680\) 4428.35 0.249735
\(681\) 6207.26 0.349284
\(682\) −2572.71 −0.144449
\(683\) −2849.43 −0.159635 −0.0798173 0.996810i \(-0.525434\pi\)
−0.0798173 + 0.996810i \(0.525434\pi\)
\(684\) 3790.91 0.211914
\(685\) −28730.4 −1.60253
\(686\) −246.388 −0.0137130
\(687\) 4680.66 0.259939
\(688\) 17364.3 0.962220
\(689\) 39837.5 2.20274
\(690\) −669.897 −0.0369602
\(691\) 26560.5 1.46224 0.731120 0.682249i \(-0.238998\pi\)
0.731120 + 0.682249i \(0.238998\pi\)
\(692\) 25108.3 1.37930
\(693\) 2821.44 0.154657
\(694\) 5025.45 0.274875
\(695\) −24238.6 −1.32291
\(696\) 880.510 0.0479535
\(697\) 106.575 0.00579172
\(698\) 451.535 0.0244855
\(699\) −2172.61 −0.117562
\(700\) −10383.5 −0.560655
\(701\) 25737.5 1.38672 0.693362 0.720590i \(-0.256129\pi\)
0.693362 + 0.720590i \(0.256129\pi\)
\(702\) −4983.23 −0.267920
\(703\) 4370.80 0.234492
\(704\) 5966.27 0.319406
\(705\) −1826.24 −0.0975607
\(706\) −1920.61 −0.102384
\(707\) −7390.33 −0.393128
\(708\) −5450.85 −0.289344
\(709\) 7794.32 0.412866 0.206433 0.978461i \(-0.433814\pi\)
0.206433 + 0.978461i \(0.433814\pi\)
\(710\) 3817.98 0.201811
\(711\) 14915.2 0.786731
\(712\) 15029.6 0.791092
\(713\) −4478.46 −0.235231
\(714\) −251.152 −0.0131640
\(715\) 20794.3 1.08764
\(716\) −20636.4 −1.07712
\(717\) 326.701 0.0170165
\(718\) −5930.30 −0.308241
\(719\) 22185.1 1.15072 0.575358 0.817902i \(-0.304863\pi\)
0.575358 + 0.817902i \(0.304863\pi\)
\(720\) 20439.2 1.05795
\(721\) 13168.8 0.680209
\(722\) 4543.22 0.234185
\(723\) −2930.17 −0.150725
\(724\) −3449.62 −0.177077
\(725\) −6956.96 −0.356379
\(726\) −1608.24 −0.0822141
\(727\) −19516.5 −0.995636 −0.497818 0.867282i \(-0.665865\pi\)
−0.497818 + 0.867282i \(0.665865\pi\)
\(728\) 4896.07 0.249259
\(729\) −795.310 −0.0404059
\(730\) 10819.8 0.548576
\(731\) −7411.98 −0.375023
\(732\) −14565.1 −0.735438
\(733\) −24757.8 −1.24755 −0.623774 0.781605i \(-0.714401\pi\)
−0.623774 + 0.781605i \(0.714401\pi\)
\(734\) −6668.54 −0.335341
\(735\) 1986.78 0.0997056
\(736\) −2903.75 −0.145426
\(737\) −2270.98 −0.113504
\(738\) −75.7521 −0.00377842
\(739\) −36623.1 −1.82301 −0.911503 0.411294i \(-0.865077\pi\)
−0.911503 + 0.411294i \(0.865077\pi\)
\(740\) 25440.8 1.26381
\(741\) −3278.38 −0.162529
\(742\) −3185.47 −0.157604
\(743\) −2366.97 −0.116872 −0.0584358 0.998291i \(-0.518611\pi\)
−0.0584358 + 0.998291i \(0.518611\pi\)
\(744\) 4884.57 0.240695
\(745\) −37953.7 −1.86646
\(746\) −3747.01 −0.183898
\(747\) 16995.1 0.832419
\(748\) −3048.55 −0.149019
\(749\) −502.137 −0.0244962
\(750\) −2132.11 −0.103805
\(751\) 18932.4 0.919911 0.459955 0.887942i \(-0.347865\pi\)
0.459955 + 0.887942i \(0.347865\pi\)
\(752\) −2336.80 −0.113317
\(753\) 14981.1 0.725024
\(754\) 1585.53 0.0765806
\(755\) −39385.9 −1.89854
\(756\) −5779.31 −0.278031
\(757\) −4605.61 −0.221128 −0.110564 0.993869i \(-0.535266\pi\)
−0.110564 + 0.993869i \(0.535266\pi\)
\(758\) 6672.47 0.319730
\(759\) 954.133 0.0456296
\(760\) −4622.19 −0.220611
\(761\) −36175.8 −1.72322 −0.861611 0.507569i \(-0.830544\pi\)
−0.861611 + 0.507569i \(0.830544\pi\)
\(762\) 4007.02 0.190498
\(763\) 7062.26 0.335086
\(764\) −2848.13 −0.134872
\(765\) −8724.53 −0.412335
\(766\) −5009.95 −0.236314
\(767\) −20307.4 −0.956009
\(768\) −3838.76 −0.180364
\(769\) −8521.72 −0.399611 −0.199806 0.979836i \(-0.564031\pi\)
−0.199806 + 0.979836i \(0.564031\pi\)
\(770\) −1662.75 −0.0778197
\(771\) −2523.46 −0.117873
\(772\) 24410.5 1.13802
\(773\) 4940.24 0.229868 0.114934 0.993373i \(-0.463334\pi\)
0.114934 + 0.993373i \(0.463334\pi\)
\(774\) 5268.32 0.244659
\(775\) −38593.3 −1.78879
\(776\) 6161.44 0.285029
\(777\) −2985.21 −0.137830
\(778\) −9420.76 −0.434127
\(779\) −111.240 −0.00511630
\(780\) −19082.3 −0.875967
\(781\) −5437.94 −0.249148
\(782\) 365.889 0.0167317
\(783\) −3872.15 −0.176730
\(784\) 2542.23 0.115809
\(785\) 66390.4 3.01857
\(786\) 367.160 0.0166618
\(787\) 25348.8 1.14814 0.574071 0.818806i \(-0.305363\pi\)
0.574071 + 0.818806i \(0.305363\pi\)
\(788\) 39392.7 1.78084
\(789\) −6267.61 −0.282805
\(790\) −8789.93 −0.395863
\(791\) 4730.91 0.212657
\(792\) 4483.13 0.201138
\(793\) −54263.0 −2.42993
\(794\) −3903.32 −0.174463
\(795\) 25686.5 1.14592
\(796\) −18103.3 −0.806101
\(797\) −4642.24 −0.206319 −0.103160 0.994665i \(-0.532895\pi\)
−0.103160 + 0.994665i \(0.532895\pi\)
\(798\) 262.145 0.0116289
\(799\) 997.470 0.0441651
\(800\) −25023.2 −1.10588
\(801\) −29610.6 −1.30616
\(802\) −7261.05 −0.319696
\(803\) −15410.7 −0.677249
\(804\) 2084.01 0.0914147
\(805\) −2894.43 −0.126727
\(806\) 8795.65 0.384384
\(807\) 8083.84 0.352621
\(808\) −11742.9 −0.511278
\(809\) −27300.8 −1.18646 −0.593228 0.805034i \(-0.702147\pi\)
−0.593228 + 0.805034i \(0.702147\pi\)
\(810\) 4427.64 0.192064
\(811\) −20325.9 −0.880074 −0.440037 0.897980i \(-0.645035\pi\)
−0.440037 + 0.897980i \(0.645035\pi\)
\(812\) 1838.82 0.0794706
\(813\) −5831.06 −0.251543
\(814\) 2498.33 0.107575
\(815\) −39394.0 −1.69314
\(816\) 2591.38 0.111172
\(817\) 7736.42 0.331289
\(818\) 4899.15 0.209407
\(819\) −9646.01 −0.411549
\(820\) −647.489 −0.0275748
\(821\) 15538.6 0.660535 0.330268 0.943887i \(-0.392861\pi\)
0.330268 + 0.943887i \(0.392861\pi\)
\(822\) 2589.08 0.109860
\(823\) 2994.85 0.126846 0.0634229 0.997987i \(-0.479798\pi\)
0.0634229 + 0.997987i \(0.479798\pi\)
\(824\) 20924.5 0.884637
\(825\) 8222.27 0.346985
\(826\) 1623.82 0.0684017
\(827\) −26659.3 −1.12096 −0.560481 0.828167i \(-0.689384\pi\)
−0.560481 + 0.828167i \(0.689384\pi\)
\(828\) 3771.98 0.158316
\(829\) −2771.55 −0.116116 −0.0580578 0.998313i \(-0.518491\pi\)
−0.0580578 + 0.998313i \(0.518491\pi\)
\(830\) −10015.6 −0.418852
\(831\) −6023.73 −0.251457
\(832\) −20397.6 −0.849953
\(833\) −1085.16 −0.0451361
\(834\) 2184.30 0.0906909
\(835\) 14494.1 0.600705
\(836\) 3181.99 0.131641
\(837\) −21480.5 −0.887068
\(838\) −2815.42 −0.116058
\(839\) 47320.3 1.94717 0.973586 0.228321i \(-0.0733235\pi\)
0.973586 + 0.228321i \(0.0733235\pi\)
\(840\) 3156.90 0.129671
\(841\) −23157.0 −0.949485
\(842\) −1654.64 −0.0677228
\(843\) 12224.8 0.499460
\(844\) −23776.6 −0.969696
\(845\) −31594.6 −1.28626
\(846\) −708.986 −0.0288126
\(847\) −6948.76 −0.281891
\(848\) 32867.7 1.33099
\(849\) 4612.45 0.186453
\(850\) 3153.06 0.127234
\(851\) 4348.98 0.175183
\(852\) 4990.23 0.200660
\(853\) −6307.17 −0.253169 −0.126585 0.991956i \(-0.540402\pi\)
−0.126585 + 0.991956i \(0.540402\pi\)
\(854\) 4338.96 0.173860
\(855\) 9106.42 0.364249
\(856\) −797.871 −0.0318582
\(857\) −32676.8 −1.30247 −0.651237 0.758875i \(-0.725749\pi\)
−0.651237 + 0.758875i \(0.725749\pi\)
\(858\) −1873.91 −0.0745619
\(859\) −37123.6 −1.47455 −0.737276 0.675591i \(-0.763888\pi\)
−0.737276 + 0.675591i \(0.763888\pi\)
\(860\) 45030.9 1.78551
\(861\) 75.9759 0.00300726
\(862\) −10718.5 −0.423521
\(863\) 29429.9 1.16084 0.580421 0.814316i \(-0.302888\pi\)
0.580421 + 0.814316i \(0.302888\pi\)
\(864\) −13927.6 −0.548409
\(865\) 60314.4 2.37081
\(866\) 6995.78 0.274511
\(867\) 9974.47 0.390716
\(868\) 10200.8 0.398890
\(869\) 12519.5 0.488716
\(870\) 1022.32 0.0398391
\(871\) 7764.10 0.302040
\(872\) 11221.6 0.435792
\(873\) −12139.0 −0.470609
\(874\) −381.904 −0.0147804
\(875\) −9212.26 −0.355922
\(876\) 14141.9 0.545446
\(877\) 34900.5 1.34379 0.671897 0.740645i \(-0.265480\pi\)
0.671897 + 0.740645i \(0.265480\pi\)
\(878\) −1604.65 −0.0616790
\(879\) 3308.65 0.126960
\(880\) 17156.2 0.657199
\(881\) −5058.46 −0.193444 −0.0967219 0.995311i \(-0.530836\pi\)
−0.0967219 + 0.995311i \(0.530836\pi\)
\(882\) 771.312 0.0294461
\(883\) 41033.3 1.56385 0.781925 0.623372i \(-0.214238\pi\)
0.781925 + 0.623372i \(0.214238\pi\)
\(884\) 10422.5 0.396545
\(885\) −13093.9 −0.497340
\(886\) −12858.5 −0.487574
\(887\) −18390.6 −0.696162 −0.348081 0.937465i \(-0.613167\pi\)
−0.348081 + 0.937465i \(0.613167\pi\)
\(888\) −4743.35 −0.179253
\(889\) 17313.2 0.653168
\(890\) 17450.2 0.657229
\(891\) −6306.28 −0.237114
\(892\) −33738.0 −1.26640
\(893\) −1041.13 −0.0390147
\(894\) 3420.25 0.127953
\(895\) −49572.2 −1.85142
\(896\) 8701.03 0.324421
\(897\) −3262.01 −0.121422
\(898\) 6524.62 0.242460
\(899\) 6834.55 0.253554
\(900\) 32505.2 1.20390
\(901\) −14029.6 −0.518751
\(902\) −63.5844 −0.00234715
\(903\) −5283.89 −0.194725
\(904\) 7517.19 0.276569
\(905\) −8286.58 −0.304370
\(906\) 3549.32 0.130153
\(907\) 40736.0 1.49131 0.745655 0.666332i \(-0.232137\pi\)
0.745655 + 0.666332i \(0.232137\pi\)
\(908\) 20597.6 0.752814
\(909\) 23135.2 0.844167
\(910\) 5684.64 0.207081
\(911\) 191.428 0.00696191 0.00348096 0.999994i \(-0.498892\pi\)
0.00348096 + 0.999994i \(0.498892\pi\)
\(912\) −2704.81 −0.0982074
\(913\) 14265.2 0.517098
\(914\) 1664.48 0.0602365
\(915\) −34987.8 −1.26411
\(916\) 15531.9 0.560249
\(917\) 1586.39 0.0571290
\(918\) 1754.95 0.0630959
\(919\) 9483.04 0.340388 0.170194 0.985411i \(-0.445561\pi\)
0.170194 + 0.985411i \(0.445561\pi\)
\(920\) −4599.12 −0.164813
\(921\) 1342.48 0.0480306
\(922\) −9704.67 −0.346645
\(923\) 18591.4 0.662993
\(924\) −2173.27 −0.0773757
\(925\) 37477.5 1.33216
\(926\) 4390.36 0.155806
\(927\) −41224.5 −1.46062
\(928\) 4431.39 0.156754
\(929\) 41500.4 1.46565 0.732823 0.680419i \(-0.238202\pi\)
0.732823 + 0.680419i \(0.238202\pi\)
\(930\) 5671.29 0.199966
\(931\) 1132.65 0.0398724
\(932\) −7209.38 −0.253381
\(933\) −13139.0 −0.461040
\(934\) 7184.18 0.251685
\(935\) −7323.15 −0.256142
\(936\) −15327.0 −0.535235
\(937\) −37379.9 −1.30325 −0.651627 0.758539i \(-0.725913\pi\)
−0.651627 + 0.758539i \(0.725913\pi\)
\(938\) −620.831 −0.0216107
\(939\) −5173.61 −0.179802
\(940\) −6060.04 −0.210273
\(941\) −25350.8 −0.878227 −0.439114 0.898432i \(-0.644707\pi\)
−0.439114 + 0.898432i \(0.644707\pi\)
\(942\) −5982.88 −0.206935
\(943\) −110.685 −0.00382227
\(944\) −16754.5 −0.577662
\(945\) −13882.9 −0.477895
\(946\) 4422.10 0.151982
\(947\) −7949.47 −0.272780 −0.136390 0.990655i \(-0.543550\pi\)
−0.136390 + 0.990655i \(0.543550\pi\)
\(948\) −11488.7 −0.393605
\(949\) 52686.4 1.80219
\(950\) −3291.07 −0.112396
\(951\) 7700.39 0.262568
\(952\) −1724.26 −0.0587012
\(953\) −27493.4 −0.934520 −0.467260 0.884120i \(-0.654759\pi\)
−0.467260 + 0.884120i \(0.654759\pi\)
\(954\) 9972.05 0.338425
\(955\) −6841.71 −0.231825
\(956\) 1084.09 0.0366758
\(957\) −1456.09 −0.0491838
\(958\) 10493.9 0.353906
\(959\) 11186.7 0.376681
\(960\) −13152.0 −0.442167
\(961\) 8123.26 0.272675
\(962\) −8541.35 −0.286262
\(963\) 1571.93 0.0526009
\(964\) −9723.21 −0.324858
\(965\) 58638.3 1.95610
\(966\) 260.836 0.00868765
\(967\) 19740.1 0.656461 0.328231 0.944598i \(-0.393548\pi\)
0.328231 + 0.944598i \(0.393548\pi\)
\(968\) −11041.2 −0.366610
\(969\) 1154.55 0.0382761
\(970\) 7153.80 0.236799
\(971\) −21204.3 −0.700803 −0.350402 0.936600i \(-0.613955\pi\)
−0.350402 + 0.936600i \(0.613955\pi\)
\(972\) 28078.7 0.926568
\(973\) 9437.75 0.310956
\(974\) 9485.15 0.312037
\(975\) −28110.5 −0.923341
\(976\) −44769.3 −1.46827
\(977\) −29131.8 −0.953950 −0.476975 0.878917i \(-0.658267\pi\)
−0.476975 + 0.878917i \(0.658267\pi\)
\(978\) 3550.05 0.116072
\(979\) −24854.4 −0.811388
\(980\) 6592.77 0.214896
\(981\) −22108.2 −0.719532
\(982\) 10995.2 0.357303
\(983\) 32893.3 1.06728 0.533638 0.845713i \(-0.320824\pi\)
0.533638 + 0.845713i \(0.320824\pi\)
\(984\) 120.722 0.00391105
\(985\) 94628.0 3.06101
\(986\) −558.380 −0.0180349
\(987\) 711.080 0.0229321
\(988\) −10878.7 −0.350301
\(989\) 7697.80 0.247498
\(990\) 5205.18 0.167103
\(991\) 8620.95 0.276340 0.138170 0.990408i \(-0.455878\pi\)
0.138170 + 0.990408i \(0.455878\pi\)
\(992\) 24582.9 0.786801
\(993\) 21642.0 0.691631
\(994\) −1486.60 −0.0474366
\(995\) −43487.4 −1.38557
\(996\) −13090.8 −0.416463
\(997\) 1292.12 0.0410451 0.0205226 0.999789i \(-0.493467\pi\)
0.0205226 + 0.999789i \(0.493467\pi\)
\(998\) −3762.93 −0.119352
\(999\) 20859.5 0.660625
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 161.4.a.d.1.5 12
3.2 odd 2 1449.4.a.o.1.8 12
7.6 odd 2 1127.4.a.h.1.5 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
161.4.a.d.1.5 12 1.1 even 1 trivial
1127.4.a.h.1.5 12 7.6 odd 2
1449.4.a.o.1.8 12 3.2 odd 2