Properties

Label 161.4.a.d.1.2
Level $161$
Weight $4$
Character 161.1
Self dual yes
Analytic conductor $9.499$
Analytic rank $0$
Dimension $12$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [161,4,Mod(1,161)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(161, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("161.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 161 = 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 161.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(9.49930751092\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 4 x^{11} - 76 x^{10} + 311 x^{9} + 1979 x^{8} - 8466 x^{7} - 19942 x^{6} + 95647 x^{5} + \cdots - 70656 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-4.89764\) of defining polynomial
Character \(\chi\) \(=\) 161.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.89764 q^{2} +7.57994 q^{3} +15.9869 q^{4} -14.0191 q^{5} -37.1238 q^{6} +7.00000 q^{7} -39.1171 q^{8} +30.4555 q^{9} +68.6607 q^{10} +35.1776 q^{11} +121.180 q^{12} +16.8491 q^{13} -34.2835 q^{14} -106.264 q^{15} +63.6863 q^{16} -71.4072 q^{17} -149.160 q^{18} +133.530 q^{19} -224.123 q^{20} +53.0596 q^{21} -172.287 q^{22} +23.0000 q^{23} -296.505 q^{24} +71.5361 q^{25} -82.5207 q^{26} +26.1922 q^{27} +111.908 q^{28} +240.517 q^{29} +520.444 q^{30} +105.085 q^{31} +1.02401 q^{32} +266.644 q^{33} +349.727 q^{34} -98.1339 q^{35} +486.889 q^{36} +329.378 q^{37} -653.982 q^{38} +127.715 q^{39} +548.388 q^{40} -304.814 q^{41} -259.867 q^{42} +140.198 q^{43} +562.381 q^{44} -426.959 q^{45} -112.646 q^{46} +298.500 q^{47} +482.738 q^{48} +49.0000 q^{49} -350.358 q^{50} -541.262 q^{51} +269.365 q^{52} +292.191 q^{53} -128.280 q^{54} -493.159 q^{55} -273.820 q^{56} +1012.15 q^{57} -1177.97 q^{58} -62.9889 q^{59} -1698.84 q^{60} +593.679 q^{61} -514.667 q^{62} +213.188 q^{63} -514.506 q^{64} -236.209 q^{65} -1305.93 q^{66} +744.666 q^{67} -1141.58 q^{68} +174.339 q^{69} +480.625 q^{70} -277.419 q^{71} -1191.33 q^{72} -551.265 q^{73} -1613.18 q^{74} +542.239 q^{75} +2134.73 q^{76} +246.243 q^{77} -625.502 q^{78} -929.896 q^{79} -892.827 q^{80} -623.762 q^{81} +1492.87 q^{82} -749.978 q^{83} +848.259 q^{84} +1001.07 q^{85} -686.640 q^{86} +1823.10 q^{87} -1376.05 q^{88} +1124.37 q^{89} +2091.09 q^{90} +117.943 q^{91} +367.699 q^{92} +796.534 q^{93} -1461.95 q^{94} -1871.97 q^{95} +7.76194 q^{96} -1462.41 q^{97} -239.985 q^{98} +1071.35 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 4 q^{2} + q^{3} + 72 q^{4} + 16 q^{5} - 15 q^{6} + 84 q^{7} - 21 q^{8} + 203 q^{9} + 106 q^{10} + 50 q^{11} - 139 q^{12} + 21 q^{13} + 28 q^{14} + 192 q^{15} + 516 q^{16} + 26 q^{17} + 251 q^{18}+ \cdots + 2400 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.89764 −1.73158 −0.865789 0.500409i \(-0.833183\pi\)
−0.865789 + 0.500409i \(0.833183\pi\)
\(3\) 7.57994 1.45876 0.729380 0.684109i \(-0.239809\pi\)
0.729380 + 0.684109i \(0.239809\pi\)
\(4\) 15.9869 1.99837
\(5\) −14.0191 −1.25391 −0.626955 0.779056i \(-0.715699\pi\)
−0.626955 + 0.779056i \(0.715699\pi\)
\(6\) −37.1238 −2.52596
\(7\) 7.00000 0.377964
\(8\) −39.1171 −1.72875
\(9\) 30.4555 1.12798
\(10\) 68.6607 2.17124
\(11\) 35.1776 0.964222 0.482111 0.876110i \(-0.339870\pi\)
0.482111 + 0.876110i \(0.339870\pi\)
\(12\) 121.180 2.91513
\(13\) 16.8491 0.359468 0.179734 0.983715i \(-0.442476\pi\)
0.179734 + 0.983715i \(0.442476\pi\)
\(14\) −34.2835 −0.654475
\(15\) −106.264 −1.82915
\(16\) 63.6863 0.995098
\(17\) −71.4072 −1.01875 −0.509376 0.860544i \(-0.670124\pi\)
−0.509376 + 0.860544i \(0.670124\pi\)
\(18\) −149.160 −1.95319
\(19\) 133.530 1.61231 0.806154 0.591706i \(-0.201545\pi\)
0.806154 + 0.591706i \(0.201545\pi\)
\(20\) −224.123 −2.50577
\(21\) 53.0596 0.551359
\(22\) −172.287 −1.66963
\(23\) 23.0000 0.208514
\(24\) −296.505 −2.52183
\(25\) 71.5361 0.572289
\(26\) −82.5207 −0.622448
\(27\) 26.1922 0.186692
\(28\) 111.908 0.755311
\(29\) 240.517 1.54010 0.770049 0.637985i \(-0.220232\pi\)
0.770049 + 0.637985i \(0.220232\pi\)
\(30\) 520.444 3.16732
\(31\) 105.085 0.608830 0.304415 0.952539i \(-0.401539\pi\)
0.304415 + 0.952539i \(0.401539\pi\)
\(32\) 1.02401 0.00565692
\(33\) 266.644 1.40657
\(34\) 349.727 1.76405
\(35\) −98.1339 −0.473933
\(36\) 486.889 2.25412
\(37\) 329.378 1.46350 0.731749 0.681574i \(-0.238704\pi\)
0.731749 + 0.681574i \(0.238704\pi\)
\(38\) −653.982 −2.79184
\(39\) 127.715 0.524378
\(40\) 548.388 2.16769
\(41\) −304.814 −1.16107 −0.580535 0.814235i \(-0.697157\pi\)
−0.580535 + 0.814235i \(0.697157\pi\)
\(42\) −259.867 −0.954722
\(43\) 140.198 0.497209 0.248605 0.968605i \(-0.420028\pi\)
0.248605 + 0.968605i \(0.420028\pi\)
\(44\) 562.381 1.92687
\(45\) −426.959 −1.41438
\(46\) −112.646 −0.361059
\(47\) 298.500 0.926398 0.463199 0.886254i \(-0.346702\pi\)
0.463199 + 0.886254i \(0.346702\pi\)
\(48\) 482.738 1.45161
\(49\) 49.0000 0.142857
\(50\) −350.358 −0.990963
\(51\) −541.262 −1.48612
\(52\) 269.365 0.718349
\(53\) 292.191 0.757273 0.378636 0.925545i \(-0.376393\pi\)
0.378636 + 0.925545i \(0.376393\pi\)
\(54\) −128.280 −0.323272
\(55\) −493.159 −1.20905
\(56\) −273.820 −0.653405
\(57\) 1012.15 2.35197
\(58\) −1177.97 −2.66680
\(59\) −62.9889 −0.138991 −0.0694954 0.997582i \(-0.522139\pi\)
−0.0694954 + 0.997582i \(0.522139\pi\)
\(60\) −1698.84 −3.65531
\(61\) 593.679 1.24611 0.623056 0.782177i \(-0.285891\pi\)
0.623056 + 0.782177i \(0.285891\pi\)
\(62\) −514.667 −1.05424
\(63\) 213.188 0.426336
\(64\) −514.506 −1.00489
\(65\) −236.209 −0.450741
\(66\) −1305.93 −2.43558
\(67\) 744.666 1.35784 0.678921 0.734211i \(-0.262448\pi\)
0.678921 + 0.734211i \(0.262448\pi\)
\(68\) −1141.58 −2.03584
\(69\) 174.339 0.304172
\(70\) 480.625 0.820653
\(71\) −277.419 −0.463712 −0.231856 0.972750i \(-0.574480\pi\)
−0.231856 + 0.972750i \(0.574480\pi\)
\(72\) −1191.33 −1.94999
\(73\) −551.265 −0.883845 −0.441922 0.897053i \(-0.645703\pi\)
−0.441922 + 0.897053i \(0.645703\pi\)
\(74\) −1613.18 −2.53416
\(75\) 542.239 0.834832
\(76\) 2134.73 3.22198
\(77\) 246.243 0.364442
\(78\) −625.502 −0.908002
\(79\) −929.896 −1.32432 −0.662161 0.749361i \(-0.730361\pi\)
−0.662161 + 0.749361i \(0.730361\pi\)
\(80\) −892.827 −1.24776
\(81\) −623.762 −0.855641
\(82\) 1492.87 2.01049
\(83\) −749.978 −0.991817 −0.495909 0.868375i \(-0.665165\pi\)
−0.495909 + 0.868375i \(0.665165\pi\)
\(84\) 848.259 1.10182
\(85\) 1001.07 1.27742
\(86\) −686.640 −0.860957
\(87\) 1823.10 2.24663
\(88\) −1376.05 −1.66690
\(89\) 1124.37 1.33914 0.669568 0.742751i \(-0.266479\pi\)
0.669568 + 0.742751i \(0.266479\pi\)
\(90\) 2091.09 2.44912
\(91\) 117.943 0.135866
\(92\) 367.699 0.416688
\(93\) 796.534 0.888137
\(94\) −1461.95 −1.60413
\(95\) −1871.97 −2.02169
\(96\) 7.76194 0.00825208
\(97\) −1462.41 −1.53078 −0.765390 0.643567i \(-0.777454\pi\)
−0.765390 + 0.643567i \(0.777454\pi\)
\(98\) −239.985 −0.247368
\(99\) 1071.35 1.08762
\(100\) 1143.64 1.14364
\(101\) 1371.39 1.35107 0.675536 0.737327i \(-0.263912\pi\)
0.675536 + 0.737327i \(0.263912\pi\)
\(102\) 2650.91 2.57333
\(103\) −1361.55 −1.30250 −0.651251 0.758863i \(-0.725755\pi\)
−0.651251 + 0.758863i \(0.725755\pi\)
\(104\) −659.086 −0.621430
\(105\) −743.849 −0.691355
\(106\) −1431.05 −1.31128
\(107\) −1384.47 −1.25086 −0.625430 0.780280i \(-0.715076\pi\)
−0.625430 + 0.780280i \(0.715076\pi\)
\(108\) 418.732 0.373079
\(109\) 859.747 0.755494 0.377747 0.925909i \(-0.376699\pi\)
0.377747 + 0.925909i \(0.376699\pi\)
\(110\) 2415.32 2.09356
\(111\) 2496.67 2.13489
\(112\) 445.804 0.376112
\(113\) −746.954 −0.621836 −0.310918 0.950437i \(-0.600637\pi\)
−0.310918 + 0.950437i \(0.600637\pi\)
\(114\) −4957.14 −4.07262
\(115\) −322.440 −0.261458
\(116\) 3845.12 3.07768
\(117\) 513.146 0.405473
\(118\) 308.497 0.240674
\(119\) −499.851 −0.385052
\(120\) 4156.75 3.16214
\(121\) −93.5377 −0.0702762
\(122\) −2907.63 −2.15774
\(123\) −2310.47 −1.69372
\(124\) 1679.98 1.21667
\(125\) 749.518 0.536311
\(126\) −1044.12 −0.738235
\(127\) −2746.70 −1.91914 −0.959569 0.281475i \(-0.909177\pi\)
−0.959569 + 0.281475i \(0.909177\pi\)
\(128\) 2511.67 1.73440
\(129\) 1062.69 0.725309
\(130\) 1156.87 0.780493
\(131\) −1586.65 −1.05822 −0.529108 0.848554i \(-0.677474\pi\)
−0.529108 + 0.848554i \(0.677474\pi\)
\(132\) 4262.82 2.81084
\(133\) 934.709 0.609395
\(134\) −3647.11 −2.35121
\(135\) −367.192 −0.234095
\(136\) 2793.24 1.76117
\(137\) 1352.96 0.843729 0.421865 0.906659i \(-0.361376\pi\)
0.421865 + 0.906659i \(0.361376\pi\)
\(138\) −853.848 −0.526699
\(139\) −1160.94 −0.708417 −0.354209 0.935166i \(-0.615250\pi\)
−0.354209 + 0.935166i \(0.615250\pi\)
\(140\) −1568.86 −0.947092
\(141\) 2262.61 1.35139
\(142\) 1358.70 0.802954
\(143\) 592.709 0.346607
\(144\) 1939.60 1.12245
\(145\) −3371.84 −1.93114
\(146\) 2699.90 1.53045
\(147\) 371.417 0.208394
\(148\) 5265.74 2.92460
\(149\) −547.404 −0.300974 −0.150487 0.988612i \(-0.548084\pi\)
−0.150487 + 0.988612i \(0.548084\pi\)
\(150\) −2655.69 −1.44558
\(151\) 1894.02 1.02075 0.510373 0.859953i \(-0.329507\pi\)
0.510373 + 0.859953i \(0.329507\pi\)
\(152\) −5223.30 −2.78727
\(153\) −2174.74 −1.14913
\(154\) −1206.01 −0.631059
\(155\) −1473.19 −0.763418
\(156\) 2041.77 1.04790
\(157\) 1632.57 0.829891 0.414946 0.909846i \(-0.363801\pi\)
0.414946 + 0.909846i \(0.363801\pi\)
\(158\) 4554.30 2.29317
\(159\) 2214.79 1.10468
\(160\) −14.3557 −0.00709326
\(161\) 161.000 0.0788110
\(162\) 3054.97 1.48161
\(163\) −1994.34 −0.958338 −0.479169 0.877723i \(-0.659062\pi\)
−0.479169 + 0.877723i \(0.659062\pi\)
\(164\) −4873.03 −2.32024
\(165\) −3738.12 −1.76371
\(166\) 3673.13 1.71741
\(167\) 37.7222 0.0174792 0.00873962 0.999962i \(-0.497218\pi\)
0.00873962 + 0.999962i \(0.497218\pi\)
\(168\) −2075.54 −0.953161
\(169\) −1913.11 −0.870782
\(170\) −4902.87 −2.21196
\(171\) 4066.71 1.81865
\(172\) 2241.33 0.993605
\(173\) −3701.46 −1.62669 −0.813344 0.581784i \(-0.802355\pi\)
−0.813344 + 0.581784i \(0.802355\pi\)
\(174\) −8928.91 −3.89022
\(175\) 500.753 0.216305
\(176\) 2240.33 0.959496
\(177\) −477.452 −0.202754
\(178\) −5506.77 −2.31882
\(179\) 1615.16 0.674430 0.337215 0.941428i \(-0.390515\pi\)
0.337215 + 0.941428i \(0.390515\pi\)
\(180\) −6825.76 −2.82646
\(181\) −2592.58 −1.06467 −0.532333 0.846535i \(-0.678685\pi\)
−0.532333 + 0.846535i \(0.678685\pi\)
\(182\) −577.645 −0.235263
\(183\) 4500.05 1.81778
\(184\) −899.693 −0.360469
\(185\) −4617.60 −1.83509
\(186\) −3901.14 −1.53788
\(187\) −2511.93 −0.982304
\(188\) 4772.09 1.85128
\(189\) 183.345 0.0705630
\(190\) 9168.26 3.50071
\(191\) 3725.70 1.41142 0.705712 0.708499i \(-0.250627\pi\)
0.705712 + 0.708499i \(0.250627\pi\)
\(192\) −3899.92 −1.46590
\(193\) 1936.79 0.722347 0.361173 0.932499i \(-0.382376\pi\)
0.361173 + 0.932499i \(0.382376\pi\)
\(194\) 7162.38 2.65067
\(195\) −1790.45 −0.657522
\(196\) 783.359 0.285481
\(197\) 151.465 0.0547788 0.0273894 0.999625i \(-0.491281\pi\)
0.0273894 + 0.999625i \(0.491281\pi\)
\(198\) −5247.09 −1.88330
\(199\) 3213.25 1.14463 0.572314 0.820035i \(-0.306046\pi\)
0.572314 + 0.820035i \(0.306046\pi\)
\(200\) −2798.28 −0.989343
\(201\) 5644.52 1.98077
\(202\) −6716.57 −2.33949
\(203\) 1683.62 0.582102
\(204\) −8653.12 −2.96980
\(205\) 4273.22 1.45588
\(206\) 6668.39 2.25538
\(207\) 700.476 0.235200
\(208\) 1073.05 0.357706
\(209\) 4697.26 1.55462
\(210\) 3643.11 1.19714
\(211\) 3721.23 1.21412 0.607061 0.794655i \(-0.292348\pi\)
0.607061 + 0.794655i \(0.292348\pi\)
\(212\) 4671.23 1.51331
\(213\) −2102.82 −0.676445
\(214\) 6780.66 2.16596
\(215\) −1965.45 −0.623455
\(216\) −1024.56 −0.322744
\(217\) 735.592 0.230116
\(218\) −4210.73 −1.30820
\(219\) −4178.55 −1.28932
\(220\) −7884.10 −2.41612
\(221\) −1203.15 −0.366209
\(222\) −12227.8 −3.69673
\(223\) 2213.82 0.664791 0.332396 0.943140i \(-0.392143\pi\)
0.332396 + 0.943140i \(0.392143\pi\)
\(224\) 7.16808 0.00213811
\(225\) 2178.66 0.645530
\(226\) 3658.32 1.07676
\(227\) −924.567 −0.270333 −0.135167 0.990823i \(-0.543157\pi\)
−0.135167 + 0.990823i \(0.543157\pi\)
\(228\) 16181.1 4.70010
\(229\) 5561.96 1.60500 0.802500 0.596652i \(-0.203503\pi\)
0.802500 + 0.596652i \(0.203503\pi\)
\(230\) 1579.20 0.452735
\(231\) 1866.51 0.531633
\(232\) −9408.32 −2.66244
\(233\) −978.431 −0.275104 −0.137552 0.990495i \(-0.543923\pi\)
−0.137552 + 0.990495i \(0.543923\pi\)
\(234\) −2513.21 −0.702109
\(235\) −4184.71 −1.16162
\(236\) −1007.00 −0.277754
\(237\) −7048.56 −1.93187
\(238\) 2448.09 0.666749
\(239\) −3086.70 −0.835407 −0.417703 0.908583i \(-0.637165\pi\)
−0.417703 + 0.908583i \(0.637165\pi\)
\(240\) −6767.57 −1.82019
\(241\) −4927.18 −1.31696 −0.658480 0.752598i \(-0.728800\pi\)
−0.658480 + 0.752598i \(0.728800\pi\)
\(242\) 458.114 0.121689
\(243\) −5435.27 −1.43487
\(244\) 9491.10 2.49019
\(245\) −686.938 −0.179130
\(246\) 11315.9 2.93281
\(247\) 2249.85 0.579574
\(248\) −4110.60 −1.05251
\(249\) −5684.79 −1.44682
\(250\) −3670.87 −0.928665
\(251\) 3873.90 0.974177 0.487089 0.873353i \(-0.338059\pi\)
0.487089 + 0.873353i \(0.338059\pi\)
\(252\) 3408.22 0.851976
\(253\) 809.084 0.201054
\(254\) 13452.4 3.32314
\(255\) 7588.03 1.86345
\(256\) −8185.24 −1.99835
\(257\) 4056.98 0.984697 0.492349 0.870398i \(-0.336138\pi\)
0.492349 + 0.870398i \(0.336138\pi\)
\(258\) −5204.69 −1.25593
\(259\) 2305.65 0.553150
\(260\) −3776.26 −0.900745
\(261\) 7325.05 1.73720
\(262\) 7770.86 1.83239
\(263\) −3089.32 −0.724318 −0.362159 0.932116i \(-0.617960\pi\)
−0.362159 + 0.932116i \(0.617960\pi\)
\(264\) −10430.3 −2.43160
\(265\) −4096.26 −0.949552
\(266\) −4577.87 −1.05522
\(267\) 8522.66 1.95348
\(268\) 11904.9 2.71347
\(269\) −7152.14 −1.62109 −0.810546 0.585675i \(-0.800830\pi\)
−0.810546 + 0.585675i \(0.800830\pi\)
\(270\) 1798.37 0.405354
\(271\) −5385.90 −1.20727 −0.603635 0.797261i \(-0.706281\pi\)
−0.603635 + 0.797261i \(0.706281\pi\)
\(272\) −4547.66 −1.01376
\(273\) 894.004 0.198196
\(274\) −6626.30 −1.46098
\(275\) 2516.47 0.551813
\(276\) 2787.14 0.607848
\(277\) −6955.45 −1.50871 −0.754354 0.656467i \(-0.772050\pi\)
−0.754354 + 0.656467i \(0.772050\pi\)
\(278\) 5685.89 1.22668
\(279\) 3200.40 0.686748
\(280\) 3838.72 0.819311
\(281\) 3088.75 0.655728 0.327864 0.944725i \(-0.393671\pi\)
0.327864 + 0.944725i \(0.393671\pi\)
\(282\) −11081.5 −2.34004
\(283\) 3113.25 0.653934 0.326967 0.945036i \(-0.393973\pi\)
0.326967 + 0.945036i \(0.393973\pi\)
\(284\) −4435.08 −0.926667
\(285\) −14189.4 −2.94916
\(286\) −2902.88 −0.600178
\(287\) −2133.70 −0.438843
\(288\) 31.1867 0.00638089
\(289\) 185.994 0.0378576
\(290\) 16514.1 3.34393
\(291\) −11085.0 −2.23304
\(292\) −8813.03 −1.76624
\(293\) 2979.02 0.593980 0.296990 0.954881i \(-0.404017\pi\)
0.296990 + 0.954881i \(0.404017\pi\)
\(294\) −1819.07 −0.360851
\(295\) 883.050 0.174282
\(296\) −12884.3 −2.53002
\(297\) 921.378 0.180013
\(298\) 2680.99 0.521160
\(299\) 387.528 0.0749543
\(300\) 8668.73 1.66830
\(301\) 981.386 0.187927
\(302\) −9276.21 −1.76750
\(303\) 10395.0 1.97089
\(304\) 8504.02 1.60441
\(305\) −8322.87 −1.56251
\(306\) 10651.1 1.98981
\(307\) 98.3382 0.0182816 0.00914081 0.999958i \(-0.497090\pi\)
0.00914081 + 0.999958i \(0.497090\pi\)
\(308\) 3936.67 0.728287
\(309\) −10320.5 −1.90004
\(310\) 7215.18 1.32192
\(311\) 3614.30 0.658997 0.329499 0.944156i \(-0.393120\pi\)
0.329499 + 0.944156i \(0.393120\pi\)
\(312\) −4995.83 −0.906517
\(313\) −3891.47 −0.702744 −0.351372 0.936236i \(-0.614285\pi\)
−0.351372 + 0.936236i \(0.614285\pi\)
\(314\) −7995.73 −1.43702
\(315\) −2988.71 −0.534587
\(316\) −14866.2 −2.64648
\(317\) −551.746 −0.0977576 −0.0488788 0.998805i \(-0.515565\pi\)
−0.0488788 + 0.998805i \(0.515565\pi\)
\(318\) −10847.2 −1.91284
\(319\) 8460.80 1.48500
\(320\) 7212.92 1.26005
\(321\) −10494.2 −1.82470
\(322\) −788.521 −0.136468
\(323\) −9535.00 −1.64254
\(324\) −9972.04 −1.70988
\(325\) 1205.32 0.205720
\(326\) 9767.58 1.65944
\(327\) 6516.83 1.10208
\(328\) 11923.4 2.00720
\(329\) 2089.50 0.350145
\(330\) 18308.0 3.05400
\(331\) 2521.09 0.418645 0.209323 0.977847i \(-0.432874\pi\)
0.209323 + 0.977847i \(0.432874\pi\)
\(332\) −11989.8 −1.98201
\(333\) 10031.4 1.65080
\(334\) −184.750 −0.0302667
\(335\) −10439.6 −1.70261
\(336\) 3379.17 0.548657
\(337\) −97.0240 −0.0156832 −0.00784160 0.999969i \(-0.502496\pi\)
−0.00784160 + 0.999969i \(0.502496\pi\)
\(338\) 9369.73 1.50783
\(339\) −5661.87 −0.907110
\(340\) 16004.0 2.55276
\(341\) 3696.62 0.587047
\(342\) −19917.3 −3.14914
\(343\) 343.000 0.0539949
\(344\) −5484.14 −0.859549
\(345\) −2444.08 −0.381405
\(346\) 18128.4 2.81674
\(347\) 1470.36 0.227473 0.113737 0.993511i \(-0.463718\pi\)
0.113737 + 0.993511i \(0.463718\pi\)
\(348\) 29145.8 4.48959
\(349\) 6640.36 1.01848 0.509241 0.860624i \(-0.329926\pi\)
0.509241 + 0.860624i \(0.329926\pi\)
\(350\) −2452.51 −0.374549
\(351\) 441.314 0.0671099
\(352\) 36.0222 0.00545452
\(353\) 846.354 0.127612 0.0638058 0.997962i \(-0.479676\pi\)
0.0638058 + 0.997962i \(0.479676\pi\)
\(354\) 2338.39 0.351085
\(355\) 3889.17 0.581453
\(356\) 17975.2 2.67608
\(357\) −3788.84 −0.561699
\(358\) −7910.50 −1.16783
\(359\) 509.029 0.0748343 0.0374172 0.999300i \(-0.488087\pi\)
0.0374172 + 0.999300i \(0.488087\pi\)
\(360\) 16701.4 2.44511
\(361\) 10971.2 1.59954
\(362\) 12697.5 1.84355
\(363\) −709.010 −0.102516
\(364\) 1885.55 0.271510
\(365\) 7728.25 1.10826
\(366\) −22039.6 −3.14763
\(367\) −3417.70 −0.486110 −0.243055 0.970013i \(-0.578149\pi\)
−0.243055 + 0.970013i \(0.578149\pi\)
\(368\) 1464.78 0.207492
\(369\) −9283.24 −1.30966
\(370\) 22615.3 3.17761
\(371\) 2045.33 0.286222
\(372\) 12734.1 1.77482
\(373\) −13091.1 −1.81724 −0.908619 0.417625i \(-0.862863\pi\)
−0.908619 + 0.417625i \(0.862863\pi\)
\(374\) 12302.6 1.70094
\(375\) 5681.30 0.782349
\(376\) −11676.5 −1.60151
\(377\) 4052.48 0.553617
\(378\) −897.960 −0.122185
\(379\) −314.160 −0.0425787 −0.0212893 0.999773i \(-0.506777\pi\)
−0.0212893 + 0.999773i \(0.506777\pi\)
\(380\) −29927.1 −4.04007
\(381\) −20819.8 −2.79956
\(382\) −18247.1 −2.44399
\(383\) 4196.06 0.559814 0.279907 0.960027i \(-0.409696\pi\)
0.279907 + 0.960027i \(0.409696\pi\)
\(384\) 19038.3 2.53007
\(385\) −3452.11 −0.456977
\(386\) −9485.69 −1.25080
\(387\) 4269.79 0.560842
\(388\) −23379.5 −3.05906
\(389\) 12186.3 1.58836 0.794179 0.607684i \(-0.207901\pi\)
0.794179 + 0.607684i \(0.207901\pi\)
\(390\) 8768.99 1.13855
\(391\) −1642.37 −0.212425
\(392\) −1916.74 −0.246964
\(393\) −12026.7 −1.54368
\(394\) −741.821 −0.0948538
\(395\) 13036.3 1.66058
\(396\) 17127.6 2.17347
\(397\) −14249.9 −1.80146 −0.900731 0.434377i \(-0.856969\pi\)
−0.900731 + 0.434377i \(0.856969\pi\)
\(398\) −15737.3 −1.98201
\(399\) 7085.04 0.888961
\(400\) 4555.87 0.569484
\(401\) 11729.8 1.46074 0.730369 0.683053i \(-0.239348\pi\)
0.730369 + 0.683053i \(0.239348\pi\)
\(402\) −27644.9 −3.42985
\(403\) 1770.58 0.218855
\(404\) 21924.3 2.69993
\(405\) 8744.61 1.07290
\(406\) −8245.76 −1.00796
\(407\) 11586.7 1.41114
\(408\) 21172.6 2.56912
\(409\) −8062.38 −0.974716 −0.487358 0.873202i \(-0.662039\pi\)
−0.487358 + 0.873202i \(0.662039\pi\)
\(410\) −20928.7 −2.52097
\(411\) 10255.3 1.23080
\(412\) −21767.0 −2.60287
\(413\) −440.922 −0.0525336
\(414\) −3430.68 −0.407268
\(415\) 10514.0 1.24365
\(416\) 17.2536 0.00203348
\(417\) −8799.89 −1.03341
\(418\) −23005.5 −2.69195
\(419\) −7705.35 −0.898404 −0.449202 0.893430i \(-0.648292\pi\)
−0.449202 + 0.893430i \(0.648292\pi\)
\(420\) −11891.9 −1.38158
\(421\) 7993.86 0.925408 0.462704 0.886513i \(-0.346879\pi\)
0.462704 + 0.886513i \(0.346879\pi\)
\(422\) −18225.3 −2.10235
\(423\) 9090.95 1.04496
\(424\) −11429.7 −1.30913
\(425\) −5108.19 −0.583021
\(426\) 10298.9 1.17132
\(427\) 4155.75 0.470986
\(428\) −22133.5 −2.49968
\(429\) 4492.70 0.505617
\(430\) 9626.10 1.07956
\(431\) −7237.36 −0.808843 −0.404422 0.914573i \(-0.632527\pi\)
−0.404422 + 0.914573i \(0.632527\pi\)
\(432\) 1668.08 0.185777
\(433\) −13092.0 −1.45303 −0.726513 0.687153i \(-0.758860\pi\)
−0.726513 + 0.687153i \(0.758860\pi\)
\(434\) −3602.67 −0.398464
\(435\) −25558.3 −2.81707
\(436\) 13744.7 1.50975
\(437\) 3071.19 0.336189
\(438\) 20465.1 2.23255
\(439\) −263.091 −0.0286029 −0.0143014 0.999898i \(-0.504552\pi\)
−0.0143014 + 0.999898i \(0.504552\pi\)
\(440\) 19291.0 2.09014
\(441\) 1492.32 0.161140
\(442\) 5892.58 0.634121
\(443\) 13153.4 1.41070 0.705349 0.708860i \(-0.250790\pi\)
0.705349 + 0.708860i \(0.250790\pi\)
\(444\) 39914.0 4.26629
\(445\) −15762.7 −1.67915
\(446\) −10842.5 −1.15114
\(447\) −4149.29 −0.439048
\(448\) −3601.54 −0.379814
\(449\) 11598.8 1.21911 0.609555 0.792744i \(-0.291348\pi\)
0.609555 + 0.792744i \(0.291348\pi\)
\(450\) −10670.3 −1.11779
\(451\) −10722.6 −1.11953
\(452\) −11941.5 −1.24266
\(453\) 14356.5 1.48902
\(454\) 4528.20 0.468103
\(455\) −1653.46 −0.170364
\(456\) −39592.3 −4.06596
\(457\) 5365.07 0.549163 0.274582 0.961564i \(-0.411461\pi\)
0.274582 + 0.961564i \(0.411461\pi\)
\(458\) −27240.5 −2.77918
\(459\) −1870.31 −0.190193
\(460\) −5154.82 −0.522489
\(461\) 700.237 0.0707446 0.0353723 0.999374i \(-0.488738\pi\)
0.0353723 + 0.999374i \(0.488738\pi\)
\(462\) −9141.49 −0.920564
\(463\) 3526.32 0.353957 0.176979 0.984215i \(-0.443368\pi\)
0.176979 + 0.984215i \(0.443368\pi\)
\(464\) 15317.6 1.53255
\(465\) −11166.7 −1.11364
\(466\) 4792.01 0.476364
\(467\) 714.018 0.0707512 0.0353756 0.999374i \(-0.488737\pi\)
0.0353756 + 0.999374i \(0.488737\pi\)
\(468\) 8203.62 0.810283
\(469\) 5212.66 0.513216
\(470\) 20495.2 2.01143
\(471\) 12374.8 1.21061
\(472\) 2463.94 0.240280
\(473\) 4931.83 0.479420
\(474\) 34521.3 3.34518
\(475\) 9552.21 0.922706
\(476\) −7991.07 −0.769475
\(477\) 8898.80 0.854189
\(478\) 15117.6 1.44657
\(479\) −1380.74 −0.131707 −0.0658533 0.997829i \(-0.520977\pi\)
−0.0658533 + 0.997829i \(0.520977\pi\)
\(480\) −108.816 −0.0103474
\(481\) 5549.71 0.526081
\(482\) 24131.6 2.28042
\(483\) 1220.37 0.114966
\(484\) −1495.38 −0.140438
\(485\) 20501.8 1.91946
\(486\) 26620.0 2.48459
\(487\) −1245.71 −0.115910 −0.0579552 0.998319i \(-0.518458\pi\)
−0.0579552 + 0.998319i \(0.518458\pi\)
\(488\) −23223.0 −2.15421
\(489\) −15117.0 −1.39798
\(490\) 3364.38 0.310178
\(491\) 13384.2 1.23019 0.615094 0.788454i \(-0.289118\pi\)
0.615094 + 0.788454i \(0.289118\pi\)
\(492\) −36937.3 −3.38468
\(493\) −17174.6 −1.56898
\(494\) −11019.0 −1.00358
\(495\) −15019.4 −1.36378
\(496\) 6692.44 0.605846
\(497\) −1941.93 −0.175267
\(498\) 27842.1 2.50529
\(499\) −17600.2 −1.57894 −0.789471 0.613788i \(-0.789645\pi\)
−0.789471 + 0.613788i \(0.789645\pi\)
\(500\) 11982.5 1.07175
\(501\) 285.932 0.0254980
\(502\) −18973.0 −1.68686
\(503\) −17189.1 −1.52371 −0.761854 0.647749i \(-0.775711\pi\)
−0.761854 + 0.647749i \(0.775711\pi\)
\(504\) −8339.31 −0.737028
\(505\) −19225.7 −1.69412
\(506\) −3962.61 −0.348141
\(507\) −14501.2 −1.27026
\(508\) −43911.3 −3.83514
\(509\) −4387.71 −0.382086 −0.191043 0.981582i \(-0.561187\pi\)
−0.191043 + 0.981582i \(0.561187\pi\)
\(510\) −37163.5 −3.22672
\(511\) −3858.85 −0.334062
\(512\) 19995.0 1.72590
\(513\) 3497.44 0.301005
\(514\) −19869.6 −1.70508
\(515\) 19087.8 1.63322
\(516\) 16989.2 1.44943
\(517\) 10500.5 0.893253
\(518\) −11292.2 −0.957823
\(519\) −28056.8 −2.37295
\(520\) 9239.82 0.779217
\(521\) 10646.2 0.895236 0.447618 0.894225i \(-0.352273\pi\)
0.447618 + 0.894225i \(0.352273\pi\)
\(522\) −35875.5 −3.00810
\(523\) −16978.5 −1.41954 −0.709768 0.704436i \(-0.751200\pi\)
−0.709768 + 0.704436i \(0.751200\pi\)
\(524\) −25365.7 −2.11470
\(525\) 3795.67 0.315537
\(526\) 15130.4 1.25421
\(527\) −7503.80 −0.620248
\(528\) 16981.6 1.39967
\(529\) 529.000 0.0434783
\(530\) 20062.0 1.64422
\(531\) −1918.36 −0.156779
\(532\) 14943.1 1.21779
\(533\) −5135.82 −0.417368
\(534\) −41741.0 −3.38260
\(535\) 19409.1 1.56847
\(536\) −29129.2 −2.34737
\(537\) 12242.8 0.983832
\(538\) 35028.7 2.80705
\(539\) 1723.70 0.137746
\(540\) −5870.26 −0.467807
\(541\) −13975.9 −1.11067 −0.555333 0.831628i \(-0.687409\pi\)
−0.555333 + 0.831628i \(0.687409\pi\)
\(542\) 26378.2 2.09048
\(543\) −19651.6 −1.55309
\(544\) −73.1218 −0.00576300
\(545\) −12052.9 −0.947320
\(546\) −4378.51 −0.343192
\(547\) 18965.2 1.48243 0.741217 0.671265i \(-0.234249\pi\)
0.741217 + 0.671265i \(0.234249\pi\)
\(548\) 21629.6 1.68608
\(549\) 18080.8 1.40559
\(550\) −12324.8 −0.955508
\(551\) 32116.2 2.48311
\(552\) −6819.62 −0.525838
\(553\) −6509.27 −0.500547
\(554\) 34065.3 2.61245
\(555\) −35001.1 −2.67696
\(556\) −18559.9 −1.41568
\(557\) −7420.49 −0.564482 −0.282241 0.959344i \(-0.591078\pi\)
−0.282241 + 0.959344i \(0.591078\pi\)
\(558\) −15674.4 −1.18916
\(559\) 2362.20 0.178731
\(560\) −6249.79 −0.471610
\(561\) −19040.3 −1.43295
\(562\) −15127.6 −1.13545
\(563\) 3213.41 0.240549 0.120275 0.992741i \(-0.461623\pi\)
0.120275 + 0.992741i \(0.461623\pi\)
\(564\) 36172.2 2.70057
\(565\) 10471.6 0.779727
\(566\) −15247.6 −1.13234
\(567\) −4366.34 −0.323402
\(568\) 10851.8 0.801642
\(569\) −7889.49 −0.581274 −0.290637 0.956833i \(-0.593867\pi\)
−0.290637 + 0.956833i \(0.593867\pi\)
\(570\) 69494.8 5.10670
\(571\) 18255.0 1.33791 0.668956 0.743302i \(-0.266741\pi\)
0.668956 + 0.743302i \(0.266741\pi\)
\(572\) 9475.60 0.692648
\(573\) 28240.6 2.05893
\(574\) 10450.1 0.759892
\(575\) 1645.33 0.119330
\(576\) −15669.5 −1.13350
\(577\) 4723.25 0.340783 0.170391 0.985376i \(-0.445497\pi\)
0.170391 + 0.985376i \(0.445497\pi\)
\(578\) −910.933 −0.0655533
\(579\) 14680.7 1.05373
\(580\) −53905.3 −3.85913
\(581\) −5249.85 −0.374872
\(582\) 54290.4 3.86668
\(583\) 10278.6 0.730179
\(584\) 21563.9 1.52794
\(585\) −7193.86 −0.508427
\(586\) −14590.2 −1.02852
\(587\) −9362.17 −0.658293 −0.329147 0.944279i \(-0.606761\pi\)
−0.329147 + 0.944279i \(0.606761\pi\)
\(588\) 5937.81 0.416448
\(589\) 14031.9 0.981622
\(590\) −4324.86 −0.301783
\(591\) 1148.09 0.0799091
\(592\) 20976.9 1.45632
\(593\) −25733.2 −1.78202 −0.891008 0.453988i \(-0.850001\pi\)
−0.891008 + 0.453988i \(0.850001\pi\)
\(594\) −4512.58 −0.311706
\(595\) 7007.47 0.482821
\(596\) −8751.30 −0.601455
\(597\) 24356.2 1.66974
\(598\) −1897.98 −0.129789
\(599\) −18606.5 −1.26918 −0.634591 0.772848i \(-0.718831\pi\)
−0.634591 + 0.772848i \(0.718831\pi\)
\(600\) −21210.8 −1.44321
\(601\) −17493.3 −1.18730 −0.593651 0.804723i \(-0.702314\pi\)
−0.593651 + 0.804723i \(0.702314\pi\)
\(602\) −4806.48 −0.325411
\(603\) 22679.2 1.53162
\(604\) 30279.5 2.03982
\(605\) 1311.32 0.0881200
\(606\) −50911.2 −3.41275
\(607\) −11212.7 −0.749771 −0.374885 0.927071i \(-0.622318\pi\)
−0.374885 + 0.927071i \(0.622318\pi\)
\(608\) 136.736 0.00912069
\(609\) 12761.7 0.849148
\(610\) 40762.4 2.70561
\(611\) 5029.44 0.333011
\(612\) −34767.4 −2.29639
\(613\) 25386.1 1.67265 0.836326 0.548232i \(-0.184699\pi\)
0.836326 + 0.548232i \(0.184699\pi\)
\(614\) −481.625 −0.0316561
\(615\) 32390.8 2.12378
\(616\) −9632.32 −0.630028
\(617\) −202.481 −0.0132116 −0.00660581 0.999978i \(-0.502103\pi\)
−0.00660581 + 0.999978i \(0.502103\pi\)
\(618\) 50546.0 3.29006
\(619\) 15754.9 1.02301 0.511504 0.859281i \(-0.329088\pi\)
0.511504 + 0.859281i \(0.329088\pi\)
\(620\) −23551.8 −1.52559
\(621\) 602.420 0.0389280
\(622\) −17701.6 −1.14111
\(623\) 7870.59 0.506146
\(624\) 8133.68 0.521808
\(625\) −19449.6 −1.24477
\(626\) 19059.0 1.21686
\(627\) 35604.9 2.26782
\(628\) 26099.7 1.65843
\(629\) −23520.0 −1.49094
\(630\) 14637.7 0.925680
\(631\) −11543.0 −0.728242 −0.364121 0.931352i \(-0.618630\pi\)
−0.364121 + 0.931352i \(0.618630\pi\)
\(632\) 36374.8 2.28942
\(633\) 28206.7 1.77111
\(634\) 2702.26 0.169275
\(635\) 38506.4 2.40642
\(636\) 35407.6 2.20755
\(637\) 825.604 0.0513526
\(638\) −41438.0 −2.57139
\(639\) −8448.92 −0.523058
\(640\) −35211.5 −2.17478
\(641\) −3765.88 −0.232049 −0.116024 0.993246i \(-0.537015\pi\)
−0.116024 + 0.993246i \(0.537015\pi\)
\(642\) 51397.0 3.15962
\(643\) −18886.8 −1.15835 −0.579176 0.815202i \(-0.696626\pi\)
−0.579176 + 0.815202i \(0.696626\pi\)
\(644\) 2573.89 0.157493
\(645\) −14898.0 −0.909471
\(646\) 46699.0 2.84419
\(647\) −20512.8 −1.24643 −0.623215 0.782051i \(-0.714174\pi\)
−0.623215 + 0.782051i \(0.714174\pi\)
\(648\) 24399.8 1.47919
\(649\) −2215.80 −0.134018
\(650\) −5903.21 −0.356220
\(651\) 5575.74 0.335684
\(652\) −31883.4 −1.91511
\(653\) 14632.7 0.876909 0.438455 0.898753i \(-0.355526\pi\)
0.438455 + 0.898753i \(0.355526\pi\)
\(654\) −31917.1 −1.90834
\(655\) 22243.5 1.32691
\(656\) −19412.5 −1.15538
\(657\) −16789.0 −0.996959
\(658\) −10233.6 −0.606304
\(659\) −13652.1 −0.806994 −0.403497 0.914981i \(-0.632205\pi\)
−0.403497 + 0.914981i \(0.632205\pi\)
\(660\) −59761.0 −3.52453
\(661\) −6188.35 −0.364144 −0.182072 0.983285i \(-0.558280\pi\)
−0.182072 + 0.983285i \(0.558280\pi\)
\(662\) −12347.4 −0.724917
\(663\) −9119.76 −0.534212
\(664\) 29337.0 1.71460
\(665\) −13103.8 −0.764126
\(666\) −49130.0 −2.85848
\(667\) 5531.89 0.321133
\(668\) 603.062 0.0349299
\(669\) 16780.6 0.969771
\(670\) 51129.3 2.94821
\(671\) 20884.2 1.20153
\(672\) 54.3336 0.00311899
\(673\) 27024.1 1.54785 0.773925 0.633277i \(-0.218291\pi\)
0.773925 + 0.633277i \(0.218291\pi\)
\(674\) 475.189 0.0271567
\(675\) 1873.69 0.106842
\(676\) −30584.7 −1.74014
\(677\) 18115.8 1.02843 0.514214 0.857662i \(-0.328084\pi\)
0.514214 + 0.857662i \(0.328084\pi\)
\(678\) 27729.8 1.57073
\(679\) −10236.9 −0.578580
\(680\) −39158.9 −2.20834
\(681\) −7008.16 −0.394351
\(682\) −18104.7 −1.01652
\(683\) −18663.6 −1.04560 −0.522800 0.852455i \(-0.675113\pi\)
−0.522800 + 0.852455i \(0.675113\pi\)
\(684\) 65014.2 3.63433
\(685\) −18967.3 −1.05796
\(686\) −1679.89 −0.0934965
\(687\) 42159.3 2.34131
\(688\) 8928.69 0.494772
\(689\) 4923.14 0.272216
\(690\) 11970.2 0.660432
\(691\) −4808.47 −0.264722 −0.132361 0.991202i \(-0.542256\pi\)
−0.132361 + 0.991202i \(0.542256\pi\)
\(692\) −59175.0 −3.25071
\(693\) 7499.45 0.411083
\(694\) −7201.31 −0.393888
\(695\) 16275.4 0.888291
\(696\) −71314.5 −3.88386
\(697\) 21765.9 1.18284
\(698\) −32522.1 −1.76358
\(699\) −7416.45 −0.401310
\(700\) 8005.49 0.432256
\(701\) −13236.7 −0.713188 −0.356594 0.934259i \(-0.616062\pi\)
−0.356594 + 0.934259i \(0.616062\pi\)
\(702\) −2161.40 −0.116206
\(703\) 43981.8 2.35961
\(704\) −18099.1 −0.968940
\(705\) −31719.8 −1.69452
\(706\) −4145.14 −0.220969
\(707\) 9599.71 0.510657
\(708\) −7632.99 −0.405177
\(709\) 3430.92 0.181736 0.0908681 0.995863i \(-0.471036\pi\)
0.0908681 + 0.995863i \(0.471036\pi\)
\(710\) −19047.8 −1.00683
\(711\) −28320.4 −1.49381
\(712\) −43982.1 −2.31503
\(713\) 2416.94 0.126950
\(714\) 18556.4 0.972626
\(715\) −8309.27 −0.434614
\(716\) 25821.5 1.34776
\(717\) −23397.0 −1.21866
\(718\) −2493.04 −0.129582
\(719\) −3473.95 −0.180190 −0.0900950 0.995933i \(-0.528717\pi\)
−0.0900950 + 0.995933i \(0.528717\pi\)
\(720\) −27191.4 −1.40745
\(721\) −9530.86 −0.492299
\(722\) −53733.2 −2.76972
\(723\) −37347.7 −1.92113
\(724\) −41447.3 −2.12759
\(725\) 17205.6 0.881381
\(726\) 3472.48 0.177515
\(727\) 30372.8 1.54947 0.774736 0.632285i \(-0.217883\pi\)
0.774736 + 0.632285i \(0.217883\pi\)
\(728\) −4613.61 −0.234879
\(729\) −24357.4 −1.23749
\(730\) −37850.2 −1.91904
\(731\) −10011.2 −0.506533
\(732\) 71942.0 3.63258
\(733\) 1787.59 0.0900765 0.0450383 0.998985i \(-0.485659\pi\)
0.0450383 + 0.998985i \(0.485659\pi\)
\(734\) 16738.7 0.841737
\(735\) −5206.94 −0.261308
\(736\) 23.5523 0.00117955
\(737\) 26195.6 1.30926
\(738\) 45466.0 2.26779
\(739\) 17095.5 0.850971 0.425485 0.904965i \(-0.360103\pi\)
0.425485 + 0.904965i \(0.360103\pi\)
\(740\) −73821.1 −3.66719
\(741\) 17053.7 0.845459
\(742\) −10017.3 −0.495616
\(743\) −10540.7 −0.520459 −0.260230 0.965547i \(-0.583798\pi\)
−0.260230 + 0.965547i \(0.583798\pi\)
\(744\) −31158.1 −1.53537
\(745\) 7674.13 0.377394
\(746\) 64115.4 3.14669
\(747\) −22840.9 −1.11875
\(748\) −40158.1 −1.96300
\(749\) −9691.31 −0.472781
\(750\) −27825.0 −1.35470
\(751\) −29453.8 −1.43114 −0.715570 0.698541i \(-0.753833\pi\)
−0.715570 + 0.698541i \(0.753833\pi\)
\(752\) 19010.4 0.921857
\(753\) 29363.9 1.42109
\(754\) −19847.6 −0.958631
\(755\) −26552.4 −1.27992
\(756\) 2931.13 0.141011
\(757\) 11615.2 0.557675 0.278838 0.960338i \(-0.410051\pi\)
0.278838 + 0.960338i \(0.410051\pi\)
\(758\) 1538.64 0.0737283
\(759\) 6132.81 0.293290
\(760\) 73226.2 3.49499
\(761\) −38984.8 −1.85703 −0.928513 0.371299i \(-0.878912\pi\)
−0.928513 + 0.371299i \(0.878912\pi\)
\(762\) 101968. 4.84766
\(763\) 6018.23 0.285550
\(764\) 59562.4 2.82054
\(765\) 30488.0 1.44091
\(766\) −20550.8 −0.969362
\(767\) −1061.30 −0.0499628
\(768\) −62043.6 −2.91511
\(769\) −23455.3 −1.09990 −0.549948 0.835199i \(-0.685352\pi\)
−0.549948 + 0.835199i \(0.685352\pi\)
\(770\) 16907.2 0.791291
\(771\) 30751.6 1.43644
\(772\) 30963.3 1.44351
\(773\) −30007.9 −1.39626 −0.698131 0.715970i \(-0.745985\pi\)
−0.698131 + 0.715970i \(0.745985\pi\)
\(774\) −20911.9 −0.971142
\(775\) 7517.34 0.348427
\(776\) 57205.4 2.64633
\(777\) 17476.7 0.806913
\(778\) −59684.3 −2.75037
\(779\) −40701.7 −1.87200
\(780\) −28623.8 −1.31397
\(781\) −9758.93 −0.447122
\(782\) 8043.73 0.367830
\(783\) 6299.66 0.287524
\(784\) 3120.63 0.142157
\(785\) −22887.2 −1.04061
\(786\) 58902.6 2.67301
\(787\) 675.486 0.0305953 0.0152976 0.999883i \(-0.495130\pi\)
0.0152976 + 0.999883i \(0.495130\pi\)
\(788\) 2421.46 0.109468
\(789\) −23416.9 −1.05661
\(790\) −63847.4 −2.87543
\(791\) −5228.68 −0.235032
\(792\) −41908.1 −1.88023
\(793\) 10002.9 0.447938
\(794\) 69790.8 3.11937
\(795\) −31049.4 −1.38517
\(796\) 51369.9 2.28738
\(797\) 9305.07 0.413554 0.206777 0.978388i \(-0.433703\pi\)
0.206777 + 0.978388i \(0.433703\pi\)
\(798\) −34700.0 −1.53931
\(799\) −21315.1 −0.943770
\(800\) 73.2538 0.00323739
\(801\) 34243.2 1.51052
\(802\) −57448.2 −2.52938
\(803\) −19392.2 −0.852222
\(804\) 90238.6 3.95829
\(805\) −2257.08 −0.0988219
\(806\) −8671.65 −0.378965
\(807\) −54212.8 −2.36478
\(808\) −53644.7 −2.33566
\(809\) 23243.3 1.01013 0.505063 0.863083i \(-0.331469\pi\)
0.505063 + 0.863083i \(0.331469\pi\)
\(810\) −42828.0 −1.85780
\(811\) −12897.3 −0.558429 −0.279214 0.960229i \(-0.590074\pi\)
−0.279214 + 0.960229i \(0.590074\pi\)
\(812\) 26915.9 1.16325
\(813\) −40824.8 −1.76112
\(814\) −56747.7 −2.44349
\(815\) 27959.0 1.20167
\(816\) −34471.0 −1.47883
\(817\) 18720.6 0.801654
\(818\) 39486.7 1.68780
\(819\) 3592.02 0.153254
\(820\) 68315.7 2.90937
\(821\) 21029.3 0.893944 0.446972 0.894548i \(-0.352502\pi\)
0.446972 + 0.894548i \(0.352502\pi\)
\(822\) −50227.0 −2.13122
\(823\) 43489.8 1.84199 0.920995 0.389575i \(-0.127378\pi\)
0.920995 + 0.389575i \(0.127378\pi\)
\(824\) 53259.9 2.25170
\(825\) 19074.7 0.804963
\(826\) 2159.48 0.0909660
\(827\) −22733.5 −0.955892 −0.477946 0.878389i \(-0.658618\pi\)
−0.477946 + 0.878389i \(0.658618\pi\)
\(828\) 11198.4 0.470016
\(829\) 19130.8 0.801496 0.400748 0.916188i \(-0.368750\pi\)
0.400748 + 0.916188i \(0.368750\pi\)
\(830\) −51494.1 −2.15348
\(831\) −52721.9 −2.20084
\(832\) −8668.94 −0.361228
\(833\) −3498.95 −0.145536
\(834\) 43098.7 1.78943
\(835\) −528.833 −0.0219174
\(836\) 75094.7 3.10670
\(837\) 2752.39 0.113664
\(838\) 37738.1 1.55566
\(839\) 17347.5 0.713830 0.356915 0.934137i \(-0.383829\pi\)
0.356915 + 0.934137i \(0.383829\pi\)
\(840\) 29097.2 1.19518
\(841\) 33459.3 1.37190
\(842\) −39151.1 −1.60242
\(843\) 23412.6 0.956550
\(844\) 59491.0 2.42626
\(845\) 26820.1 1.09188
\(846\) −44524.3 −1.80943
\(847\) −654.764 −0.0265619
\(848\) 18608.5 0.753561
\(849\) 23598.2 0.953933
\(850\) 25018.1 1.00955
\(851\) 7575.70 0.305160
\(852\) −33617.6 −1.35178
\(853\) 26880.8 1.07899 0.539497 0.841988i \(-0.318615\pi\)
0.539497 + 0.841988i \(0.318615\pi\)
\(854\) −20353.4 −0.815549
\(855\) −57011.8 −2.28042
\(856\) 54156.6 2.16242
\(857\) −8911.42 −0.355202 −0.177601 0.984103i \(-0.556834\pi\)
−0.177601 + 0.984103i \(0.556834\pi\)
\(858\) −22003.6 −0.875515
\(859\) 31980.1 1.27025 0.635126 0.772408i \(-0.280948\pi\)
0.635126 + 0.772408i \(0.280948\pi\)
\(860\) −31421.6 −1.24589
\(861\) −16173.3 −0.640167
\(862\) 35446.0 1.40058
\(863\) −40155.9 −1.58392 −0.791960 0.610573i \(-0.790939\pi\)
−0.791960 + 0.610573i \(0.790939\pi\)
\(864\) 26.8211 0.00105610
\(865\) 51891.3 2.03972
\(866\) 64119.8 2.51603
\(867\) 1409.82 0.0552251
\(868\) 11759.8 0.459856
\(869\) −32711.5 −1.27694
\(870\) 125176. 4.87799
\(871\) 12546.9 0.488101
\(872\) −33630.8 −1.30606
\(873\) −44538.5 −1.72669
\(874\) −15041.6 −0.582139
\(875\) 5246.62 0.202707
\(876\) −66802.2 −2.57653
\(877\) 26935.8 1.03712 0.518561 0.855041i \(-0.326468\pi\)
0.518561 + 0.855041i \(0.326468\pi\)
\(878\) 1288.53 0.0495281
\(879\) 22580.8 0.866475
\(880\) −31407.5 −1.20312
\(881\) −19935.6 −0.762369 −0.381184 0.924499i \(-0.624484\pi\)
−0.381184 + 0.924499i \(0.624484\pi\)
\(882\) −7308.84 −0.279027
\(883\) −33663.8 −1.28299 −0.641494 0.767128i \(-0.721685\pi\)
−0.641494 + 0.767128i \(0.721685\pi\)
\(884\) −19234.6 −0.731820
\(885\) 6693.46 0.254235
\(886\) −64420.9 −2.44273
\(887\) −7663.47 −0.290095 −0.145047 0.989425i \(-0.546333\pi\)
−0.145047 + 0.989425i \(0.546333\pi\)
\(888\) −97662.3 −3.69069
\(889\) −19226.9 −0.725366
\(890\) 77200.1 2.90759
\(891\) −21942.5 −0.825028
\(892\) 35392.2 1.32850
\(893\) 39858.7 1.49364
\(894\) 20321.7 0.760247
\(895\) −22643.2 −0.845675
\(896\) 17581.7 0.655540
\(897\) 2937.44 0.109340
\(898\) −56806.7 −2.11098
\(899\) 25274.6 0.937658
\(900\) 34830.1 1.29001
\(901\) −20864.5 −0.771474
\(902\) 52515.5 1.93855
\(903\) 7438.84 0.274141
\(904\) 29218.7 1.07500
\(905\) 36345.7 1.33500
\(906\) −70313.1 −2.57836
\(907\) −10916.0 −0.399623 −0.199812 0.979834i \(-0.564033\pi\)
−0.199812 + 0.979834i \(0.564033\pi\)
\(908\) −14781.0 −0.540224
\(909\) 41766.2 1.52398
\(910\) 8098.08 0.294999
\(911\) 20013.4 0.727853 0.363926 0.931428i \(-0.381436\pi\)
0.363926 + 0.931428i \(0.381436\pi\)
\(912\) 64460.0 2.34044
\(913\) −26382.4 −0.956332
\(914\) −26276.2 −0.950919
\(915\) −63086.8 −2.27933
\(916\) 88918.7 3.20738
\(917\) −11106.6 −0.399968
\(918\) 9160.12 0.329334
\(919\) 12422.4 0.445894 0.222947 0.974831i \(-0.428432\pi\)
0.222947 + 0.974831i \(0.428432\pi\)
\(920\) 12612.9 0.451995
\(921\) 745.397 0.0266685
\(922\) −3429.51 −0.122500
\(923\) −4674.25 −0.166690
\(924\) 29839.7 1.06240
\(925\) 23562.4 0.837543
\(926\) −17270.7 −0.612904
\(927\) −41466.7 −1.46920
\(928\) 246.292 0.00871221
\(929\) −34451.3 −1.21670 −0.608348 0.793670i \(-0.708168\pi\)
−0.608348 + 0.793670i \(0.708168\pi\)
\(930\) 54690.6 1.92836
\(931\) 6542.96 0.230330
\(932\) −15642.1 −0.549758
\(933\) 27396.2 0.961318
\(934\) −3497.01 −0.122511
\(935\) 35215.1 1.23172
\(936\) −20072.8 −0.700961
\(937\) 5456.58 0.190244 0.0951221 0.995466i \(-0.469676\pi\)
0.0951221 + 0.995466i \(0.469676\pi\)
\(938\) −25529.8 −0.888674
\(939\) −29497.1 −1.02513
\(940\) −66900.6 −2.32134
\(941\) 12069.3 0.418115 0.209058 0.977903i \(-0.432960\pi\)
0.209058 + 0.977903i \(0.432960\pi\)
\(942\) −60607.1 −2.09627
\(943\) −7010.71 −0.242100
\(944\) −4011.53 −0.138310
\(945\) −2570.34 −0.0884796
\(946\) −24154.3 −0.830153
\(947\) 12456.5 0.427436 0.213718 0.976895i \(-0.431443\pi\)
0.213718 + 0.976895i \(0.431443\pi\)
\(948\) −112685. −3.86058
\(949\) −9288.29 −0.317714
\(950\) −46783.3 −1.59774
\(951\) −4182.20 −0.142605
\(952\) 19552.7 0.665659
\(953\) −2930.03 −0.0995940 −0.0497970 0.998759i \(-0.515857\pi\)
−0.0497970 + 0.998759i \(0.515857\pi\)
\(954\) −43583.2 −1.47910
\(955\) −52231.1 −1.76980
\(956\) −49346.9 −1.66945
\(957\) 64132.3 2.16625
\(958\) 6762.35 0.228060
\(959\) 9470.70 0.318900
\(960\) 54673.5 1.83810
\(961\) −18748.2 −0.629326
\(962\) −27180.5 −0.910951
\(963\) −42164.8 −1.41095
\(964\) −78770.4 −2.63177
\(965\) −27152.1 −0.905757
\(966\) −5976.94 −0.199073
\(967\) 20405.2 0.678580 0.339290 0.940682i \(-0.389813\pi\)
0.339290 + 0.940682i \(0.389813\pi\)
\(968\) 3658.92 0.121490
\(969\) −72274.7 −2.39608
\(970\) −100410. −3.32369
\(971\) −19526.9 −0.645362 −0.322681 0.946508i \(-0.604584\pi\)
−0.322681 + 0.946508i \(0.604584\pi\)
\(972\) −86893.2 −2.86739
\(973\) −8126.61 −0.267757
\(974\) 6101.03 0.200708
\(975\) 9136.22 0.300096
\(976\) 37809.2 1.24000
\(977\) 33801.9 1.10688 0.553438 0.832890i \(-0.313315\pi\)
0.553438 + 0.832890i \(0.313315\pi\)
\(978\) 74037.7 2.42072
\(979\) 39552.6 1.29122
\(980\) −10982.0 −0.357967
\(981\) 26184.0 0.852182
\(982\) −65551.3 −2.13017
\(983\) −24200.6 −0.785228 −0.392614 0.919703i \(-0.628429\pi\)
−0.392614 + 0.919703i \(0.628429\pi\)
\(984\) 90378.8 2.92802
\(985\) −2123.41 −0.0686877
\(986\) 84115.3 2.71681
\(987\) 15838.3 0.510778
\(988\) 35968.2 1.15820
\(989\) 3224.55 0.103675
\(990\) 73559.6 2.36149
\(991\) −51314.2 −1.64485 −0.822426 0.568872i \(-0.807380\pi\)
−0.822426 + 0.568872i \(0.807380\pi\)
\(992\) 107.608 0.00344410
\(993\) 19109.7 0.610703
\(994\) 9510.90 0.303488
\(995\) −45046.9 −1.43526
\(996\) −90882.3 −2.89128
\(997\) −20618.9 −0.654970 −0.327485 0.944856i \(-0.606201\pi\)
−0.327485 + 0.944856i \(0.606201\pi\)
\(998\) 86199.4 2.73406
\(999\) 8627.13 0.273224
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 161.4.a.d.1.2 12
3.2 odd 2 1449.4.a.o.1.11 12
7.6 odd 2 1127.4.a.h.1.2 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
161.4.a.d.1.2 12 1.1 even 1 trivial
1127.4.a.h.1.2 12 7.6 odd 2
1449.4.a.o.1.11 12 3.2 odd 2