Properties

Label 161.4.a.d.1.4
Level $161$
Weight $4$
Character 161.1
Self dual yes
Analytic conductor $9.499$
Analytic rank $0$
Dimension $12$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [161,4,Mod(1,161)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(161, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("161.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 161 = 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 161.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(9.49930751092\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 4 x^{11} - 76 x^{10} + 311 x^{9} + 1979 x^{8} - 8466 x^{7} - 19942 x^{6} + 95647 x^{5} + \cdots - 70656 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-3.06154\) of defining polynomial
Character \(\chi\) \(=\) 161.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.06154 q^{2} +5.71887 q^{3} +1.37302 q^{4} +21.1978 q^{5} -17.5086 q^{6} +7.00000 q^{7} +20.2888 q^{8} +5.70552 q^{9} -64.8978 q^{10} +56.8723 q^{11} +7.85212 q^{12} -62.2988 q^{13} -21.4308 q^{14} +121.227 q^{15} -73.0990 q^{16} -8.75386 q^{17} -17.4677 q^{18} -50.6126 q^{19} +29.1049 q^{20} +40.0321 q^{21} -174.117 q^{22} +23.0000 q^{23} +116.029 q^{24} +324.345 q^{25} +190.730 q^{26} -121.780 q^{27} +9.61113 q^{28} +86.9844 q^{29} -371.142 q^{30} -86.3635 q^{31} +61.4852 q^{32} +325.246 q^{33} +26.8003 q^{34} +148.384 q^{35} +7.83379 q^{36} +307.773 q^{37} +154.952 q^{38} -356.279 q^{39} +430.076 q^{40} +361.474 q^{41} -122.560 q^{42} -133.360 q^{43} +78.0868 q^{44} +120.944 q^{45} -70.4154 q^{46} +190.683 q^{47} -418.044 q^{48} +49.0000 q^{49} -992.995 q^{50} -50.0622 q^{51} -85.5375 q^{52} -271.504 q^{53} +372.835 q^{54} +1205.57 q^{55} +142.021 q^{56} -289.447 q^{57} -266.306 q^{58} -789.770 q^{59} +166.447 q^{60} -777.096 q^{61} +264.405 q^{62} +39.9387 q^{63} +396.552 q^{64} -1320.60 q^{65} -995.752 q^{66} -108.415 q^{67} -12.0192 q^{68} +131.534 q^{69} -454.284 q^{70} +536.735 q^{71} +115.758 q^{72} -144.007 q^{73} -942.258 q^{74} +1854.89 q^{75} -69.4921 q^{76} +398.106 q^{77} +1090.76 q^{78} +179.931 q^{79} -1549.53 q^{80} -850.496 q^{81} -1106.67 q^{82} -1064.19 q^{83} +54.9649 q^{84} -185.562 q^{85} +408.287 q^{86} +497.453 q^{87} +1153.87 q^{88} -155.080 q^{89} -370.276 q^{90} -436.092 q^{91} +31.5794 q^{92} -493.902 q^{93} -583.782 q^{94} -1072.87 q^{95} +351.626 q^{96} +183.178 q^{97} -150.015 q^{98} +324.487 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 4 q^{2} + q^{3} + 72 q^{4} + 16 q^{5} - 15 q^{6} + 84 q^{7} - 21 q^{8} + 203 q^{9} + 106 q^{10} + 50 q^{11} - 139 q^{12} + 21 q^{13} + 28 q^{14} + 192 q^{15} + 516 q^{16} + 26 q^{17} + 251 q^{18}+ \cdots + 2400 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −3.06154 −1.08242 −0.541209 0.840888i \(-0.682033\pi\)
−0.541209 + 0.840888i \(0.682033\pi\)
\(3\) 5.71887 1.10060 0.550299 0.834968i \(-0.314514\pi\)
0.550299 + 0.834968i \(0.314514\pi\)
\(4\) 1.37302 0.171627
\(5\) 21.1978 1.89599 0.947993 0.318292i \(-0.103109\pi\)
0.947993 + 0.318292i \(0.103109\pi\)
\(6\) −17.5086 −1.19131
\(7\) 7.00000 0.377964
\(8\) 20.2888 0.896645
\(9\) 5.70552 0.211316
\(10\) −64.8978 −2.05225
\(11\) 56.8723 1.55888 0.779439 0.626478i \(-0.215504\pi\)
0.779439 + 0.626478i \(0.215504\pi\)
\(12\) 7.85212 0.188893
\(13\) −62.2988 −1.32912 −0.664561 0.747234i \(-0.731381\pi\)
−0.664561 + 0.747234i \(0.731381\pi\)
\(14\) −21.4308 −0.409115
\(15\) 121.227 2.08672
\(16\) −73.0990 −1.14217
\(17\) −8.75386 −0.124890 −0.0624448 0.998048i \(-0.519890\pi\)
−0.0624448 + 0.998048i \(0.519890\pi\)
\(18\) −17.4677 −0.228732
\(19\) −50.6126 −0.611123 −0.305561 0.952172i \(-0.598844\pi\)
−0.305561 + 0.952172i \(0.598844\pi\)
\(20\) 29.1049 0.325403
\(21\) 40.0321 0.415987
\(22\) −174.117 −1.68736
\(23\) 23.0000 0.208514
\(24\) 116.029 0.986846
\(25\) 324.345 2.59476
\(26\) 190.730 1.43866
\(27\) −121.780 −0.868024
\(28\) 9.61113 0.0648690
\(29\) 86.9844 0.556986 0.278493 0.960438i \(-0.410165\pi\)
0.278493 + 0.960438i \(0.410165\pi\)
\(30\) −371.142 −2.25870
\(31\) −86.3635 −0.500366 −0.250183 0.968199i \(-0.580491\pi\)
−0.250183 + 0.968199i \(0.580491\pi\)
\(32\) 61.4852 0.339661
\(33\) 325.246 1.71570
\(34\) 26.8003 0.135183
\(35\) 148.384 0.716615
\(36\) 7.83379 0.0362676
\(37\) 307.773 1.36750 0.683751 0.729716i \(-0.260348\pi\)
0.683751 + 0.729716i \(0.260348\pi\)
\(38\) 154.952 0.661490
\(39\) −356.279 −1.46283
\(40\) 430.076 1.70003
\(41\) 361.474 1.37690 0.688449 0.725285i \(-0.258292\pi\)
0.688449 + 0.725285i \(0.258292\pi\)
\(42\) −122.560 −0.450271
\(43\) −133.360 −0.472959 −0.236479 0.971637i \(-0.575994\pi\)
−0.236479 + 0.971637i \(0.575994\pi\)
\(44\) 78.0868 0.267546
\(45\) 120.944 0.400652
\(46\) −70.4154 −0.225700
\(47\) 190.683 0.591785 0.295893 0.955221i \(-0.404383\pi\)
0.295893 + 0.955221i \(0.404383\pi\)
\(48\) −418.044 −1.25707
\(49\) 49.0000 0.142857
\(50\) −992.995 −2.80861
\(51\) −50.0622 −0.137453
\(52\) −85.5375 −0.228114
\(53\) −271.504 −0.703660 −0.351830 0.936064i \(-0.614440\pi\)
−0.351830 + 0.936064i \(0.614440\pi\)
\(54\) 372.835 0.939565
\(55\) 1205.57 2.95561
\(56\) 142.021 0.338900
\(57\) −289.447 −0.672600
\(58\) −266.306 −0.602892
\(59\) −789.770 −1.74270 −0.871350 0.490662i \(-0.836755\pi\)
−0.871350 + 0.490662i \(0.836755\pi\)
\(60\) 166.447 0.358138
\(61\) −777.096 −1.63110 −0.815548 0.578689i \(-0.803564\pi\)
−0.815548 + 0.578689i \(0.803564\pi\)
\(62\) 264.405 0.541605
\(63\) 39.9387 0.0798698
\(64\) 396.552 0.774516
\(65\) −1320.60 −2.52000
\(66\) −995.752 −1.85710
\(67\) −108.415 −0.197687 −0.0988434 0.995103i \(-0.531514\pi\)
−0.0988434 + 0.995103i \(0.531514\pi\)
\(68\) −12.0192 −0.0214345
\(69\) 131.534 0.229491
\(70\) −454.284 −0.775677
\(71\) 536.735 0.897165 0.448583 0.893741i \(-0.351929\pi\)
0.448583 + 0.893741i \(0.351929\pi\)
\(72\) 115.758 0.189475
\(73\) −144.007 −0.230887 −0.115444 0.993314i \(-0.536829\pi\)
−0.115444 + 0.993314i \(0.536829\pi\)
\(74\) −942.258 −1.48021
\(75\) 1854.89 2.85579
\(76\) −69.4921 −0.104885
\(77\) 398.106 0.589200
\(78\) 1090.76 1.58339
\(79\) 179.931 0.256251 0.128126 0.991758i \(-0.459104\pi\)
0.128126 + 0.991758i \(0.459104\pi\)
\(80\) −1549.53 −2.16554
\(81\) −850.496 −1.16666
\(82\) −1106.67 −1.49038
\(83\) −1064.19 −1.40735 −0.703677 0.710520i \(-0.748460\pi\)
−0.703677 + 0.710520i \(0.748460\pi\)
\(84\) 54.9649 0.0713947
\(85\) −185.562 −0.236789
\(86\) 408.287 0.511939
\(87\) 497.453 0.613018
\(88\) 1153.87 1.39776
\(89\) −155.080 −0.184701 −0.0923506 0.995727i \(-0.529438\pi\)
−0.0923506 + 0.995727i \(0.529438\pi\)
\(90\) −370.276 −0.433672
\(91\) −436.092 −0.502361
\(92\) 31.5794 0.0357868
\(93\) −493.902 −0.550702
\(94\) −583.782 −0.640559
\(95\) −1072.87 −1.15868
\(96\) 351.626 0.373830
\(97\) 183.178 0.191741 0.0958707 0.995394i \(-0.469436\pi\)
0.0958707 + 0.995394i \(0.469436\pi\)
\(98\) −150.015 −0.154631
\(99\) 324.487 0.329415
\(100\) 445.332 0.445332
\(101\) −232.418 −0.228975 −0.114487 0.993425i \(-0.536523\pi\)
−0.114487 + 0.993425i \(0.536523\pi\)
\(102\) 153.267 0.148782
\(103\) 901.072 0.861993 0.430996 0.902354i \(-0.358162\pi\)
0.430996 + 0.902354i \(0.358162\pi\)
\(104\) −1263.97 −1.19175
\(105\) 848.591 0.788705
\(106\) 831.221 0.761654
\(107\) 1131.80 1.02258 0.511288 0.859409i \(-0.329168\pi\)
0.511288 + 0.859409i \(0.329168\pi\)
\(108\) −167.207 −0.148977
\(109\) −2210.57 −1.94252 −0.971258 0.238028i \(-0.923499\pi\)
−0.971258 + 0.238028i \(0.923499\pi\)
\(110\) −3690.89 −3.19920
\(111\) 1760.11 1.50507
\(112\) −511.693 −0.431700
\(113\) 1091.19 0.908416 0.454208 0.890896i \(-0.349922\pi\)
0.454208 + 0.890896i \(0.349922\pi\)
\(114\) 886.154 0.728034
\(115\) 487.549 0.395340
\(116\) 119.431 0.0955941
\(117\) −355.447 −0.280864
\(118\) 2417.91 1.88633
\(119\) −61.2770 −0.0472038
\(120\) 2459.55 1.87104
\(121\) 1903.46 1.43010
\(122\) 2379.11 1.76553
\(123\) 2067.23 1.51541
\(124\) −118.579 −0.0858765
\(125\) 4225.67 3.02365
\(126\) −122.274 −0.0864525
\(127\) 819.946 0.572901 0.286451 0.958095i \(-0.407525\pi\)
0.286451 + 0.958095i \(0.407525\pi\)
\(128\) −1705.94 −1.17801
\(129\) −762.670 −0.520537
\(130\) 4043.05 2.72769
\(131\) 2086.94 1.39188 0.695940 0.718099i \(-0.254988\pi\)
0.695940 + 0.718099i \(0.254988\pi\)
\(132\) 446.569 0.294461
\(133\) −354.288 −0.230983
\(134\) 331.917 0.213980
\(135\) −2581.47 −1.64576
\(136\) −177.605 −0.111982
\(137\) −1047.08 −0.652981 −0.326491 0.945200i \(-0.605866\pi\)
−0.326491 + 0.945200i \(0.605866\pi\)
\(138\) −402.697 −0.248405
\(139\) −1892.78 −1.15499 −0.577496 0.816394i \(-0.695970\pi\)
−0.577496 + 0.816394i \(0.695970\pi\)
\(140\) 203.735 0.122991
\(141\) 1090.49 0.651317
\(142\) −1643.23 −0.971107
\(143\) −3543.08 −2.07194
\(144\) −417.068 −0.241359
\(145\) 1843.88 1.05604
\(146\) 440.884 0.249916
\(147\) 280.225 0.157228
\(148\) 422.578 0.234701
\(149\) −2471.71 −1.35899 −0.679497 0.733678i \(-0.737802\pi\)
−0.679497 + 0.733678i \(0.737802\pi\)
\(150\) −5678.82 −3.09116
\(151\) 619.505 0.333871 0.166936 0.985968i \(-0.446613\pi\)
0.166936 + 0.985968i \(0.446613\pi\)
\(152\) −1026.87 −0.547960
\(153\) −49.9454 −0.0263911
\(154\) −1218.82 −0.637761
\(155\) −1830.71 −0.948687
\(156\) −489.178 −0.251061
\(157\) −3298.03 −1.67651 −0.838254 0.545280i \(-0.816423\pi\)
−0.838254 + 0.545280i \(0.816423\pi\)
\(158\) −550.867 −0.277371
\(159\) −1552.70 −0.774447
\(160\) 1303.35 0.643993
\(161\) 161.000 0.0788110
\(162\) 2603.83 1.26281
\(163\) 56.2971 0.0270523 0.0135262 0.999909i \(-0.495694\pi\)
0.0135262 + 0.999909i \(0.495694\pi\)
\(164\) 496.311 0.236313
\(165\) 6894.48 3.25294
\(166\) 3258.07 1.52334
\(167\) −3386.93 −1.56939 −0.784695 0.619882i \(-0.787180\pi\)
−0.784695 + 0.619882i \(0.787180\pi\)
\(168\) 812.202 0.372993
\(169\) 1684.14 0.766565
\(170\) 568.106 0.256304
\(171\) −288.771 −0.129140
\(172\) −183.106 −0.0811727
\(173\) −1838.43 −0.807939 −0.403970 0.914772i \(-0.632370\pi\)
−0.403970 + 0.914772i \(0.632370\pi\)
\(174\) −1522.97 −0.663541
\(175\) 2270.42 0.980728
\(176\) −4157.31 −1.78051
\(177\) −4516.60 −1.91801
\(178\) 474.782 0.199924
\(179\) 992.872 0.414585 0.207293 0.978279i \(-0.433535\pi\)
0.207293 + 0.978279i \(0.433535\pi\)
\(180\) 166.059 0.0687628
\(181\) 214.433 0.0880589 0.0440294 0.999030i \(-0.485980\pi\)
0.0440294 + 0.999030i \(0.485980\pi\)
\(182\) 1335.11 0.543764
\(183\) −4444.11 −1.79518
\(184\) 466.641 0.186963
\(185\) 6524.10 2.59276
\(186\) 1512.10 0.596089
\(187\) −497.853 −0.194688
\(188\) 261.811 0.101567
\(189\) −852.463 −0.328082
\(190\) 3284.65 1.25418
\(191\) 921.929 0.349259 0.174629 0.984634i \(-0.444127\pi\)
0.174629 + 0.984634i \(0.444127\pi\)
\(192\) 2267.83 0.852431
\(193\) −2662.22 −0.992906 −0.496453 0.868064i \(-0.665364\pi\)
−0.496453 + 0.868064i \(0.665364\pi\)
\(194\) −560.807 −0.207544
\(195\) −7552.32 −2.77350
\(196\) 67.2779 0.0245182
\(197\) −4372.22 −1.58126 −0.790629 0.612295i \(-0.790246\pi\)
−0.790629 + 0.612295i \(0.790246\pi\)
\(198\) −993.428 −0.356565
\(199\) −72.5491 −0.0258436 −0.0129218 0.999917i \(-0.504113\pi\)
−0.0129218 + 0.999917i \(0.504113\pi\)
\(200\) 6580.56 2.32658
\(201\) −620.012 −0.217574
\(202\) 711.556 0.247846
\(203\) 608.891 0.210521
\(204\) −68.7364 −0.0235907
\(205\) 7662.45 2.61058
\(206\) −2758.67 −0.933036
\(207\) 131.227 0.0440624
\(208\) 4553.98 1.51808
\(209\) −2878.46 −0.952666
\(210\) −2598.00 −0.853708
\(211\) 3142.17 1.02519 0.512596 0.858630i \(-0.328684\pi\)
0.512596 + 0.858630i \(0.328684\pi\)
\(212\) −372.781 −0.120767
\(213\) 3069.52 0.987418
\(214\) −3465.06 −1.10685
\(215\) −2826.94 −0.896723
\(216\) −2470.77 −0.778310
\(217\) −604.545 −0.189121
\(218\) 6767.75 2.10261
\(219\) −823.559 −0.254114
\(220\) 1655.27 0.507264
\(221\) 545.355 0.165993
\(222\) −5388.66 −1.62911
\(223\) 3516.93 1.05610 0.528051 0.849212i \(-0.322923\pi\)
0.528051 + 0.849212i \(0.322923\pi\)
\(224\) 430.397 0.128380
\(225\) 1850.56 0.548314
\(226\) −3340.73 −0.983285
\(227\) 3098.37 0.905929 0.452965 0.891528i \(-0.350366\pi\)
0.452965 + 0.891528i \(0.350366\pi\)
\(228\) −397.416 −0.115437
\(229\) −931.461 −0.268789 −0.134395 0.990928i \(-0.542909\pi\)
−0.134395 + 0.990928i \(0.542909\pi\)
\(230\) −1492.65 −0.427923
\(231\) 2276.72 0.648473
\(232\) 1764.81 0.499419
\(233\) −3884.24 −1.09212 −0.546062 0.837745i \(-0.683874\pi\)
−0.546062 + 0.837745i \(0.683874\pi\)
\(234\) 1088.22 0.304012
\(235\) 4042.04 1.12202
\(236\) −1084.37 −0.299095
\(237\) 1029.00 0.282030
\(238\) 187.602 0.0510942
\(239\) 2848.69 0.770990 0.385495 0.922710i \(-0.374031\pi\)
0.385495 + 0.922710i \(0.374031\pi\)
\(240\) −8861.59 −2.38339
\(241\) −2775.83 −0.741937 −0.370969 0.928645i \(-0.620974\pi\)
−0.370969 + 0.928645i \(0.620974\pi\)
\(242\) −5827.53 −1.54797
\(243\) −1575.81 −0.416001
\(244\) −1066.97 −0.279941
\(245\) 1038.69 0.270855
\(246\) −6328.89 −1.64031
\(247\) 3153.11 0.812256
\(248\) −1752.21 −0.448651
\(249\) −6085.99 −1.54893
\(250\) −12937.1 −3.27285
\(251\) 4062.77 1.02167 0.510836 0.859678i \(-0.329336\pi\)
0.510836 + 0.859678i \(0.329336\pi\)
\(252\) 54.8365 0.0137078
\(253\) 1308.06 0.325048
\(254\) −2510.30 −0.620118
\(255\) −1061.21 −0.260609
\(256\) 2050.39 0.500583
\(257\) −1242.38 −0.301548 −0.150774 0.988568i \(-0.548177\pi\)
−0.150774 + 0.988568i \(0.548177\pi\)
\(258\) 2334.94 0.563439
\(259\) 2154.41 0.516867
\(260\) −1813.20 −0.432500
\(261\) 496.292 0.117700
\(262\) −6389.23 −1.50660
\(263\) −3728.47 −0.874172 −0.437086 0.899420i \(-0.643989\pi\)
−0.437086 + 0.899420i \(0.643989\pi\)
\(264\) 6598.83 1.53837
\(265\) −5755.28 −1.33413
\(266\) 1084.67 0.250020
\(267\) −886.881 −0.203282
\(268\) −148.856 −0.0339285
\(269\) 7100.46 1.60938 0.804689 0.593697i \(-0.202332\pi\)
0.804689 + 0.593697i \(0.202332\pi\)
\(270\) 7903.28 1.78140
\(271\) −4062.52 −0.910629 −0.455315 0.890331i \(-0.650473\pi\)
−0.455315 + 0.890331i \(0.650473\pi\)
\(272\) 639.898 0.142645
\(273\) −2493.95 −0.552897
\(274\) 3205.69 0.706798
\(275\) 18446.3 4.04492
\(276\) 180.599 0.0393869
\(277\) 5515.22 1.19631 0.598154 0.801381i \(-0.295901\pi\)
0.598154 + 0.801381i \(0.295901\pi\)
\(278\) 5794.83 1.25018
\(279\) −492.749 −0.105735
\(280\) 3010.53 0.642549
\(281\) 6383.34 1.35515 0.677577 0.735452i \(-0.263030\pi\)
0.677577 + 0.735452i \(0.263030\pi\)
\(282\) −3338.58 −0.704997
\(283\) −7953.95 −1.67072 −0.835359 0.549704i \(-0.814740\pi\)
−0.835359 + 0.549704i \(0.814740\pi\)
\(284\) 736.947 0.153978
\(285\) −6135.63 −1.27524
\(286\) 10847.3 2.24270
\(287\) 2530.32 0.520418
\(288\) 350.806 0.0717758
\(289\) −4836.37 −0.984403
\(290\) −5645.10 −1.14307
\(291\) 1047.57 0.211030
\(292\) −197.725 −0.0396266
\(293\) 2925.22 0.583254 0.291627 0.956532i \(-0.405803\pi\)
0.291627 + 0.956532i \(0.405803\pi\)
\(294\) −857.919 −0.170187
\(295\) −16741.4 −3.30413
\(296\) 6244.33 1.22616
\(297\) −6925.94 −1.35314
\(298\) 7567.23 1.47100
\(299\) −1432.87 −0.277141
\(300\) 2546.80 0.490132
\(301\) −933.521 −0.178762
\(302\) −1896.64 −0.361388
\(303\) −1329.17 −0.252009
\(304\) 3699.73 0.698007
\(305\) −16472.7 −3.09254
\(306\) 152.910 0.0285662
\(307\) −7493.31 −1.39305 −0.696524 0.717533i \(-0.745271\pi\)
−0.696524 + 0.717533i \(0.745271\pi\)
\(308\) 546.608 0.101123
\(309\) 5153.12 0.948707
\(310\) 5604.80 1.02688
\(311\) 6544.21 1.19321 0.596605 0.802535i \(-0.296516\pi\)
0.596605 + 0.802535i \(0.296516\pi\)
\(312\) −7228.46 −1.31164
\(313\) −1640.74 −0.296294 −0.148147 0.988965i \(-0.547331\pi\)
−0.148147 + 0.988965i \(0.547331\pi\)
\(314\) 10097.1 1.81468
\(315\) 846.610 0.151432
\(316\) 247.049 0.0439797
\(317\) −1099.90 −0.194879 −0.0974396 0.995241i \(-0.531065\pi\)
−0.0974396 + 0.995241i \(0.531065\pi\)
\(318\) 4753.65 0.838275
\(319\) 4947.01 0.868274
\(320\) 8406.02 1.46847
\(321\) 6472.65 1.12545
\(322\) −492.908 −0.0853064
\(323\) 443.056 0.0763229
\(324\) −1167.75 −0.200231
\(325\) −20206.3 −3.44875
\(326\) −172.356 −0.0292819
\(327\) −12642.0 −2.13793
\(328\) 7333.86 1.23459
\(329\) 1334.78 0.223674
\(330\) −21107.7 −3.52104
\(331\) 10120.4 1.68056 0.840279 0.542154i \(-0.182391\pi\)
0.840279 + 0.542154i \(0.182391\pi\)
\(332\) −1461.16 −0.241540
\(333\) 1756.01 0.288974
\(334\) 10369.2 1.69874
\(335\) −2298.16 −0.374811
\(336\) −2926.31 −0.475128
\(337\) 551.690 0.0891765 0.0445882 0.999005i \(-0.485802\pi\)
0.0445882 + 0.999005i \(0.485802\pi\)
\(338\) −5156.07 −0.829743
\(339\) 6240.41 0.999800
\(340\) −254.780 −0.0406394
\(341\) −4911.70 −0.780010
\(342\) 884.085 0.139783
\(343\) 343.000 0.0539949
\(344\) −2705.71 −0.424076
\(345\) 2788.23 0.435111
\(346\) 5628.43 0.874527
\(347\) −6732.36 −1.04153 −0.520767 0.853699i \(-0.674354\pi\)
−0.520767 + 0.853699i \(0.674354\pi\)
\(348\) 683.012 0.105211
\(349\) 5616.35 0.861422 0.430711 0.902490i \(-0.358263\pi\)
0.430711 + 0.902490i \(0.358263\pi\)
\(350\) −6950.97 −1.06156
\(351\) 7586.78 1.15371
\(352\) 3496.81 0.529490
\(353\) −1184.60 −0.178612 −0.0893060 0.996004i \(-0.528465\pi\)
−0.0893060 + 0.996004i \(0.528465\pi\)
\(354\) 13827.7 2.07609
\(355\) 11377.6 1.70101
\(356\) −212.927 −0.0316998
\(357\) −350.436 −0.0519524
\(358\) −3039.72 −0.448754
\(359\) 8883.20 1.30595 0.652977 0.757378i \(-0.273520\pi\)
0.652977 + 0.757378i \(0.273520\pi\)
\(360\) 2453.81 0.359242
\(361\) −4297.36 −0.626529
\(362\) −656.494 −0.0953165
\(363\) 10885.7 1.57397
\(364\) −598.762 −0.0862189
\(365\) −3052.63 −0.437759
\(366\) 13605.8 1.94314
\(367\) −3695.88 −0.525677 −0.262838 0.964840i \(-0.584659\pi\)
−0.262838 + 0.964840i \(0.584659\pi\)
\(368\) −1681.28 −0.238159
\(369\) 2062.40 0.290960
\(370\) −19973.8 −2.80645
\(371\) −1900.53 −0.265959
\(372\) −678.137 −0.0945155
\(373\) 7051.40 0.978841 0.489421 0.872048i \(-0.337208\pi\)
0.489421 + 0.872048i \(0.337208\pi\)
\(374\) 1524.19 0.210733
\(375\) 24166.1 3.32782
\(376\) 3868.71 0.530621
\(377\) −5419.03 −0.740303
\(378\) 2609.85 0.355122
\(379\) −12273.2 −1.66341 −0.831706 0.555216i \(-0.812636\pi\)
−0.831706 + 0.555216i \(0.812636\pi\)
\(380\) −1473.08 −0.198861
\(381\) 4689.17 0.630534
\(382\) −2822.52 −0.378044
\(383\) 2311.87 0.308436 0.154218 0.988037i \(-0.450714\pi\)
0.154218 + 0.988037i \(0.450714\pi\)
\(384\) −9756.07 −1.29652
\(385\) 8438.97 1.11712
\(386\) 8150.49 1.07474
\(387\) −760.889 −0.0999436
\(388\) 251.507 0.0329081
\(389\) −13783.7 −1.79656 −0.898278 0.439428i \(-0.855181\pi\)
−0.898278 + 0.439428i \(0.855181\pi\)
\(390\) 23121.7 3.00209
\(391\) −201.339 −0.0260413
\(392\) 994.149 0.128092
\(393\) 11934.9 1.53190
\(394\) 13385.7 1.71158
\(395\) 3814.14 0.485849
\(396\) 445.526 0.0565367
\(397\) −12201.3 −1.54248 −0.771242 0.636542i \(-0.780364\pi\)
−0.771242 + 0.636542i \(0.780364\pi\)
\(398\) 222.112 0.0279735
\(399\) −2026.13 −0.254219
\(400\) −23709.3 −2.96366
\(401\) −25.3570 −0.00315777 −0.00157889 0.999999i \(-0.500503\pi\)
−0.00157889 + 0.999999i \(0.500503\pi\)
\(402\) 1898.19 0.235505
\(403\) 5380.35 0.665048
\(404\) −319.114 −0.0392983
\(405\) −18028.6 −2.21197
\(406\) −1864.14 −0.227872
\(407\) 17503.8 2.13177
\(408\) −1015.70 −0.123247
\(409\) 11668.3 1.41066 0.705329 0.708880i \(-0.250799\pi\)
0.705329 + 0.708880i \(0.250799\pi\)
\(410\) −23458.9 −2.82573
\(411\) −5988.14 −0.718670
\(412\) 1237.19 0.147942
\(413\) −5528.39 −0.658679
\(414\) −401.757 −0.0476939
\(415\) −22558.5 −2.66832
\(416\) −3830.46 −0.451451
\(417\) −10824.6 −1.27118
\(418\) 8812.51 1.03118
\(419\) 1468.66 0.171238 0.0856189 0.996328i \(-0.472713\pi\)
0.0856189 + 0.996328i \(0.472713\pi\)
\(420\) 1165.13 0.135363
\(421\) 12222.2 1.41490 0.707450 0.706763i \(-0.249845\pi\)
0.707450 + 0.706763i \(0.249845\pi\)
\(422\) −9619.86 −1.10969
\(423\) 1087.94 0.125053
\(424\) −5508.49 −0.630933
\(425\) −2839.27 −0.324059
\(426\) −9397.45 −1.06880
\(427\) −5439.67 −0.616497
\(428\) 1553.99 0.175502
\(429\) −20262.4 −2.28037
\(430\) 8654.77 0.970629
\(431\) −3102.58 −0.346742 −0.173371 0.984857i \(-0.555466\pi\)
−0.173371 + 0.984857i \(0.555466\pi\)
\(432\) 8902.02 0.991432
\(433\) −1743.58 −0.193513 −0.0967564 0.995308i \(-0.530847\pi\)
−0.0967564 + 0.995308i \(0.530847\pi\)
\(434\) 1850.84 0.204707
\(435\) 10544.9 1.16227
\(436\) −3035.16 −0.333389
\(437\) −1164.09 −0.127428
\(438\) 2521.36 0.275057
\(439\) 11386.2 1.23789 0.618944 0.785435i \(-0.287561\pi\)
0.618944 + 0.785435i \(0.287561\pi\)
\(440\) 24459.4 2.65013
\(441\) 279.571 0.0301880
\(442\) −1669.63 −0.179674
\(443\) −2893.26 −0.310300 −0.155150 0.987891i \(-0.549586\pi\)
−0.155150 + 0.987891i \(0.549586\pi\)
\(444\) 2416.67 0.258311
\(445\) −3287.34 −0.350191
\(446\) −10767.2 −1.14314
\(447\) −14135.4 −1.49571
\(448\) 2775.87 0.292740
\(449\) −13992.4 −1.47069 −0.735345 0.677693i \(-0.762980\pi\)
−0.735345 + 0.677693i \(0.762980\pi\)
\(450\) −5665.56 −0.593504
\(451\) 20557.9 2.14642
\(452\) 1498.23 0.155909
\(453\) 3542.87 0.367458
\(454\) −9485.78 −0.980594
\(455\) −9244.17 −0.952469
\(456\) −5872.52 −0.603084
\(457\) 14375.9 1.47150 0.735752 0.677251i \(-0.236829\pi\)
0.735752 + 0.677251i \(0.236829\pi\)
\(458\) 2851.70 0.290942
\(459\) 1066.05 0.108407
\(460\) 669.413 0.0678512
\(461\) 10075.8 1.01795 0.508977 0.860780i \(-0.330024\pi\)
0.508977 + 0.860780i \(0.330024\pi\)
\(462\) −6970.27 −0.701918
\(463\) 4599.21 0.461649 0.230825 0.972995i \(-0.425858\pi\)
0.230825 + 0.972995i \(0.425858\pi\)
\(464\) −6358.47 −0.636174
\(465\) −10469.6 −1.04412
\(466\) 11891.7 1.18213
\(467\) 15054.9 1.49177 0.745886 0.666074i \(-0.232026\pi\)
0.745886 + 0.666074i \(0.232026\pi\)
\(468\) −488.036 −0.0482040
\(469\) −758.906 −0.0747186
\(470\) −12374.9 −1.21449
\(471\) −18861.0 −1.84516
\(472\) −16023.5 −1.56258
\(473\) −7584.50 −0.737285
\(474\) −3150.34 −0.305274
\(475\) −16416.0 −1.58572
\(476\) −84.1345 −0.00810147
\(477\) −1549.07 −0.148694
\(478\) −8721.39 −0.834533
\(479\) 10087.1 0.962195 0.481097 0.876667i \(-0.340238\pi\)
0.481097 + 0.876667i \(0.340238\pi\)
\(480\) 7453.69 0.708777
\(481\) −19173.9 −1.81758
\(482\) 8498.31 0.803086
\(483\) 920.739 0.0867393
\(484\) 2613.49 0.245444
\(485\) 3882.97 0.363539
\(486\) 4824.40 0.450286
\(487\) 15351.3 1.42840 0.714202 0.699940i \(-0.246790\pi\)
0.714202 + 0.699940i \(0.246790\pi\)
\(488\) −15766.3 −1.46251
\(489\) 321.956 0.0297737
\(490\) −3179.99 −0.293178
\(491\) −1685.47 −0.154917 −0.0774584 0.996996i \(-0.524680\pi\)
−0.0774584 + 0.996996i \(0.524680\pi\)
\(492\) 2838.34 0.260086
\(493\) −761.449 −0.0695618
\(494\) −9653.36 −0.879201
\(495\) 6878.39 0.624567
\(496\) 6313.09 0.571504
\(497\) 3757.14 0.339097
\(498\) 18632.5 1.67659
\(499\) 18.1350 0.00162693 0.000813463 1.00000i \(-0.499741\pi\)
0.000813463 1.00000i \(0.499741\pi\)
\(500\) 5801.93 0.518940
\(501\) −19369.4 −1.72727
\(502\) −12438.3 −1.10588
\(503\) −2444.63 −0.216701 −0.108351 0.994113i \(-0.534557\pi\)
−0.108351 + 0.994113i \(0.534557\pi\)
\(504\) 810.306 0.0716149
\(505\) −4926.74 −0.434133
\(506\) −4004.69 −0.351838
\(507\) 9631.40 0.843680
\(508\) 1125.80 0.0983255
\(509\) 16064.8 1.39894 0.699469 0.714663i \(-0.253420\pi\)
0.699469 + 0.714663i \(0.253420\pi\)
\(510\) 3248.93 0.282088
\(511\) −1008.05 −0.0872672
\(512\) 7370.19 0.636171
\(513\) 6163.63 0.530469
\(514\) 3803.61 0.326401
\(515\) 19100.7 1.63433
\(516\) −1047.16 −0.0893385
\(517\) 10844.6 0.922521
\(518\) −6595.81 −0.559466
\(519\) −10513.8 −0.889216
\(520\) −26793.2 −2.25954
\(521\) 8377.95 0.704501 0.352250 0.935906i \(-0.385417\pi\)
0.352250 + 0.935906i \(0.385417\pi\)
\(522\) −1519.42 −0.127400
\(523\) 8809.80 0.736569 0.368284 0.929713i \(-0.379945\pi\)
0.368284 + 0.929713i \(0.379945\pi\)
\(524\) 2865.40 0.238885
\(525\) 12984.2 1.07939
\(526\) 11414.8 0.946219
\(527\) 756.014 0.0624905
\(528\) −23775.1 −1.95962
\(529\) 529.000 0.0434783
\(530\) 17620.0 1.44408
\(531\) −4506.05 −0.368260
\(532\) −486.445 −0.0396429
\(533\) −22519.4 −1.83006
\(534\) 2715.22 0.220036
\(535\) 23991.7 1.93879
\(536\) −2199.61 −0.177255
\(537\) 5678.11 0.456291
\(538\) −21738.3 −1.74202
\(539\) 2786.74 0.222697
\(540\) −3544.41 −0.282458
\(541\) −7434.32 −0.590806 −0.295403 0.955373i \(-0.595454\pi\)
−0.295403 + 0.955373i \(0.595454\pi\)
\(542\) 12437.6 0.985681
\(543\) 1226.31 0.0969174
\(544\) −538.233 −0.0424202
\(545\) −46859.2 −3.68298
\(546\) 7635.34 0.598466
\(547\) 455.940 0.0356391 0.0178196 0.999841i \(-0.494328\pi\)
0.0178196 + 0.999841i \(0.494328\pi\)
\(548\) −1437.67 −0.112069
\(549\) −4433.74 −0.344676
\(550\) −56474.0 −4.37829
\(551\) −4402.51 −0.340387
\(552\) 2668.66 0.205772
\(553\) 1259.52 0.0968539
\(554\) −16885.0 −1.29490
\(555\) 37310.5 2.85359
\(556\) −2598.83 −0.198228
\(557\) 1594.04 0.121260 0.0606299 0.998160i \(-0.480689\pi\)
0.0606299 + 0.998160i \(0.480689\pi\)
\(558\) 1508.57 0.114450
\(559\) 8308.18 0.628620
\(560\) −10846.7 −0.818497
\(561\) −2847.16 −0.214273
\(562\) −19542.8 −1.46684
\(563\) −296.715 −0.0222115 −0.0111057 0.999938i \(-0.503535\pi\)
−0.0111057 + 0.999938i \(0.503535\pi\)
\(564\) 1497.26 0.111784
\(565\) 23130.9 1.72234
\(566\) 24351.3 1.80841
\(567\) −5953.47 −0.440957
\(568\) 10889.7 0.804439
\(569\) 9664.74 0.712069 0.356034 0.934473i \(-0.384129\pi\)
0.356034 + 0.934473i \(0.384129\pi\)
\(570\) 18784.5 1.38034
\(571\) −16310.5 −1.19540 −0.597701 0.801719i \(-0.703919\pi\)
−0.597701 + 0.801719i \(0.703919\pi\)
\(572\) −4864.72 −0.355601
\(573\) 5272.39 0.384393
\(574\) −7746.67 −0.563310
\(575\) 7459.94 0.541045
\(576\) 2262.54 0.163667
\(577\) −8762.32 −0.632201 −0.316101 0.948726i \(-0.602374\pi\)
−0.316101 + 0.948726i \(0.602374\pi\)
\(578\) 14806.7 1.06553
\(579\) −15224.9 −1.09279
\(580\) 2531.68 0.181245
\(581\) −7449.35 −0.531930
\(582\) −3207.18 −0.228423
\(583\) −15441.1 −1.09692
\(584\) −2921.73 −0.207024
\(585\) −7534.69 −0.532515
\(586\) −8955.68 −0.631324
\(587\) −6530.50 −0.459187 −0.229593 0.973287i \(-0.573740\pi\)
−0.229593 + 0.973287i \(0.573740\pi\)
\(588\) 384.754 0.0269847
\(589\) 4371.08 0.305785
\(590\) 51254.3 3.57645
\(591\) −25004.2 −1.74033
\(592\) −22497.9 −1.56192
\(593\) −22582.6 −1.56384 −0.781919 0.623380i \(-0.785759\pi\)
−0.781919 + 0.623380i \(0.785759\pi\)
\(594\) 21204.0 1.46467
\(595\) −1298.94 −0.0894978
\(596\) −3393.70 −0.233241
\(597\) −414.899 −0.0284434
\(598\) 4386.80 0.299982
\(599\) 22629.5 1.54360 0.771800 0.635866i \(-0.219357\pi\)
0.771800 + 0.635866i \(0.219357\pi\)
\(600\) 37633.4 2.56063
\(601\) −2348.12 −0.159370 −0.0796852 0.996820i \(-0.525392\pi\)
−0.0796852 + 0.996820i \(0.525392\pi\)
\(602\) 2858.01 0.193495
\(603\) −618.565 −0.0417743
\(604\) 850.591 0.0573015
\(605\) 40349.2 2.71145
\(606\) 4069.30 0.272779
\(607\) 18556.6 1.24084 0.620420 0.784270i \(-0.286962\pi\)
0.620420 + 0.784270i \(0.286962\pi\)
\(608\) −3111.93 −0.207575
\(609\) 3482.17 0.231699
\(610\) 50431.8 3.34741
\(611\) −11879.3 −0.786555
\(612\) −68.5759 −0.00452944
\(613\) 4231.12 0.278782 0.139391 0.990237i \(-0.455486\pi\)
0.139391 + 0.990237i \(0.455486\pi\)
\(614\) 22941.1 1.50786
\(615\) 43820.6 2.87320
\(616\) 8077.08 0.528304
\(617\) 10492.4 0.684615 0.342308 0.939588i \(-0.388792\pi\)
0.342308 + 0.939588i \(0.388792\pi\)
\(618\) −15776.5 −1.02690
\(619\) −216.464 −0.0140556 −0.00702779 0.999975i \(-0.502237\pi\)
−0.00702779 + 0.999975i \(0.502237\pi\)
\(620\) −2513.60 −0.162821
\(621\) −2800.95 −0.180996
\(622\) −20035.4 −1.29155
\(623\) −1085.56 −0.0698105
\(624\) 26043.6 1.67080
\(625\) 49031.7 3.13803
\(626\) 5023.18 0.320713
\(627\) −16461.5 −1.04850
\(628\) −4528.26 −0.287735
\(629\) −2694.20 −0.170787
\(630\) −2591.93 −0.163913
\(631\) 5295.63 0.334098 0.167049 0.985949i \(-0.446576\pi\)
0.167049 + 0.985949i \(0.446576\pi\)
\(632\) 3650.58 0.229766
\(633\) 17969.6 1.12832
\(634\) 3367.40 0.210941
\(635\) 17381.0 1.08621
\(636\) −2131.88 −0.132916
\(637\) −3052.64 −0.189875
\(638\) −15145.5 −0.939834
\(639\) 3062.35 0.189585
\(640\) −36162.2 −2.23349
\(641\) −5076.56 −0.312811 −0.156406 0.987693i \(-0.549991\pi\)
−0.156406 + 0.987693i \(0.549991\pi\)
\(642\) −19816.3 −1.21820
\(643\) −7101.58 −0.435550 −0.217775 0.975999i \(-0.569880\pi\)
−0.217775 + 0.975999i \(0.569880\pi\)
\(644\) 221.056 0.0135261
\(645\) −16166.9 −0.986931
\(646\) −1356.43 −0.0826132
\(647\) −6858.76 −0.416763 −0.208382 0.978048i \(-0.566820\pi\)
−0.208382 + 0.978048i \(0.566820\pi\)
\(648\) −17255.5 −1.04608
\(649\) −44916.1 −2.71666
\(650\) 61862.4 3.73299
\(651\) −3457.32 −0.208146
\(652\) 77.2970 0.00464292
\(653\) 20913.4 1.25330 0.626648 0.779302i \(-0.284426\pi\)
0.626648 + 0.779302i \(0.284426\pi\)
\(654\) 38703.9 2.31413
\(655\) 44238.4 2.63899
\(656\) −26423.4 −1.57265
\(657\) −821.637 −0.0487901
\(658\) −4086.47 −0.242108
\(659\) −980.066 −0.0579331 −0.0289666 0.999580i \(-0.509222\pi\)
−0.0289666 + 0.999580i \(0.509222\pi\)
\(660\) 9466.26 0.558293
\(661\) −4993.21 −0.293817 −0.146909 0.989150i \(-0.546932\pi\)
−0.146909 + 0.989150i \(0.546932\pi\)
\(662\) −30983.9 −1.81907
\(663\) 3118.82 0.182692
\(664\) −21591.2 −1.26190
\(665\) −7510.12 −0.437940
\(666\) −5376.08 −0.312791
\(667\) 2000.64 0.116140
\(668\) −4650.31 −0.269350
\(669\) 20112.9 1.16234
\(670\) 7035.90 0.405702
\(671\) −44195.2 −2.54268
\(672\) 2461.38 0.141295
\(673\) 27668.7 1.58477 0.792386 0.610020i \(-0.208839\pi\)
0.792386 + 0.610020i \(0.208839\pi\)
\(674\) −1689.02 −0.0965262
\(675\) −39498.9 −2.25232
\(676\) 2312.36 0.131564
\(677\) −14247.5 −0.808824 −0.404412 0.914577i \(-0.632524\pi\)
−0.404412 + 0.914577i \(0.632524\pi\)
\(678\) −19105.2 −1.08220
\(679\) 1282.25 0.0724715
\(680\) −3764.83 −0.212316
\(681\) 17719.2 0.997064
\(682\) 15037.3 0.844296
\(683\) 15657.6 0.877193 0.438597 0.898684i \(-0.355476\pi\)
0.438597 + 0.898684i \(0.355476\pi\)
\(684\) −396.489 −0.0221639
\(685\) −22195.8 −1.23804
\(686\) −1050.11 −0.0584450
\(687\) −5326.91 −0.295829
\(688\) 9748.49 0.540200
\(689\) 16914.4 0.935250
\(690\) −8536.27 −0.470971
\(691\) 12906.9 0.710565 0.355282 0.934759i \(-0.384385\pi\)
0.355282 + 0.934759i \(0.384385\pi\)
\(692\) −2524.20 −0.138664
\(693\) 2271.41 0.124507
\(694\) 20611.4 1.12737
\(695\) −40122.8 −2.18985
\(696\) 10092.7 0.549659
\(697\) −3164.30 −0.171960
\(698\) −17194.7 −0.932419
\(699\) −22213.5 −1.20199
\(700\) 3117.32 0.168320
\(701\) 9069.94 0.488683 0.244342 0.969689i \(-0.421428\pi\)
0.244342 + 0.969689i \(0.421428\pi\)
\(702\) −23227.2 −1.24880
\(703\) −15577.2 −0.835711
\(704\) 22552.9 1.20738
\(705\) 23115.9 1.23489
\(706\) 3626.71 0.193333
\(707\) −1626.93 −0.0865443
\(708\) −6201.37 −0.329183
\(709\) 19970.6 1.05785 0.528923 0.848670i \(-0.322596\pi\)
0.528923 + 0.848670i \(0.322596\pi\)
\(710\) −34832.9 −1.84120
\(711\) 1026.60 0.0541499
\(712\) −3146.37 −0.165611
\(713\) −1986.36 −0.104334
\(714\) 1072.87 0.0562342
\(715\) −75105.4 −3.92837
\(716\) 1363.23 0.0711541
\(717\) 16291.3 0.848550
\(718\) −27196.3 −1.41359
\(719\) −11009.5 −0.571049 −0.285524 0.958371i \(-0.592168\pi\)
−0.285524 + 0.958371i \(0.592168\pi\)
\(720\) −8840.91 −0.457613
\(721\) 6307.50 0.325803
\(722\) 13156.5 0.678166
\(723\) −15874.6 −0.816575
\(724\) 294.420 0.0151133
\(725\) 28213.0 1.44525
\(726\) −33326.9 −1.70369
\(727\) 30078.9 1.53448 0.767239 0.641362i \(-0.221630\pi\)
0.767239 + 0.641362i \(0.221630\pi\)
\(728\) −8847.76 −0.450439
\(729\) 13951.5 0.708812
\(730\) 9345.75 0.473838
\(731\) 1167.42 0.0590676
\(732\) −6101.85 −0.308102
\(733\) −5414.09 −0.272816 −0.136408 0.990653i \(-0.543556\pi\)
−0.136408 + 0.990653i \(0.543556\pi\)
\(734\) 11315.1 0.569001
\(735\) 5940.14 0.298103
\(736\) 1414.16 0.0708243
\(737\) −6165.82 −0.308170
\(738\) −6314.12 −0.314940
\(739\) 10013.7 0.498456 0.249228 0.968445i \(-0.419823\pi\)
0.249228 + 0.968445i \(0.419823\pi\)
\(740\) 8957.71 0.444989
\(741\) 18032.2 0.893968
\(742\) 5818.55 0.287878
\(743\) −25510.3 −1.25960 −0.629799 0.776758i \(-0.716863\pi\)
−0.629799 + 0.776758i \(0.716863\pi\)
\(744\) −10020.7 −0.493784
\(745\) −52394.7 −2.57663
\(746\) −21588.1 −1.05951
\(747\) −6071.78 −0.297396
\(748\) −683.561 −0.0334137
\(749\) 7922.63 0.386498
\(750\) −73985.4 −3.60209
\(751\) 39363.4 1.91264 0.956319 0.292324i \(-0.0944286\pi\)
0.956319 + 0.292324i \(0.0944286\pi\)
\(752\) −13938.7 −0.675920
\(753\) 23234.5 1.12445
\(754\) 16590.6 0.801316
\(755\) 13132.1 0.633015
\(756\) −1170.45 −0.0563079
\(757\) −28780.6 −1.38183 −0.690917 0.722934i \(-0.742793\pi\)
−0.690917 + 0.722934i \(0.742793\pi\)
\(758\) 37575.0 1.80051
\(759\) 7480.65 0.357748
\(760\) −21767.3 −1.03892
\(761\) −29195.9 −1.39074 −0.695369 0.718653i \(-0.744759\pi\)
−0.695369 + 0.718653i \(0.744759\pi\)
\(762\) −14356.1 −0.682501
\(763\) −15474.0 −0.734202
\(764\) 1265.83 0.0599423
\(765\) −1058.73 −0.0500372
\(766\) −7077.88 −0.333857
\(767\) 49201.8 2.31626
\(768\) 11725.9 0.550941
\(769\) 31566.9 1.48028 0.740139 0.672454i \(-0.234760\pi\)
0.740139 + 0.672454i \(0.234760\pi\)
\(770\) −25836.2 −1.20919
\(771\) −7105.04 −0.331883
\(772\) −3655.28 −0.170410
\(773\) 20763.4 0.966114 0.483057 0.875589i \(-0.339526\pi\)
0.483057 + 0.875589i \(0.339526\pi\)
\(774\) 2329.49 0.108181
\(775\) −28011.6 −1.29833
\(776\) 3716.46 0.171924
\(777\) 12320.8 0.568863
\(778\) 42199.3 1.94462
\(779\) −18295.2 −0.841453
\(780\) −10369.5 −0.476009
\(781\) 30525.4 1.39857
\(782\) 616.406 0.0281875
\(783\) −10593.0 −0.483478
\(784\) −3581.85 −0.163167
\(785\) −69910.9 −3.17863
\(786\) −36539.2 −1.65816
\(787\) −17154.2 −0.776976 −0.388488 0.921454i \(-0.627002\pi\)
−0.388488 + 0.921454i \(0.627002\pi\)
\(788\) −6003.14 −0.271387
\(789\) −21322.6 −0.962111
\(790\) −11677.1 −0.525891
\(791\) 7638.36 0.343349
\(792\) 6583.43 0.295369
\(793\) 48412.1 2.16793
\(794\) 37354.8 1.66961
\(795\) −32913.7 −1.46834
\(796\) −99.6112 −0.00443546
\(797\) −16711.1 −0.742705 −0.371353 0.928492i \(-0.621106\pi\)
−0.371353 + 0.928492i \(0.621106\pi\)
\(798\) 6203.08 0.275171
\(799\) −1669.21 −0.0739078
\(800\) 19942.4 0.881340
\(801\) −884.810 −0.0390303
\(802\) 77.6313 0.00341803
\(803\) −8190.03 −0.359925
\(804\) −851.289 −0.0373416
\(805\) 3412.84 0.149425
\(806\) −16472.1 −0.719859
\(807\) 40606.6 1.77128
\(808\) −4715.47 −0.205309
\(809\) 3984.12 0.173145 0.0865725 0.996246i \(-0.472409\pi\)
0.0865725 + 0.996246i \(0.472409\pi\)
\(810\) 55195.3 2.39428
\(811\) −25313.9 −1.09604 −0.548022 0.836464i \(-0.684619\pi\)
−0.548022 + 0.836464i \(0.684619\pi\)
\(812\) 836.019 0.0361312
\(813\) −23233.0 −1.00224
\(814\) −53588.4 −2.30746
\(815\) 1193.37 0.0512908
\(816\) 3659.50 0.156995
\(817\) 6749.70 0.289036
\(818\) −35722.9 −1.52692
\(819\) −2488.13 −0.106157
\(820\) 10520.7 0.448047
\(821\) 5818.48 0.247340 0.123670 0.992323i \(-0.460534\pi\)
0.123670 + 0.992323i \(0.460534\pi\)
\(822\) 18332.9 0.777901
\(823\) −23291.9 −0.986519 −0.493260 0.869882i \(-0.664195\pi\)
−0.493260 + 0.869882i \(0.664195\pi\)
\(824\) 18281.6 0.772902
\(825\) 105492. 4.45183
\(826\) 16925.4 0.712965
\(827\) −31308.3 −1.31644 −0.658219 0.752826i \(-0.728690\pi\)
−0.658219 + 0.752826i \(0.728690\pi\)
\(828\) 180.177 0.00756231
\(829\) 35657.8 1.49390 0.746952 0.664878i \(-0.231517\pi\)
0.746952 + 0.664878i \(0.231517\pi\)
\(830\) 69063.7 2.88824
\(831\) 31540.8 1.31665
\(832\) −24704.7 −1.02943
\(833\) −428.939 −0.0178414
\(834\) 33139.9 1.37595
\(835\) −71795.2 −2.97554
\(836\) −3952.18 −0.163503
\(837\) 10517.4 0.434330
\(838\) −4496.35 −0.185351
\(839\) 34137.4 1.40471 0.702356 0.711826i \(-0.252131\pi\)
0.702356 + 0.711826i \(0.252131\pi\)
\(840\) 17216.9 0.707189
\(841\) −16822.7 −0.689766
\(842\) −37418.7 −1.53151
\(843\) 36505.5 1.49148
\(844\) 4314.25 0.175951
\(845\) 35700.1 1.45340
\(846\) −3330.78 −0.135360
\(847\) 13324.2 0.540527
\(848\) 19846.7 0.803700
\(849\) −45487.7 −1.83879
\(850\) 8692.54 0.350767
\(851\) 7078.78 0.285144
\(852\) 4214.51 0.169468
\(853\) 24323.4 0.976338 0.488169 0.872749i \(-0.337665\pi\)
0.488169 + 0.872749i \(0.337665\pi\)
\(854\) 16653.8 0.667307
\(855\) −6121.31 −0.244847
\(856\) 22962.9 0.916888
\(857\) −21362.8 −0.851504 −0.425752 0.904840i \(-0.639990\pi\)
−0.425752 + 0.904840i \(0.639990\pi\)
\(858\) 62034.2 2.46831
\(859\) 10647.2 0.422909 0.211455 0.977388i \(-0.432180\pi\)
0.211455 + 0.977388i \(0.432180\pi\)
\(860\) −3881.44 −0.153902
\(861\) 14470.6 0.572771
\(862\) 9498.67 0.375320
\(863\) −5325.96 −0.210079 −0.105039 0.994468i \(-0.533497\pi\)
−0.105039 + 0.994468i \(0.533497\pi\)
\(864\) −7487.70 −0.294834
\(865\) −38970.7 −1.53184
\(866\) 5338.04 0.209462
\(867\) −27658.6 −1.08343
\(868\) −830.051 −0.0324583
\(869\) 10233.1 0.399464
\(870\) −32283.6 −1.25806
\(871\) 6754.13 0.262750
\(872\) −44849.7 −1.74175
\(873\) 1045.13 0.0405180
\(874\) 3563.91 0.137930
\(875\) 29579.7 1.14283
\(876\) −1130.76 −0.0436129
\(877\) 11646.0 0.448412 0.224206 0.974542i \(-0.428021\pi\)
0.224206 + 0.974542i \(0.428021\pi\)
\(878\) −34859.2 −1.33991
\(879\) 16729.0 0.641928
\(880\) −88125.7 −3.37581
\(881\) −13691.1 −0.523568 −0.261784 0.965126i \(-0.584311\pi\)
−0.261784 + 0.965126i \(0.584311\pi\)
\(882\) −855.916 −0.0326760
\(883\) 30201.4 1.15103 0.575515 0.817791i \(-0.304802\pi\)
0.575515 + 0.817791i \(0.304802\pi\)
\(884\) 748.783 0.0284890
\(885\) −95741.7 −3.63652
\(886\) 8857.83 0.335874
\(887\) −3125.48 −0.118313 −0.0591564 0.998249i \(-0.518841\pi\)
−0.0591564 + 0.998249i \(0.518841\pi\)
\(888\) 35710.5 1.34951
\(889\) 5739.62 0.216536
\(890\) 10064.3 0.379053
\(891\) −48369.7 −1.81868
\(892\) 4828.81 0.181256
\(893\) −9650.94 −0.361653
\(894\) 43276.0 1.61898
\(895\) 21046.7 0.786047
\(896\) −11941.6 −0.445246
\(897\) −8194.42 −0.305021
\(898\) 42838.1 1.59190
\(899\) −7512.28 −0.278697
\(900\) 2540.85 0.0941057
\(901\) 2376.71 0.0878798
\(902\) −62938.8 −2.32332
\(903\) −5338.69 −0.196745
\(904\) 22139.0 0.814526
\(905\) 4545.49 0.166958
\(906\) −10846.6 −0.397743
\(907\) −11972.1 −0.438286 −0.219143 0.975693i \(-0.570326\pi\)
−0.219143 + 0.975693i \(0.570326\pi\)
\(908\) 4254.12 0.155482
\(909\) −1326.07 −0.0483859
\(910\) 28301.4 1.03097
\(911\) 12197.1 0.443588 0.221794 0.975094i \(-0.428809\pi\)
0.221794 + 0.975094i \(0.428809\pi\)
\(912\) 21158.3 0.768225
\(913\) −60523.1 −2.19389
\(914\) −44012.4 −1.59278
\(915\) −94205.2 −3.40364
\(916\) −1278.91 −0.0461315
\(917\) 14608.5 0.526082
\(918\) −3263.75 −0.117342
\(919\) 4088.46 0.146753 0.0733764 0.997304i \(-0.476623\pi\)
0.0733764 + 0.997304i \(0.476623\pi\)
\(920\) 9891.76 0.354480
\(921\) −42853.3 −1.53319
\(922\) −30847.5 −1.10185
\(923\) −33438.0 −1.19244
\(924\) 3125.98 0.111296
\(925\) 99824.6 3.54834
\(926\) −14080.7 −0.499697
\(927\) 5141.09 0.182153
\(928\) 5348.26 0.189187
\(929\) −15266.0 −0.539139 −0.269569 0.962981i \(-0.586881\pi\)
−0.269569 + 0.962981i \(0.586881\pi\)
\(930\) 32053.2 1.13018
\(931\) −2480.02 −0.0873032
\(932\) −5333.13 −0.187438
\(933\) 37425.5 1.31324
\(934\) −46091.1 −1.61472
\(935\) −10553.4 −0.369125
\(936\) −7211.59 −0.251836
\(937\) 24862.2 0.866824 0.433412 0.901196i \(-0.357309\pi\)
0.433412 + 0.901196i \(0.357309\pi\)
\(938\) 2323.42 0.0808767
\(939\) −9383.16 −0.326100
\(940\) 5549.80 0.192569
\(941\) 37095.1 1.28509 0.642543 0.766250i \(-0.277879\pi\)
0.642543 + 0.766250i \(0.277879\pi\)
\(942\) 57743.8 1.99723
\(943\) 8313.91 0.287103
\(944\) 57731.4 1.99046
\(945\) −18070.3 −0.622039
\(946\) 23220.2 0.798050
\(947\) 3646.99 0.125144 0.0625720 0.998040i \(-0.480070\pi\)
0.0625720 + 0.998040i \(0.480070\pi\)
\(948\) 1412.84 0.0484040
\(949\) 8971.48 0.306877
\(950\) 50258.1 1.71641
\(951\) −6290.21 −0.214484
\(952\) −1243.23 −0.0423251
\(953\) −3581.74 −0.121746 −0.0608731 0.998146i \(-0.519388\pi\)
−0.0608731 + 0.998146i \(0.519388\pi\)
\(954\) 4742.55 0.160949
\(955\) 19542.8 0.662189
\(956\) 3911.31 0.132323
\(957\) 28291.3 0.955620
\(958\) −30882.0 −1.04150
\(959\) −7329.59 −0.246804
\(960\) 48073.0 1.61620
\(961\) −22332.3 −0.749634
\(962\) 58701.6 1.96738
\(963\) 6457.54 0.216086
\(964\) −3811.27 −0.127337
\(965\) −56433.1 −1.88253
\(966\) −2818.88 −0.0938881
\(967\) 32887.3 1.09368 0.546838 0.837238i \(-0.315831\pi\)
0.546838 + 0.837238i \(0.315831\pi\)
\(968\) 38618.9 1.28229
\(969\) 2533.78 0.0840008
\(970\) −11887.9 −0.393501
\(971\) 45749.8 1.51203 0.756016 0.654554i \(-0.227143\pi\)
0.756016 + 0.654554i \(0.227143\pi\)
\(972\) −2163.62 −0.0713971
\(973\) −13249.5 −0.436546
\(974\) −46998.5 −1.54613
\(975\) −115557. −3.79569
\(976\) 56804.9 1.86299
\(977\) 2323.42 0.0760827 0.0380413 0.999276i \(-0.487888\pi\)
0.0380413 + 0.999276i \(0.487888\pi\)
\(978\) −985.681 −0.0322276
\(979\) −8819.74 −0.287927
\(980\) 1426.14 0.0464861
\(981\) −12612.5 −0.410484
\(982\) 5160.13 0.167685
\(983\) −32361.0 −1.05001 −0.525003 0.851100i \(-0.675936\pi\)
−0.525003 + 0.851100i \(0.675936\pi\)
\(984\) 41941.5 1.35879
\(985\) −92681.3 −2.99804
\(986\) 2331.21 0.0752949
\(987\) 7633.42 0.246175
\(988\) 4329.27 0.139405
\(989\) −3067.28 −0.0986187
\(990\) −21058.5 −0.676042
\(991\) −6747.66 −0.216293 −0.108147 0.994135i \(-0.534492\pi\)
−0.108147 + 0.994135i \(0.534492\pi\)
\(992\) −5310.08 −0.169955
\(993\) 57877.0 1.84962
\(994\) −11502.6 −0.367044
\(995\) −1537.88 −0.0489990
\(996\) −8356.17 −0.265839
\(997\) −26396.0 −0.838485 −0.419242 0.907874i \(-0.637704\pi\)
−0.419242 + 0.907874i \(0.637704\pi\)
\(998\) −55.5211 −0.00176101
\(999\) −37480.7 −1.18702
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 161.4.a.d.1.4 12
3.2 odd 2 1449.4.a.o.1.9 12
7.6 odd 2 1127.4.a.h.1.4 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
161.4.a.d.1.4 12 1.1 even 1 trivial
1127.4.a.h.1.4 12 7.6 odd 2
1449.4.a.o.1.9 12 3.2 odd 2