Properties

Label 161.4.a.d.1.10
Level $161$
Weight $4$
Character 161.1
Self dual yes
Analytic conductor $9.499$
Analytic rank $0$
Dimension $12$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [161,4,Mod(1,161)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(161, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("161.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 161 = 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 161.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(9.49930751092\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 4 x^{11} - 76 x^{10} + 311 x^{9} + 1979 x^{8} - 8466 x^{7} - 19942 x^{6} + 95647 x^{5} + \cdots - 70656 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.10
Root \(3.76781\) of defining polynomial
Character \(\chi\) \(=\) 161.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.76781 q^{2} +2.58468 q^{3} +6.19640 q^{4} +21.4417 q^{5} +9.73858 q^{6} +7.00000 q^{7} -6.79562 q^{8} -20.3194 q^{9} +80.7883 q^{10} -34.1994 q^{11} +16.0157 q^{12} +66.8515 q^{13} +26.3747 q^{14} +55.4199 q^{15} -75.1758 q^{16} -107.075 q^{17} -76.5598 q^{18} +33.1724 q^{19} +132.861 q^{20} +18.0927 q^{21} -128.857 q^{22} +23.0000 q^{23} -17.5645 q^{24} +334.746 q^{25} +251.884 q^{26} -122.306 q^{27} +43.3748 q^{28} -181.017 q^{29} +208.812 q^{30} +319.311 q^{31} -228.883 q^{32} -88.3944 q^{33} -403.439 q^{34} +150.092 q^{35} -125.907 q^{36} +24.5372 q^{37} +124.987 q^{38} +172.790 q^{39} -145.710 q^{40} -276.432 q^{41} +68.1701 q^{42} -163.192 q^{43} -211.913 q^{44} -435.683 q^{45} +86.6597 q^{46} -76.0515 q^{47} -194.305 q^{48} +49.0000 q^{49} +1261.26 q^{50} -276.755 q^{51} +414.239 q^{52} -104.938 q^{53} -460.824 q^{54} -733.293 q^{55} -47.5693 q^{56} +85.7399 q^{57} -682.037 q^{58} +221.651 q^{59} +343.404 q^{60} -761.324 q^{61} +1203.10 q^{62} -142.236 q^{63} -260.983 q^{64} +1433.41 q^{65} -333.054 q^{66} +756.495 q^{67} -663.481 q^{68} +59.4476 q^{69} +565.518 q^{70} -847.031 q^{71} +138.083 q^{72} -453.222 q^{73} +92.4515 q^{74} +865.211 q^{75} +205.549 q^{76} -239.396 q^{77} +651.039 q^{78} -3.62832 q^{79} -1611.90 q^{80} +232.504 q^{81} -1041.54 q^{82} +1199.68 q^{83} +112.110 q^{84} -2295.87 q^{85} -614.876 q^{86} -467.870 q^{87} +232.406 q^{88} -94.0489 q^{89} -1641.57 q^{90} +467.961 q^{91} +142.517 q^{92} +825.317 q^{93} -286.548 q^{94} +711.272 q^{95} -591.590 q^{96} +781.187 q^{97} +184.623 q^{98} +694.913 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 4 q^{2} + q^{3} + 72 q^{4} + 16 q^{5} - 15 q^{6} + 84 q^{7} - 21 q^{8} + 203 q^{9} + 106 q^{10} + 50 q^{11} - 139 q^{12} + 21 q^{13} + 28 q^{14} + 192 q^{15} + 516 q^{16} + 26 q^{17} + 251 q^{18}+ \cdots + 2400 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 3.76781 1.33212 0.666061 0.745897i \(-0.267979\pi\)
0.666061 + 0.745897i \(0.267979\pi\)
\(3\) 2.58468 0.497422 0.248711 0.968578i \(-0.419993\pi\)
0.248711 + 0.968578i \(0.419993\pi\)
\(4\) 6.19640 0.774550
\(5\) 21.4417 1.91780 0.958902 0.283739i \(-0.0915748\pi\)
0.958902 + 0.283739i \(0.0915748\pi\)
\(6\) 9.73858 0.662626
\(7\) 7.00000 0.377964
\(8\) −6.79562 −0.300327
\(9\) −20.3194 −0.752572
\(10\) 80.7883 2.55475
\(11\) −34.1994 −0.937410 −0.468705 0.883355i \(-0.655279\pi\)
−0.468705 + 0.883355i \(0.655279\pi\)
\(12\) 16.0157 0.385278
\(13\) 66.8515 1.42625 0.713126 0.701036i \(-0.247279\pi\)
0.713126 + 0.701036i \(0.247279\pi\)
\(14\) 26.3747 0.503495
\(15\) 55.4199 0.953957
\(16\) −75.1758 −1.17462
\(17\) −107.075 −1.52762 −0.763811 0.645440i \(-0.776674\pi\)
−0.763811 + 0.645440i \(0.776674\pi\)
\(18\) −76.5598 −1.00252
\(19\) 33.1724 0.400540 0.200270 0.979741i \(-0.435818\pi\)
0.200270 + 0.979741i \(0.435818\pi\)
\(20\) 132.861 1.48543
\(21\) 18.0927 0.188008
\(22\) −128.857 −1.24874
\(23\) 23.0000 0.208514
\(24\) −17.5645 −0.149389
\(25\) 334.746 2.67797
\(26\) 251.884 1.89994
\(27\) −122.306 −0.871767
\(28\) 43.3748 0.292752
\(29\) −181.017 −1.15910 −0.579551 0.814936i \(-0.696772\pi\)
−0.579551 + 0.814936i \(0.696772\pi\)
\(30\) 208.812 1.27079
\(31\) 319.311 1.85000 0.925000 0.379966i \(-0.124064\pi\)
0.925000 + 0.379966i \(0.124064\pi\)
\(32\) −228.883 −1.26441
\(33\) −88.3944 −0.466288
\(34\) −403.439 −2.03498
\(35\) 150.092 0.724862
\(36\) −125.907 −0.582905
\(37\) 24.5372 0.109024 0.0545120 0.998513i \(-0.482640\pi\)
0.0545120 + 0.998513i \(0.482640\pi\)
\(38\) 124.987 0.533569
\(39\) 172.790 0.709449
\(40\) −145.710 −0.575968
\(41\) −276.432 −1.05296 −0.526481 0.850187i \(-0.676489\pi\)
−0.526481 + 0.850187i \(0.676489\pi\)
\(42\) 68.1701 0.250449
\(43\) −163.192 −0.578756 −0.289378 0.957215i \(-0.593448\pi\)
−0.289378 + 0.957215i \(0.593448\pi\)
\(44\) −211.913 −0.726071
\(45\) −435.683 −1.44328
\(46\) 86.6597 0.277767
\(47\) −76.0515 −0.236027 −0.118013 0.993012i \(-0.537653\pi\)
−0.118013 + 0.993012i \(0.537653\pi\)
\(48\) −194.305 −0.584282
\(49\) 49.0000 0.142857
\(50\) 1261.26 3.56738
\(51\) −276.755 −0.759872
\(52\) 414.239 1.10470
\(53\) −104.938 −0.271968 −0.135984 0.990711i \(-0.543420\pi\)
−0.135984 + 0.990711i \(0.543420\pi\)
\(54\) −460.824 −1.16130
\(55\) −733.293 −1.79777
\(56\) −47.5693 −0.113513
\(57\) 85.7399 0.199237
\(58\) −682.037 −1.54407
\(59\) 221.651 0.489093 0.244546 0.969638i \(-0.421361\pi\)
0.244546 + 0.969638i \(0.421361\pi\)
\(60\) 343.404 0.738887
\(61\) −761.324 −1.59799 −0.798997 0.601336i \(-0.794635\pi\)
−0.798997 + 0.601336i \(0.794635\pi\)
\(62\) 1203.10 2.46443
\(63\) −142.236 −0.284445
\(64\) −260.983 −0.509732
\(65\) 1433.41 2.73527
\(66\) −333.054 −0.621152
\(67\) 756.495 1.37941 0.689706 0.724089i \(-0.257740\pi\)
0.689706 + 0.724089i \(0.257740\pi\)
\(68\) −663.481 −1.18322
\(69\) 59.4476 0.103720
\(70\) 565.518 0.965604
\(71\) −847.031 −1.41583 −0.707916 0.706296i \(-0.750365\pi\)
−0.707916 + 0.706296i \(0.750365\pi\)
\(72\) 138.083 0.226018
\(73\) −453.222 −0.726652 −0.363326 0.931662i \(-0.618359\pi\)
−0.363326 + 0.931662i \(0.618359\pi\)
\(74\) 92.4515 0.145233
\(75\) 865.211 1.33208
\(76\) 205.549 0.310239
\(77\) −239.396 −0.354308
\(78\) 651.039 0.945072
\(79\) −3.62832 −0.00516731 −0.00258365 0.999997i \(-0.500822\pi\)
−0.00258365 + 0.999997i \(0.500822\pi\)
\(80\) −1611.90 −2.25269
\(81\) 232.504 0.318936
\(82\) −1041.54 −1.40267
\(83\) 1199.68 1.58652 0.793262 0.608881i \(-0.208381\pi\)
0.793262 + 0.608881i \(0.208381\pi\)
\(84\) 112.110 0.145621
\(85\) −2295.87 −2.92968
\(86\) −614.876 −0.770974
\(87\) −467.870 −0.576562
\(88\) 232.406 0.281529
\(89\) −94.0489 −0.112013 −0.0560065 0.998430i \(-0.517837\pi\)
−0.0560065 + 0.998430i \(0.517837\pi\)
\(90\) −1641.57 −1.92263
\(91\) 467.961 0.539073
\(92\) 142.517 0.161505
\(93\) 825.317 0.920230
\(94\) −286.548 −0.314417
\(95\) 711.272 0.768157
\(96\) −591.590 −0.628947
\(97\) 781.187 0.817706 0.408853 0.912600i \(-0.365929\pi\)
0.408853 + 0.912600i \(0.365929\pi\)
\(98\) 184.623 0.190303
\(99\) 694.913 0.705468
\(100\) 2074.22 2.07422
\(101\) 800.418 0.788560 0.394280 0.918990i \(-0.370994\pi\)
0.394280 + 0.918990i \(0.370994\pi\)
\(102\) −1042.76 −1.01224
\(103\) 1410.38 1.34921 0.674606 0.738178i \(-0.264313\pi\)
0.674606 + 0.738178i \(0.264313\pi\)
\(104\) −454.298 −0.428342
\(105\) 387.939 0.360562
\(106\) −395.386 −0.362295
\(107\) 167.818 0.151622 0.0758110 0.997122i \(-0.475845\pi\)
0.0758110 + 0.997122i \(0.475845\pi\)
\(108\) −757.854 −0.675227
\(109\) −75.1988 −0.0660801 −0.0330401 0.999454i \(-0.510519\pi\)
−0.0330401 + 0.999454i \(0.510519\pi\)
\(110\) −2762.91 −2.39485
\(111\) 63.4208 0.0542309
\(112\) −526.231 −0.443965
\(113\) −1710.38 −1.42388 −0.711941 0.702239i \(-0.752184\pi\)
−0.711941 + 0.702239i \(0.752184\pi\)
\(114\) 323.052 0.265409
\(115\) 493.159 0.399890
\(116\) −1121.65 −0.897783
\(117\) −1358.39 −1.07336
\(118\) 835.138 0.651531
\(119\) −749.527 −0.577387
\(120\) −376.612 −0.286499
\(121\) −161.401 −0.121263
\(122\) −2868.53 −2.12872
\(123\) −714.488 −0.523766
\(124\) 1978.58 1.43292
\(125\) 4497.31 3.21802
\(126\) −535.919 −0.378916
\(127\) 1164.89 0.813913 0.406957 0.913447i \(-0.366590\pi\)
0.406957 + 0.913447i \(0.366590\pi\)
\(128\) 847.733 0.585389
\(129\) −421.798 −0.287886
\(130\) 5400.82 3.64372
\(131\) −1100.53 −0.734000 −0.367000 0.930221i \(-0.619615\pi\)
−0.367000 + 0.930221i \(0.619615\pi\)
\(132\) −547.727 −0.361163
\(133\) 232.207 0.151390
\(134\) 2850.33 1.83755
\(135\) −2622.44 −1.67188
\(136\) 727.643 0.458786
\(137\) 1806.55 1.12660 0.563298 0.826254i \(-0.309532\pi\)
0.563298 + 0.826254i \(0.309532\pi\)
\(138\) 223.987 0.138167
\(139\) 1170.47 0.714228 0.357114 0.934061i \(-0.383761\pi\)
0.357114 + 0.934061i \(0.383761\pi\)
\(140\) 930.029 0.561442
\(141\) −196.569 −0.117405
\(142\) −3191.45 −1.88606
\(143\) −2286.28 −1.33698
\(144\) 1527.53 0.883988
\(145\) −3881.31 −2.22293
\(146\) −1707.65 −0.967989
\(147\) 126.649 0.0710602
\(148\) 152.042 0.0844446
\(149\) 2195.18 1.20695 0.603477 0.797380i \(-0.293781\pi\)
0.603477 + 0.797380i \(0.293781\pi\)
\(150\) 3259.95 1.77449
\(151\) −1076.26 −0.580034 −0.290017 0.957021i \(-0.593661\pi\)
−0.290017 + 0.957021i \(0.593661\pi\)
\(152\) −225.427 −0.120293
\(153\) 2175.71 1.14964
\(154\) −901.998 −0.471981
\(155\) 6846.58 3.54794
\(156\) 1070.67 0.549503
\(157\) 2441.69 1.24120 0.620600 0.784127i \(-0.286889\pi\)
0.620600 + 0.784127i \(0.286889\pi\)
\(158\) −13.6708 −0.00688349
\(159\) −271.230 −0.135283
\(160\) −4907.65 −2.42490
\(161\) 161.000 0.0788110
\(162\) 876.033 0.424862
\(163\) 326.985 0.157125 0.0785627 0.996909i \(-0.474967\pi\)
0.0785627 + 0.996909i \(0.474967\pi\)
\(164\) −1712.89 −0.815572
\(165\) −1895.33 −0.894248
\(166\) 4520.15 2.11344
\(167\) −1142.94 −0.529602 −0.264801 0.964303i \(-0.585306\pi\)
−0.264801 + 0.964303i \(0.585306\pi\)
\(168\) −122.951 −0.0564637
\(169\) 2272.13 1.03420
\(170\) −8650.42 −3.90269
\(171\) −674.044 −0.301435
\(172\) −1011.20 −0.448276
\(173\) −891.770 −0.391908 −0.195954 0.980613i \(-0.562780\pi\)
−0.195954 + 0.980613i \(0.562780\pi\)
\(174\) −1762.85 −0.768052
\(175\) 2343.22 1.01218
\(176\) 2570.97 1.10110
\(177\) 572.896 0.243285
\(178\) −354.358 −0.149215
\(179\) 2809.17 1.17300 0.586500 0.809949i \(-0.300505\pi\)
0.586500 + 0.809949i \(0.300505\pi\)
\(180\) −2699.67 −1.11790
\(181\) 339.915 0.139589 0.0697947 0.997561i \(-0.477766\pi\)
0.0697947 + 0.997561i \(0.477766\pi\)
\(182\) 1763.19 0.718111
\(183\) −1967.78 −0.794876
\(184\) −156.299 −0.0626225
\(185\) 526.119 0.209087
\(186\) 3109.64 1.22586
\(187\) 3661.91 1.43201
\(188\) −471.246 −0.182815
\(189\) −856.139 −0.329497
\(190\) 2679.94 1.02328
\(191\) 320.634 0.121467 0.0607336 0.998154i \(-0.480656\pi\)
0.0607336 + 0.998154i \(0.480656\pi\)
\(192\) −674.556 −0.253552
\(193\) 461.899 0.172271 0.0861353 0.996283i \(-0.472548\pi\)
0.0861353 + 0.996283i \(0.472548\pi\)
\(194\) 2943.36 1.08928
\(195\) 3704.90 1.36058
\(196\) 303.624 0.110650
\(197\) −1285.87 −0.465050 −0.232525 0.972590i \(-0.574699\pi\)
−0.232525 + 0.972590i \(0.574699\pi\)
\(198\) 2618.30 0.939770
\(199\) −2903.65 −1.03434 −0.517172 0.855882i \(-0.673015\pi\)
−0.517172 + 0.855882i \(0.673015\pi\)
\(200\) −2274.81 −0.804266
\(201\) 1955.30 0.686149
\(202\) 3015.82 1.05046
\(203\) −1267.12 −0.438099
\(204\) −1714.89 −0.588559
\(205\) −5927.18 −2.01938
\(206\) 5314.05 1.79732
\(207\) −467.347 −0.156922
\(208\) −5025.62 −1.67531
\(209\) −1134.48 −0.375470
\(210\) 1461.68 0.480312
\(211\) −2532.15 −0.826162 −0.413081 0.910694i \(-0.635547\pi\)
−0.413081 + 0.910694i \(0.635547\pi\)
\(212\) −650.236 −0.210653
\(213\) −2189.30 −0.704266
\(214\) 632.306 0.201979
\(215\) −3499.11 −1.10994
\(216\) 831.142 0.261815
\(217\) 2235.18 0.699234
\(218\) −283.335 −0.0880268
\(219\) −1171.43 −0.361452
\(220\) −4543.78 −1.39246
\(221\) −7158.14 −2.17877
\(222\) 238.957 0.0722422
\(223\) 2132.30 0.640312 0.320156 0.947365i \(-0.396265\pi\)
0.320156 + 0.947365i \(0.396265\pi\)
\(224\) −1602.18 −0.477903
\(225\) −6801.85 −2.01536
\(226\) −6444.37 −1.89678
\(227\) 4975.40 1.45475 0.727376 0.686239i \(-0.240740\pi\)
0.727376 + 0.686239i \(0.240740\pi\)
\(228\) 531.279 0.154319
\(229\) 1655.37 0.477685 0.238842 0.971058i \(-0.423232\pi\)
0.238842 + 0.971058i \(0.423232\pi\)
\(230\) 1858.13 0.532702
\(231\) −618.761 −0.176240
\(232\) 1230.12 0.348110
\(233\) −3538.72 −0.994975 −0.497488 0.867471i \(-0.665744\pi\)
−0.497488 + 0.867471i \(0.665744\pi\)
\(234\) −5118.14 −1.42984
\(235\) −1630.67 −0.452653
\(236\) 1373.44 0.378827
\(237\) −9.37803 −0.00257033
\(238\) −2824.08 −0.769150
\(239\) −1303.70 −0.352843 −0.176422 0.984315i \(-0.556452\pi\)
−0.176422 + 0.984315i \(0.556452\pi\)
\(240\) −4166.23 −1.12054
\(241\) −5237.26 −1.39984 −0.699921 0.714220i \(-0.746781\pi\)
−0.699921 + 0.714220i \(0.746781\pi\)
\(242\) −608.128 −0.161537
\(243\) 3903.20 1.03041
\(244\) −4717.47 −1.23773
\(245\) 1050.64 0.273972
\(246\) −2692.06 −0.697721
\(247\) 2217.62 0.571271
\(248\) −2169.92 −0.555605
\(249\) 3100.77 0.789171
\(250\) 16945.0 4.28679
\(251\) −5615.99 −1.41226 −0.706132 0.708080i \(-0.749562\pi\)
−0.706132 + 0.708080i \(0.749562\pi\)
\(252\) −881.352 −0.220317
\(253\) −786.586 −0.195463
\(254\) 4389.07 1.08423
\(255\) −5934.10 −1.45728
\(256\) 5281.96 1.28954
\(257\) −19.6890 −0.00477886 −0.00238943 0.999997i \(-0.500761\pi\)
−0.00238943 + 0.999997i \(0.500761\pi\)
\(258\) −1589.26 −0.383499
\(259\) 171.760 0.0412072
\(260\) 8881.98 2.11860
\(261\) 3678.16 0.872308
\(262\) −4146.60 −0.977778
\(263\) 794.907 0.186373 0.0931865 0.995649i \(-0.470295\pi\)
0.0931865 + 0.995649i \(0.470295\pi\)
\(264\) 600.695 0.140039
\(265\) −2250.04 −0.521581
\(266\) 874.911 0.201670
\(267\) −243.086 −0.0557177
\(268\) 4687.55 1.06842
\(269\) −4650.64 −1.05411 −0.527053 0.849832i \(-0.676703\pi\)
−0.527053 + 0.849832i \(0.676703\pi\)
\(270\) −9880.85 −2.22715
\(271\) −5260.17 −1.17909 −0.589543 0.807737i \(-0.700692\pi\)
−0.589543 + 0.807737i \(0.700692\pi\)
\(272\) 8049.47 1.79438
\(273\) 1209.53 0.268146
\(274\) 6806.72 1.50076
\(275\) −11448.1 −2.51036
\(276\) 368.361 0.0803360
\(277\) 3619.20 0.785043 0.392521 0.919743i \(-0.371603\pi\)
0.392521 + 0.919743i \(0.371603\pi\)
\(278\) 4410.10 0.951440
\(279\) −6488.23 −1.39226
\(280\) −1019.97 −0.217695
\(281\) 5023.00 1.06636 0.533180 0.846002i \(-0.320997\pi\)
0.533180 + 0.846002i \(0.320997\pi\)
\(282\) −740.634 −0.156398
\(283\) 4473.93 0.939744 0.469872 0.882735i \(-0.344300\pi\)
0.469872 + 0.882735i \(0.344300\pi\)
\(284\) −5248.55 −1.09663
\(285\) 1838.41 0.382098
\(286\) −8614.28 −1.78102
\(287\) −1935.03 −0.397982
\(288\) 4650.78 0.951562
\(289\) 6552.11 1.33363
\(290\) −14624.0 −2.96122
\(291\) 2019.12 0.406745
\(292\) −2808.34 −0.562828
\(293\) 7714.14 1.53810 0.769052 0.639186i \(-0.220729\pi\)
0.769052 + 0.639186i \(0.220729\pi\)
\(294\) 477.190 0.0946609
\(295\) 4752.57 0.937984
\(296\) −166.745 −0.0327428
\(297\) 4182.78 0.817203
\(298\) 8271.03 1.60781
\(299\) 1537.59 0.297394
\(300\) 5361.20 1.03176
\(301\) −1142.34 −0.218749
\(302\) −4055.16 −0.772677
\(303\) 2068.82 0.392247
\(304\) −2493.76 −0.470483
\(305\) −16324.1 −3.06464
\(306\) 8197.66 1.53147
\(307\) −3891.69 −0.723487 −0.361743 0.932278i \(-0.617818\pi\)
−0.361743 + 0.932278i \(0.617818\pi\)
\(308\) −1483.39 −0.274429
\(309\) 3645.38 0.671127
\(310\) 25796.6 4.72629
\(311\) 3342.13 0.609373 0.304686 0.952453i \(-0.401448\pi\)
0.304686 + 0.952453i \(0.401448\pi\)
\(312\) −1174.21 −0.213066
\(313\) 2777.70 0.501614 0.250807 0.968037i \(-0.419304\pi\)
0.250807 + 0.968037i \(0.419304\pi\)
\(314\) 9199.84 1.65343
\(315\) −3049.78 −0.545510
\(316\) −22.4825 −0.00400234
\(317\) −10013.7 −1.77422 −0.887109 0.461561i \(-0.847290\pi\)
−0.887109 + 0.461561i \(0.847290\pi\)
\(318\) −1021.94 −0.180213
\(319\) 6190.66 1.08655
\(320\) −5595.91 −0.977565
\(321\) 433.755 0.0754201
\(322\) 606.618 0.104986
\(323\) −3551.94 −0.611874
\(324\) 1440.69 0.247032
\(325\) 22378.3 3.81946
\(326\) 1232.02 0.209310
\(327\) −194.365 −0.0328697
\(328\) 1878.53 0.316233
\(329\) −532.361 −0.0892097
\(330\) −7141.23 −1.19125
\(331\) 948.048 0.157430 0.0787151 0.996897i \(-0.474918\pi\)
0.0787151 + 0.996897i \(0.474918\pi\)
\(332\) 7433.67 1.22884
\(333\) −498.582 −0.0820484
\(334\) −4306.39 −0.705494
\(335\) 16220.5 2.64544
\(336\) −1360.14 −0.220838
\(337\) 5109.50 0.825911 0.412956 0.910751i \(-0.364496\pi\)
0.412956 + 0.910751i \(0.364496\pi\)
\(338\) 8560.95 1.37768
\(339\) −4420.77 −0.708269
\(340\) −14226.2 −2.26918
\(341\) −10920.3 −1.73421
\(342\) −2539.67 −0.401549
\(343\) 343.000 0.0539949
\(344\) 1108.99 0.173816
\(345\) 1274.66 0.198914
\(346\) −3360.02 −0.522069
\(347\) 6109.77 0.945215 0.472608 0.881273i \(-0.343313\pi\)
0.472608 + 0.881273i \(0.343313\pi\)
\(348\) −2899.11 −0.446577
\(349\) 3875.53 0.594419 0.297209 0.954812i \(-0.403944\pi\)
0.297209 + 0.954812i \(0.403944\pi\)
\(350\) 8828.82 1.34834
\(351\) −8176.31 −1.24336
\(352\) 7827.67 1.18527
\(353\) −8598.94 −1.29653 −0.648265 0.761414i \(-0.724505\pi\)
−0.648265 + 0.761414i \(0.724505\pi\)
\(354\) 2158.56 0.324086
\(355\) −18161.8 −2.71529
\(356\) −582.765 −0.0867597
\(357\) −1937.29 −0.287205
\(358\) 10584.4 1.56258
\(359\) −10543.1 −1.54998 −0.774990 0.631973i \(-0.782245\pi\)
−0.774990 + 0.631973i \(0.782245\pi\)
\(360\) 2960.74 0.433457
\(361\) −5758.59 −0.839568
\(362\) 1280.73 0.185950
\(363\) −417.169 −0.0603187
\(364\) 2899.67 0.417539
\(365\) −9717.84 −1.39358
\(366\) −7414.22 −1.05887
\(367\) 2988.11 0.425008 0.212504 0.977160i \(-0.431838\pi\)
0.212504 + 0.977160i \(0.431838\pi\)
\(368\) −1729.04 −0.244926
\(369\) 5616.95 0.792430
\(370\) 1982.32 0.278529
\(371\) −734.564 −0.102794
\(372\) 5114.00 0.712764
\(373\) −12677.9 −1.75989 −0.879943 0.475080i \(-0.842419\pi\)
−0.879943 + 0.475080i \(0.842419\pi\)
\(374\) 13797.4 1.90761
\(375\) 11624.1 1.60071
\(376\) 516.817 0.0708852
\(377\) −12101.2 −1.65317
\(378\) −3225.77 −0.438930
\(379\) 4942.81 0.669908 0.334954 0.942235i \(-0.391279\pi\)
0.334954 + 0.942235i \(0.391279\pi\)
\(380\) 4407.33 0.594976
\(381\) 3010.86 0.404858
\(382\) 1208.09 0.161809
\(383\) 8471.15 1.13017 0.565086 0.825032i \(-0.308843\pi\)
0.565086 + 0.825032i \(0.308843\pi\)
\(384\) 2191.12 0.291185
\(385\) −5133.05 −0.679492
\(386\) 1740.35 0.229486
\(387\) 3315.96 0.435555
\(388\) 4840.55 0.633354
\(389\) −4317.80 −0.562780 −0.281390 0.959594i \(-0.590795\pi\)
−0.281390 + 0.959594i \(0.590795\pi\)
\(390\) 13959.4 1.81246
\(391\) −2462.73 −0.318531
\(392\) −332.985 −0.0429038
\(393\) −2844.53 −0.365108
\(394\) −4844.93 −0.619503
\(395\) −77.7972 −0.00990988
\(396\) 4305.96 0.546420
\(397\) −8114.15 −1.02579 −0.512894 0.858452i \(-0.671426\pi\)
−0.512894 + 0.858452i \(0.671426\pi\)
\(398\) −10940.4 −1.37787
\(399\) 600.179 0.0753046
\(400\) −25164.8 −3.14560
\(401\) −5067.69 −0.631093 −0.315547 0.948910i \(-0.602188\pi\)
−0.315547 + 0.948910i \(0.602188\pi\)
\(402\) 7367.19 0.914035
\(403\) 21346.5 2.63857
\(404\) 4959.71 0.610779
\(405\) 4985.29 0.611657
\(406\) −4774.26 −0.583602
\(407\) −839.157 −0.102200
\(408\) 1880.72 0.228210
\(409\) −4381.43 −0.529701 −0.264850 0.964290i \(-0.585323\pi\)
−0.264850 + 0.964290i \(0.585323\pi\)
\(410\) −22332.5 −2.69005
\(411\) 4669.34 0.560393
\(412\) 8739.28 1.04503
\(413\) 1551.56 0.184860
\(414\) −1760.88 −0.209039
\(415\) 25723.1 3.04264
\(416\) −15301.2 −1.80337
\(417\) 3025.28 0.355273
\(418\) −4274.49 −0.500172
\(419\) −481.295 −0.0561164 −0.0280582 0.999606i \(-0.508932\pi\)
−0.0280582 + 0.999606i \(0.508932\pi\)
\(420\) 2403.83 0.279273
\(421\) −7823.11 −0.905642 −0.452821 0.891602i \(-0.649582\pi\)
−0.452821 + 0.891602i \(0.649582\pi\)
\(422\) −9540.66 −1.10055
\(423\) 1545.32 0.177627
\(424\) 713.117 0.0816793
\(425\) −35843.0 −4.09092
\(426\) −8248.88 −0.938168
\(427\) −5329.27 −0.603985
\(428\) 1039.87 0.117439
\(429\) −5909.30 −0.665044
\(430\) −13184.0 −1.47858
\(431\) 7654.16 0.855425 0.427712 0.903915i \(-0.359320\pi\)
0.427712 + 0.903915i \(0.359320\pi\)
\(432\) 9194.42 1.02400
\(433\) −12959.4 −1.43831 −0.719156 0.694848i \(-0.755471\pi\)
−0.719156 + 0.694848i \(0.755471\pi\)
\(434\) 8421.73 0.931466
\(435\) −10031.9 −1.10573
\(436\) −465.962 −0.0511824
\(437\) 762.965 0.0835184
\(438\) −4413.74 −0.481499
\(439\) 3127.77 0.340046 0.170023 0.985440i \(-0.445616\pi\)
0.170023 + 0.985440i \(0.445616\pi\)
\(440\) 4983.18 0.539918
\(441\) −995.653 −0.107510
\(442\) −26970.5 −2.90239
\(443\) 10114.3 1.08475 0.542377 0.840135i \(-0.317524\pi\)
0.542377 + 0.840135i \(0.317524\pi\)
\(444\) 392.980 0.0420046
\(445\) −2016.57 −0.214819
\(446\) 8034.12 0.852975
\(447\) 5673.84 0.600365
\(448\) −1826.88 −0.192660
\(449\) −3059.18 −0.321540 −0.160770 0.986992i \(-0.551398\pi\)
−0.160770 + 0.986992i \(0.551398\pi\)
\(450\) −25628.1 −2.68471
\(451\) 9453.82 0.987057
\(452\) −10598.2 −1.10287
\(453\) −2781.80 −0.288521
\(454\) 18746.4 1.93791
\(455\) 10033.9 1.03384
\(456\) −582.656 −0.0598363
\(457\) −2522.53 −0.258203 −0.129101 0.991631i \(-0.541209\pi\)
−0.129101 + 0.991631i \(0.541209\pi\)
\(458\) 6237.11 0.636334
\(459\) 13095.9 1.33173
\(460\) 3055.81 0.309735
\(461\) 2855.16 0.288455 0.144228 0.989545i \(-0.453930\pi\)
0.144228 + 0.989545i \(0.453930\pi\)
\(462\) −2331.38 −0.234774
\(463\) −49.2335 −0.00494185 −0.00247093 0.999997i \(-0.500787\pi\)
−0.00247093 + 0.999997i \(0.500787\pi\)
\(464\) 13608.1 1.36151
\(465\) 17696.2 1.76482
\(466\) −13333.2 −1.32543
\(467\) 5611.36 0.556023 0.278011 0.960578i \(-0.410325\pi\)
0.278011 + 0.960578i \(0.410325\pi\)
\(468\) −8417.10 −0.831369
\(469\) 5295.47 0.521369
\(470\) −6144.07 −0.602989
\(471\) 6310.99 0.617400
\(472\) −1506.25 −0.146888
\(473\) 5581.06 0.542532
\(474\) −35.3346 −0.00342400
\(475\) 11104.3 1.07263
\(476\) −4644.37 −0.447215
\(477\) 2132.28 0.204676
\(478\) −4912.11 −0.470030
\(479\) −3670.32 −0.350107 −0.175053 0.984559i \(-0.556010\pi\)
−0.175053 + 0.984559i \(0.556010\pi\)
\(480\) −12684.7 −1.20620
\(481\) 1640.35 0.155496
\(482\) −19733.0 −1.86476
\(483\) 416.133 0.0392023
\(484\) −1000.10 −0.0939241
\(485\) 16750.0 1.56820
\(486\) 14706.5 1.37264
\(487\) −7953.04 −0.740014 −0.370007 0.929029i \(-0.620645\pi\)
−0.370007 + 0.929029i \(0.620645\pi\)
\(488\) 5173.67 0.479920
\(489\) 845.151 0.0781575
\(490\) 3958.62 0.364964
\(491\) −3938.99 −0.362045 −0.181022 0.983479i \(-0.557941\pi\)
−0.181022 + 0.983479i \(0.557941\pi\)
\(492\) −4427.26 −0.405683
\(493\) 19382.4 1.77067
\(494\) 8355.59 0.761003
\(495\) 14900.1 1.35295
\(496\) −24004.5 −2.17305
\(497\) −5929.22 −0.535134
\(498\) 11683.1 1.05127
\(499\) 17909.4 1.60668 0.803340 0.595520i \(-0.203054\pi\)
0.803340 + 0.595520i \(0.203054\pi\)
\(500\) 27867.2 2.49251
\(501\) −2954.14 −0.263435
\(502\) −21160.0 −1.88131
\(503\) −2130.08 −0.188818 −0.0944092 0.995533i \(-0.530096\pi\)
−0.0944092 + 0.995533i \(0.530096\pi\)
\(504\) 966.582 0.0854266
\(505\) 17162.3 1.51230
\(506\) −2963.71 −0.260381
\(507\) 5872.72 0.514431
\(508\) 7218.11 0.630417
\(509\) −5040.68 −0.438947 −0.219474 0.975618i \(-0.570434\pi\)
−0.219474 + 0.975618i \(0.570434\pi\)
\(510\) −22358.6 −1.94128
\(511\) −3172.55 −0.274649
\(512\) 13119.6 1.13244
\(513\) −4057.16 −0.349178
\(514\) −74.1845 −0.00636603
\(515\) 30240.9 2.58752
\(516\) −2613.63 −0.222982
\(517\) 2600.92 0.221254
\(518\) 647.161 0.0548931
\(519\) −2304.94 −0.194943
\(520\) −9740.91 −0.821475
\(521\) −4867.71 −0.409325 −0.204662 0.978833i \(-0.565610\pi\)
−0.204662 + 0.978833i \(0.565610\pi\)
\(522\) 13858.6 1.16202
\(523\) −8586.93 −0.717935 −0.358968 0.933350i \(-0.616871\pi\)
−0.358968 + 0.933350i \(0.616871\pi\)
\(524\) −6819.35 −0.568520
\(525\) 6056.48 0.503479
\(526\) 2995.06 0.248272
\(527\) −34190.3 −2.82610
\(528\) 6645.13 0.547712
\(529\) 529.000 0.0434783
\(530\) −8477.74 −0.694810
\(531\) −4503.82 −0.368077
\(532\) 1438.85 0.117259
\(533\) −18479.9 −1.50179
\(534\) −915.903 −0.0742228
\(535\) 3598.30 0.290781
\(536\) −5140.86 −0.414274
\(537\) 7260.79 0.583475
\(538\) −17522.7 −1.40420
\(539\) −1675.77 −0.133916
\(540\) −16249.7 −1.29495
\(541\) 8131.05 0.646176 0.323088 0.946369i \(-0.395279\pi\)
0.323088 + 0.946369i \(0.395279\pi\)
\(542\) −19819.3 −1.57069
\(543\) 878.570 0.0694347
\(544\) 24507.7 1.93155
\(545\) −1612.39 −0.126729
\(546\) 4557.27 0.357204
\(547\) −7094.89 −0.554581 −0.277290 0.960786i \(-0.589436\pi\)
−0.277290 + 0.960786i \(0.589436\pi\)
\(548\) 11194.1 0.872605
\(549\) 15469.7 1.20260
\(550\) −43134.4 −3.34410
\(551\) −6004.76 −0.464267
\(552\) −403.983 −0.0311498
\(553\) −25.3982 −0.00195306
\(554\) 13636.5 1.04577
\(555\) 1359.85 0.104004
\(556\) 7252.69 0.553206
\(557\) 16972.0 1.29107 0.645536 0.763729i \(-0.276634\pi\)
0.645536 + 0.763729i \(0.276634\pi\)
\(558\) −24446.4 −1.85466
\(559\) −10909.6 −0.825452
\(560\) −11283.3 −0.851438
\(561\) 9464.86 0.712311
\(562\) 18925.7 1.42052
\(563\) 16496.6 1.23490 0.617449 0.786611i \(-0.288166\pi\)
0.617449 + 0.786611i \(0.288166\pi\)
\(564\) −1218.02 −0.0909359
\(565\) −36673.4 −2.73073
\(566\) 16856.9 1.25185
\(567\) 1627.53 0.120547
\(568\) 5756.10 0.425213
\(569\) 1309.92 0.0965112 0.0482556 0.998835i \(-0.484634\pi\)
0.0482556 + 0.998835i \(0.484634\pi\)
\(570\) 6926.78 0.509001
\(571\) −12779.1 −0.936584 −0.468292 0.883574i \(-0.655131\pi\)
−0.468292 + 0.883574i \(0.655131\pi\)
\(572\) −14166.7 −1.03556
\(573\) 828.735 0.0604204
\(574\) −7290.81 −0.530161
\(575\) 7699.16 0.558395
\(576\) 5303.02 0.383610
\(577\) −23817.0 −1.71840 −0.859199 0.511642i \(-0.829038\pi\)
−0.859199 + 0.511642i \(0.829038\pi\)
\(578\) 24687.1 1.77655
\(579\) 1193.86 0.0856911
\(580\) −24050.1 −1.72177
\(581\) 8397.73 0.599650
\(582\) 7607.65 0.541834
\(583\) 3588.81 0.254946
\(584\) 3079.92 0.218233
\(585\) −29126.1 −2.05849
\(586\) 29065.4 2.04894
\(587\) 6309.05 0.443615 0.221808 0.975090i \(-0.428804\pi\)
0.221808 + 0.975090i \(0.428804\pi\)
\(588\) 784.769 0.0550397
\(589\) 10592.3 0.741000
\(590\) 17906.8 1.24951
\(591\) −3323.57 −0.231326
\(592\) −1844.60 −0.128062
\(593\) 5005.54 0.346632 0.173316 0.984866i \(-0.444552\pi\)
0.173316 + 0.984866i \(0.444552\pi\)
\(594\) 15759.9 1.08861
\(595\) −16071.1 −1.10731
\(596\) 13602.2 0.934847
\(597\) −7505.01 −0.514505
\(598\) 5793.33 0.396165
\(599\) 17175.7 1.17158 0.585791 0.810462i \(-0.300784\pi\)
0.585791 + 0.810462i \(0.300784\pi\)
\(600\) −5879.65 −0.400059
\(601\) −24328.9 −1.65125 −0.825623 0.564223i \(-0.809176\pi\)
−0.825623 + 0.564223i \(0.809176\pi\)
\(602\) −4304.13 −0.291401
\(603\) −15371.6 −1.03811
\(604\) −6668.97 −0.449266
\(605\) −3460.71 −0.232558
\(606\) 7794.94 0.522521
\(607\) −24995.1 −1.67137 −0.835684 0.549211i \(-0.814928\pi\)
−0.835684 + 0.549211i \(0.814928\pi\)
\(608\) −7592.60 −0.506449
\(609\) −3275.09 −0.217920
\(610\) −61506.1 −4.08247
\(611\) −5084.16 −0.336634
\(612\) 13481.6 0.890458
\(613\) 1270.17 0.0836894 0.0418447 0.999124i \(-0.486677\pi\)
0.0418447 + 0.999124i \(0.486677\pi\)
\(614\) −14663.1 −0.963773
\(615\) −15319.8 −1.00448
\(616\) 1626.84 0.106408
\(617\) 9495.49 0.619569 0.309785 0.950807i \(-0.399743\pi\)
0.309785 + 0.950807i \(0.399743\pi\)
\(618\) 13735.1 0.894024
\(619\) 6371.96 0.413749 0.206875 0.978367i \(-0.433671\pi\)
0.206875 + 0.978367i \(0.433671\pi\)
\(620\) 42424.1 2.74806
\(621\) −2813.03 −0.181776
\(622\) 12592.5 0.811759
\(623\) −658.342 −0.0423370
\(624\) −12989.6 −0.833334
\(625\) 54586.7 3.49355
\(626\) 10465.9 0.668211
\(627\) −2932.25 −0.186767
\(628\) 15129.7 0.961372
\(629\) −2627.33 −0.166547
\(630\) −11491.0 −0.726687
\(631\) 13992.6 0.882784 0.441392 0.897314i \(-0.354485\pi\)
0.441392 + 0.897314i \(0.354485\pi\)
\(632\) 24.6567 0.00155188
\(633\) −6544.79 −0.410951
\(634\) −37729.8 −2.36347
\(635\) 24977.1 1.56093
\(636\) −1680.65 −0.104783
\(637\) 3275.73 0.203750
\(638\) 23325.3 1.44742
\(639\) 17211.2 1.06552
\(640\) 18176.8 1.12266
\(641\) −12317.6 −0.758996 −0.379498 0.925193i \(-0.623903\pi\)
−0.379498 + 0.925193i \(0.623903\pi\)
\(642\) 1634.31 0.100469
\(643\) −2926.30 −0.179474 −0.0897371 0.995965i \(-0.528603\pi\)
−0.0897371 + 0.995965i \(0.528603\pi\)
\(644\) 997.621 0.0610431
\(645\) −9044.07 −0.552108
\(646\) −13383.0 −0.815091
\(647\) −17262.1 −1.04891 −0.524454 0.851439i \(-0.675731\pi\)
−0.524454 + 0.851439i \(0.675731\pi\)
\(648\) −1580.01 −0.0957851
\(649\) −7580.32 −0.458480
\(650\) 84317.2 5.08799
\(651\) 5777.22 0.347814
\(652\) 2026.13 0.121701
\(653\) 420.521 0.0252010 0.0126005 0.999921i \(-0.495989\pi\)
0.0126005 + 0.999921i \(0.495989\pi\)
\(654\) −732.329 −0.0437864
\(655\) −23597.3 −1.40767
\(656\) 20781.0 1.23683
\(657\) 9209.21 0.546858
\(658\) −2005.83 −0.118838
\(659\) 7545.75 0.446040 0.223020 0.974814i \(-0.428408\pi\)
0.223020 + 0.974814i \(0.428408\pi\)
\(660\) −11744.2 −0.692640
\(661\) 3729.39 0.219450 0.109725 0.993962i \(-0.465003\pi\)
0.109725 + 0.993962i \(0.465003\pi\)
\(662\) 3572.07 0.209716
\(663\) −18501.5 −1.08377
\(664\) −8152.54 −0.476476
\(665\) 4978.90 0.290336
\(666\) −1878.56 −0.109299
\(667\) −4163.39 −0.241690
\(668\) −7082.12 −0.410203
\(669\) 5511.32 0.318505
\(670\) 61115.9 3.52405
\(671\) 26036.8 1.49797
\(672\) −4141.13 −0.237719
\(673\) 10435.6 0.597717 0.298859 0.954297i \(-0.403394\pi\)
0.298859 + 0.954297i \(0.403394\pi\)
\(674\) 19251.6 1.10022
\(675\) −40941.3 −2.33457
\(676\) 14079.0 0.801036
\(677\) 30778.0 1.74726 0.873630 0.486591i \(-0.161760\pi\)
0.873630 + 0.486591i \(0.161760\pi\)
\(678\) −16656.6 −0.943502
\(679\) 5468.31 0.309064
\(680\) 15601.9 0.879861
\(681\) 12859.8 0.723625
\(682\) −41145.5 −2.31018
\(683\) −7473.15 −0.418671 −0.209336 0.977844i \(-0.567130\pi\)
−0.209336 + 0.977844i \(0.567130\pi\)
\(684\) −4176.65 −0.233477
\(685\) 38735.4 2.16059
\(686\) 1292.36 0.0719278
\(687\) 4278.59 0.237611
\(688\) 12268.1 0.679820
\(689\) −7015.25 −0.387895
\(690\) 4802.67 0.264977
\(691\) −12359.3 −0.680419 −0.340210 0.940350i \(-0.610498\pi\)
−0.340210 + 0.940350i \(0.610498\pi\)
\(692\) −5525.77 −0.303552
\(693\) 4864.39 0.266642
\(694\) 23020.5 1.25914
\(695\) 25096.8 1.36975
\(696\) 3179.47 0.173157
\(697\) 29599.1 1.60853
\(698\) 14602.3 0.791839
\(699\) −9146.45 −0.494922
\(700\) 14519.6 0.783982
\(701\) −28966.7 −1.56071 −0.780355 0.625337i \(-0.784962\pi\)
−0.780355 + 0.625337i \(0.784962\pi\)
\(702\) −30806.8 −1.65631
\(703\) 813.957 0.0436685
\(704\) 8925.45 0.477827
\(705\) −4214.77 −0.225159
\(706\) −32399.2 −1.72714
\(707\) 5602.93 0.298048
\(708\) 3549.89 0.188437
\(709\) −6210.07 −0.328948 −0.164474 0.986381i \(-0.552593\pi\)
−0.164474 + 0.986381i \(0.552593\pi\)
\(710\) −68430.2 −3.61710
\(711\) 73.7253 0.00388877
\(712\) 639.121 0.0336405
\(713\) 7344.16 0.385752
\(714\) −7299.33 −0.382592
\(715\) −49021.8 −2.56407
\(716\) 17406.7 0.908547
\(717\) −3369.65 −0.175512
\(718\) −39724.4 −2.06476
\(719\) −11977.5 −0.621262 −0.310631 0.950531i \(-0.600540\pi\)
−0.310631 + 0.950531i \(0.600540\pi\)
\(720\) 32752.8 1.69531
\(721\) 9872.66 0.509954
\(722\) −21697.3 −1.11841
\(723\) −13536.6 −0.696311
\(724\) 2106.25 0.108119
\(725\) −60594.7 −3.10404
\(726\) −1571.81 −0.0803520
\(727\) −31866.2 −1.62566 −0.812828 0.582503i \(-0.802073\pi\)
−0.812828 + 0.582503i \(0.802073\pi\)
\(728\) −3180.08 −0.161898
\(729\) 3810.89 0.193613
\(730\) −36615.0 −1.85641
\(731\) 17473.8 0.884120
\(732\) −12193.1 −0.615671
\(733\) −7557.79 −0.380837 −0.190418 0.981703i \(-0.560984\pi\)
−0.190418 + 0.981703i \(0.560984\pi\)
\(734\) 11258.6 0.566163
\(735\) 2715.57 0.136280
\(736\) −5264.32 −0.263648
\(737\) −25871.7 −1.29307
\(738\) 21163.6 1.05561
\(739\) −7828.04 −0.389661 −0.194830 0.980837i \(-0.562416\pi\)
−0.194830 + 0.980837i \(0.562416\pi\)
\(740\) 3260.04 0.161948
\(741\) 5731.84 0.284163
\(742\) −2767.70 −0.136935
\(743\) −19048.4 −0.940537 −0.470268 0.882523i \(-0.655843\pi\)
−0.470268 + 0.882523i \(0.655843\pi\)
\(744\) −5608.54 −0.276370
\(745\) 47068.4 2.31470
\(746\) −47768.0 −2.34438
\(747\) −24376.7 −1.19397
\(748\) 22690.7 1.10916
\(749\) 1174.72 0.0573078
\(750\) 43797.4 2.13234
\(751\) 2388.29 0.116045 0.0580226 0.998315i \(-0.481520\pi\)
0.0580226 + 0.998315i \(0.481520\pi\)
\(752\) 5717.24 0.277242
\(753\) −14515.5 −0.702491
\(754\) −45595.2 −2.20223
\(755\) −23076.9 −1.11239
\(756\) −5304.98 −0.255212
\(757\) 5569.52 0.267408 0.133704 0.991021i \(-0.457313\pi\)
0.133704 + 0.991021i \(0.457313\pi\)
\(758\) 18623.6 0.892399
\(759\) −2033.07 −0.0972277
\(760\) −4833.53 −0.230698
\(761\) −16879.8 −0.804066 −0.402033 0.915625i \(-0.631696\pi\)
−0.402033 + 0.915625i \(0.631696\pi\)
\(762\) 11344.3 0.539320
\(763\) −526.391 −0.0249759
\(764\) 1986.78 0.0940825
\(765\) 46650.9 2.20479
\(766\) 31917.7 1.50553
\(767\) 14817.7 0.697570
\(768\) 13652.2 0.641446
\(769\) 13837.8 0.648899 0.324450 0.945903i \(-0.394821\pi\)
0.324450 + 0.945903i \(0.394821\pi\)
\(770\) −19340.4 −0.905167
\(771\) −50.8898 −0.00237711
\(772\) 2862.11 0.133432
\(773\) −17800.2 −0.828241 −0.414121 0.910222i \(-0.635911\pi\)
−0.414121 + 0.910222i \(0.635911\pi\)
\(774\) 12493.9 0.580213
\(775\) 106888. 4.95425
\(776\) −5308.65 −0.245579
\(777\) 443.945 0.0204974
\(778\) −16268.7 −0.749692
\(779\) −9169.91 −0.421754
\(780\) 22957.1 1.05384
\(781\) 28968.0 1.32722
\(782\) −9279.10 −0.424322
\(783\) 22139.3 1.01047
\(784\) −3683.62 −0.167803
\(785\) 52354.1 2.38038
\(786\) −10717.6 −0.486368
\(787\) −28908.0 −1.30935 −0.654676 0.755909i \(-0.727195\pi\)
−0.654676 + 0.755909i \(0.727195\pi\)
\(788\) −7967.80 −0.360204
\(789\) 2054.58 0.0927059
\(790\) −293.125 −0.0132012
\(791\) −11972.6 −0.538177
\(792\) −4722.36 −0.211871
\(793\) −50895.7 −2.27914
\(794\) −30572.6 −1.36647
\(795\) −5815.64 −0.259446
\(796\) −17992.2 −0.801151
\(797\) −2259.05 −0.100401 −0.0502005 0.998739i \(-0.515986\pi\)
−0.0502005 + 0.998739i \(0.515986\pi\)
\(798\) 2261.36 0.100315
\(799\) 8143.24 0.360560
\(800\) −76617.8 −3.38606
\(801\) 1911.02 0.0842979
\(802\) −19094.1 −0.840693
\(803\) 15499.9 0.681171
\(804\) 12115.8 0.531457
\(805\) 3452.11 0.151144
\(806\) 80429.4 3.51489
\(807\) −12020.4 −0.524335
\(808\) −5439.34 −0.236826
\(809\) 29222.7 1.26998 0.634992 0.772519i \(-0.281004\pi\)
0.634992 + 0.772519i \(0.281004\pi\)
\(810\) 18783.6 0.814802
\(811\) −3895.91 −0.168685 −0.0843427 0.996437i \(-0.526879\pi\)
−0.0843427 + 0.996437i \(0.526879\pi\)
\(812\) −7851.57 −0.339330
\(813\) −13595.8 −0.586503
\(814\) −3161.79 −0.136143
\(815\) 7011.11 0.301335
\(816\) 20805.3 0.892562
\(817\) −5413.46 −0.231815
\(818\) −16508.4 −0.705626
\(819\) −9508.70 −0.405691
\(820\) −36727.2 −1.56411
\(821\) −24440.0 −1.03893 −0.519464 0.854492i \(-0.673868\pi\)
−0.519464 + 0.854492i \(0.673868\pi\)
\(822\) 17593.2 0.746512
\(823\) 10832.9 0.458822 0.229411 0.973330i \(-0.426320\pi\)
0.229411 + 0.973330i \(0.426320\pi\)
\(824\) −9584.41 −0.405205
\(825\) −29589.7 −1.24870
\(826\) 5845.97 0.246256
\(827\) −29927.9 −1.25840 −0.629199 0.777245i \(-0.716617\pi\)
−0.629199 + 0.777245i \(0.716617\pi\)
\(828\) −2895.87 −0.121544
\(829\) 17541.9 0.734926 0.367463 0.930038i \(-0.380226\pi\)
0.367463 + 0.930038i \(0.380226\pi\)
\(830\) 96919.7 4.05317
\(831\) 9354.47 0.390497
\(832\) −17447.1 −0.727006
\(833\) −5246.69 −0.218232
\(834\) 11398.7 0.473267
\(835\) −24506.6 −1.01567
\(836\) −7029.66 −0.290821
\(837\) −39053.5 −1.61277
\(838\) −1813.43 −0.0747540
\(839\) −14078.4 −0.579308 −0.289654 0.957131i \(-0.593540\pi\)
−0.289654 + 0.957131i \(0.593540\pi\)
\(840\) −2636.29 −0.108286
\(841\) 8378.06 0.343518
\(842\) −29476.0 −1.20643
\(843\) 12982.9 0.530431
\(844\) −15690.2 −0.639904
\(845\) 48718.3 1.98338
\(846\) 5822.49 0.236621
\(847\) −1129.81 −0.0458330
\(848\) 7888.78 0.319460
\(849\) 11563.7 0.467449
\(850\) −135050. −5.44961
\(851\) 564.355 0.0227331
\(852\) −13565.8 −0.545489
\(853\) −39363.9 −1.58007 −0.790033 0.613065i \(-0.789936\pi\)
−0.790033 + 0.613065i \(0.789936\pi\)
\(854\) −20079.7 −0.804581
\(855\) −14452.6 −0.578094
\(856\) −1140.43 −0.0455362
\(857\) −6267.23 −0.249807 −0.124903 0.992169i \(-0.539862\pi\)
−0.124903 + 0.992169i \(0.539862\pi\)
\(858\) −22265.1 −0.885920
\(859\) 13245.4 0.526108 0.263054 0.964781i \(-0.415270\pi\)
0.263054 + 0.964781i \(0.415270\pi\)
\(860\) −21681.9 −0.859704
\(861\) −5001.42 −0.197965
\(862\) 28839.4 1.13953
\(863\) −27500.0 −1.08472 −0.542358 0.840148i \(-0.682468\pi\)
−0.542358 + 0.840148i \(0.682468\pi\)
\(864\) 27993.7 1.10227
\(865\) −19121.1 −0.751602
\(866\) −48828.6 −1.91601
\(867\) 16935.1 0.663375
\(868\) 13850.1 0.541592
\(869\) 124.086 0.00484389
\(870\) −37798.4 −1.47297
\(871\) 50572.9 1.96739
\(872\) 511.022 0.0198456
\(873\) −15873.3 −0.615383
\(874\) 2874.71 0.111257
\(875\) 31481.2 1.21630
\(876\) −7258.67 −0.279963
\(877\) 22977.2 0.884705 0.442352 0.896841i \(-0.354144\pi\)
0.442352 + 0.896841i \(0.354144\pi\)
\(878\) 11784.8 0.452983
\(879\) 19938.6 0.765086
\(880\) 55125.9 2.11170
\(881\) 7651.77 0.292616 0.146308 0.989239i \(-0.453261\pi\)
0.146308 + 0.989239i \(0.453261\pi\)
\(882\) −3751.43 −0.143217
\(883\) −29945.5 −1.14127 −0.570637 0.821202i \(-0.693304\pi\)
−0.570637 + 0.821202i \(0.693304\pi\)
\(884\) −44354.7 −1.68757
\(885\) 12283.9 0.466573
\(886\) 38108.9 1.44503
\(887\) −27353.7 −1.03545 −0.517727 0.855546i \(-0.673222\pi\)
−0.517727 + 0.855546i \(0.673222\pi\)
\(888\) −430.983 −0.0162870
\(889\) 8154.21 0.307630
\(890\) −7598.04 −0.286165
\(891\) −7951.51 −0.298974
\(892\) 13212.6 0.495954
\(893\) −2522.81 −0.0945382
\(894\) 21377.9 0.799760
\(895\) 60233.3 2.24958
\(896\) 5934.13 0.221256
\(897\) 3974.16 0.147930
\(898\) −11526.4 −0.428331
\(899\) −57800.7 −2.14434
\(900\) −42147.0 −1.56100
\(901\) 11236.2 0.415464
\(902\) 35620.2 1.31488
\(903\) −2952.59 −0.108811
\(904\) 11623.1 0.427630
\(905\) 7288.35 0.267705
\(906\) −10481.3 −0.384346
\(907\) −6360.57 −0.232855 −0.116427 0.993199i \(-0.537144\pi\)
−0.116427 + 0.993199i \(0.537144\pi\)
\(908\) 30829.6 1.12678
\(909\) −16264.0 −0.593448
\(910\) 37805.7 1.37720
\(911\) −20916.5 −0.760696 −0.380348 0.924844i \(-0.624196\pi\)
−0.380348 + 0.924844i \(0.624196\pi\)
\(912\) −6445.57 −0.234029
\(913\) −41028.2 −1.48722
\(914\) −9504.40 −0.343958
\(915\) −42192.5 −1.52442
\(916\) 10257.3 0.369991
\(917\) −7703.73 −0.277426
\(918\) 49342.9 1.77403
\(919\) 43937.7 1.57712 0.788559 0.614959i \(-0.210827\pi\)
0.788559 + 0.614959i \(0.210827\pi\)
\(920\) −3351.32 −0.120098
\(921\) −10058.8 −0.359878
\(922\) 10757.7 0.384258
\(923\) −56625.3 −2.01933
\(924\) −3834.09 −0.136507
\(925\) 8213.73 0.291963
\(926\) −185.503 −0.00658315
\(927\) −28658.1 −1.01538
\(928\) 41431.7 1.46558
\(929\) 21464.7 0.758055 0.379027 0.925385i \(-0.376259\pi\)
0.379027 + 0.925385i \(0.376259\pi\)
\(930\) 66675.9 2.35096
\(931\) 1625.45 0.0572200
\(932\) −21927.3 −0.770658
\(933\) 8638.34 0.303115
\(934\) 21142.5 0.740690
\(935\) 78517.5 2.74631
\(936\) 9231.07 0.322358
\(937\) 33419.2 1.16516 0.582582 0.812772i \(-0.302043\pi\)
0.582582 + 0.812772i \(0.302043\pi\)
\(938\) 19952.3 0.694527
\(939\) 7179.47 0.249514
\(940\) −10104.3 −0.350602
\(941\) −48339.3 −1.67462 −0.837309 0.546729i \(-0.815873\pi\)
−0.837309 + 0.546729i \(0.815873\pi\)
\(942\) 23778.6 0.822452
\(943\) −6357.94 −0.219558
\(944\) −16662.8 −0.574499
\(945\) −18357.1 −0.631910
\(946\) 21028.4 0.722718
\(947\) −27820.4 −0.954636 −0.477318 0.878731i \(-0.658391\pi\)
−0.477318 + 0.878731i \(0.658391\pi\)
\(948\) −58.1100 −0.00199085
\(949\) −30298.6 −1.03639
\(950\) 41839.0 1.42888
\(951\) −25882.3 −0.882534
\(952\) 5093.50 0.173405
\(953\) −2793.37 −0.0949487 −0.0474744 0.998872i \(-0.515117\pi\)
−0.0474744 + 0.998872i \(0.515117\pi\)
\(954\) 8034.02 0.272653
\(955\) 6874.93 0.232950
\(956\) −8078.26 −0.273295
\(957\) 16000.9 0.540475
\(958\) −13829.1 −0.466385
\(959\) 12645.8 0.425813
\(960\) −14463.6 −0.486262
\(961\) 72168.8 2.42250
\(962\) 6180.53 0.207139
\(963\) −3409.96 −0.114106
\(964\) −32452.2 −1.08425
\(965\) 9903.90 0.330381
\(966\) 1567.91 0.0522223
\(967\) 4132.85 0.137439 0.0687195 0.997636i \(-0.478109\pi\)
0.0687195 + 0.997636i \(0.478109\pi\)
\(968\) 1096.82 0.0364185
\(969\) −9180.62 −0.304359
\(970\) 63110.7 2.08903
\(971\) 27927.7 0.923010 0.461505 0.887138i \(-0.347310\pi\)
0.461505 + 0.887138i \(0.347310\pi\)
\(972\) 24185.8 0.798106
\(973\) 8193.27 0.269953
\(974\) −29965.6 −0.985789
\(975\) 57840.7 1.89988
\(976\) 57233.2 1.87704
\(977\) 36450.4 1.19361 0.596803 0.802388i \(-0.296437\pi\)
0.596803 + 0.802388i \(0.296437\pi\)
\(978\) 3184.37 0.104115
\(979\) 3216.42 0.105002
\(980\) 6510.21 0.212205
\(981\) 1528.00 0.0497300
\(982\) −14841.4 −0.482288
\(983\) 10230.3 0.331937 0.165969 0.986131i \(-0.446925\pi\)
0.165969 + 0.986131i \(0.446925\pi\)
\(984\) 4855.39 0.157301
\(985\) −27571.3 −0.891874
\(986\) 73029.3 2.35875
\(987\) −1375.98 −0.0443748
\(988\) 13741.3 0.442478
\(989\) −3753.41 −0.120679
\(990\) 56140.8 1.80229
\(991\) 15599.0 0.500020 0.250010 0.968243i \(-0.419566\pi\)
0.250010 + 0.968243i \(0.419566\pi\)
\(992\) −73085.1 −2.33917
\(993\) 2450.40 0.0783092
\(994\) −22340.2 −0.712865
\(995\) −62259.2 −1.98367
\(996\) 19213.6 0.611253
\(997\) −29184.6 −0.927067 −0.463533 0.886079i \(-0.653419\pi\)
−0.463533 + 0.886079i \(0.653419\pi\)
\(998\) 67479.1 2.14029
\(999\) −3001.03 −0.0950436
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 161.4.a.d.1.10 12
3.2 odd 2 1449.4.a.o.1.3 12
7.6 odd 2 1127.4.a.h.1.10 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
161.4.a.d.1.10 12 1.1 even 1 trivial
1127.4.a.h.1.10 12 7.6 odd 2
1449.4.a.o.1.3 12 3.2 odd 2