Properties

Label 161.4.a.d.1.1
Level $161$
Weight $4$
Character 161.1
Self dual yes
Analytic conductor $9.499$
Analytic rank $0$
Dimension $12$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [161,4,Mod(1,161)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(161, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("161.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 161 = 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 161.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(9.49930751092\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 4 x^{11} - 76 x^{10} + 311 x^{9} + 1979 x^{8} - 8466 x^{7} - 19942 x^{6} + 95647 x^{5} + \cdots - 70656 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-5.60949\) of defining polynomial
Character \(\chi\) \(=\) 161.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-5.60949 q^{2} -7.98435 q^{3} +23.4664 q^{4} -5.27021 q^{5} +44.7882 q^{6} +7.00000 q^{7} -86.7589 q^{8} +36.7498 q^{9} +29.5632 q^{10} -50.0994 q^{11} -187.364 q^{12} -60.3984 q^{13} -39.2665 q^{14} +42.0792 q^{15} +298.942 q^{16} -87.5921 q^{17} -206.148 q^{18} -23.8249 q^{19} -123.673 q^{20} -55.8904 q^{21} +281.032 q^{22} +23.0000 q^{23} +692.713 q^{24} -97.2249 q^{25} +338.805 q^{26} -77.8461 q^{27} +164.265 q^{28} +102.227 q^{29} -236.043 q^{30} -118.433 q^{31} -982.842 q^{32} +400.011 q^{33} +491.347 q^{34} -36.8914 q^{35} +862.388 q^{36} +215.264 q^{37} +133.645 q^{38} +482.242 q^{39} +457.237 q^{40} +43.5124 q^{41} +313.517 q^{42} -165.407 q^{43} -1175.65 q^{44} -193.679 q^{45} -129.018 q^{46} -54.1931 q^{47} -2386.86 q^{48} +49.0000 q^{49} +545.383 q^{50} +699.366 q^{51} -1417.34 q^{52} -228.769 q^{53} +436.677 q^{54} +264.034 q^{55} -607.312 q^{56} +190.226 q^{57} -573.442 q^{58} +606.700 q^{59} +987.448 q^{60} -752.848 q^{61} +664.348 q^{62} +257.249 q^{63} +3121.71 q^{64} +318.312 q^{65} -2243.86 q^{66} +358.015 q^{67} -2055.47 q^{68} -183.640 q^{69} +206.942 q^{70} +699.435 q^{71} -3188.37 q^{72} +255.823 q^{73} -1207.52 q^{74} +776.278 q^{75} -559.085 q^{76} -350.696 q^{77} -2705.13 q^{78} +1323.95 q^{79} -1575.49 q^{80} -370.695 q^{81} -244.082 q^{82} -43.6097 q^{83} -1311.55 q^{84} +461.629 q^{85} +927.847 q^{86} -816.217 q^{87} +4346.57 q^{88} +896.533 q^{89} +1086.44 q^{90} -422.789 q^{91} +539.728 q^{92} +945.608 q^{93} +303.996 q^{94} +125.562 q^{95} +7847.36 q^{96} +56.3866 q^{97} -274.865 q^{98} -1841.15 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 4 q^{2} + q^{3} + 72 q^{4} + 16 q^{5} - 15 q^{6} + 84 q^{7} - 21 q^{8} + 203 q^{9} + 106 q^{10} + 50 q^{11} - 139 q^{12} + 21 q^{13} + 28 q^{14} + 192 q^{15} + 516 q^{16} + 26 q^{17} + 251 q^{18}+ \cdots + 2400 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −5.60949 −1.98326 −0.991628 0.129128i \(-0.958782\pi\)
−0.991628 + 0.129128i \(0.958782\pi\)
\(3\) −7.98435 −1.53659 −0.768294 0.640097i \(-0.778894\pi\)
−0.768294 + 0.640097i \(0.778894\pi\)
\(4\) 23.4664 2.93330
\(5\) −5.27021 −0.471382 −0.235691 0.971828i \(-0.575735\pi\)
−0.235691 + 0.971828i \(0.575735\pi\)
\(6\) 44.7882 3.04745
\(7\) 7.00000 0.377964
\(8\) −86.7589 −3.83424
\(9\) 36.7498 1.36111
\(10\) 29.5632 0.934870
\(11\) −50.0994 −1.37323 −0.686616 0.727021i \(-0.740904\pi\)
−0.686616 + 0.727021i \(0.740904\pi\)
\(12\) −187.364 −4.50728
\(13\) −60.3984 −1.28858 −0.644289 0.764782i \(-0.722847\pi\)
−0.644289 + 0.764782i \(0.722847\pi\)
\(14\) −39.2665 −0.749600
\(15\) 42.0792 0.724320
\(16\) 298.942 4.67097
\(17\) −87.5921 −1.24966 −0.624830 0.780761i \(-0.714832\pi\)
−0.624830 + 0.780761i \(0.714832\pi\)
\(18\) −206.148 −2.69942
\(19\) −23.8249 −0.287674 −0.143837 0.989601i \(-0.545944\pi\)
−0.143837 + 0.989601i \(0.545944\pi\)
\(20\) −123.673 −1.38271
\(21\) −55.8904 −0.580776
\(22\) 281.032 2.72347
\(23\) 23.0000 0.208514
\(24\) 692.713 5.89164
\(25\) −97.2249 −0.777799
\(26\) 338.805 2.55558
\(27\) −77.8461 −0.554870
\(28\) 164.265 1.10868
\(29\) 102.227 0.654590 0.327295 0.944922i \(-0.393863\pi\)
0.327295 + 0.944922i \(0.393863\pi\)
\(30\) −236.043 −1.43651
\(31\) −118.433 −0.686166 −0.343083 0.939305i \(-0.611471\pi\)
−0.343083 + 0.939305i \(0.611471\pi\)
\(32\) −982.842 −5.42949
\(33\) 400.011 2.11009
\(34\) 491.347 2.47839
\(35\) −36.8914 −0.178166
\(36\) 862.388 3.99253
\(37\) 215.264 0.956466 0.478233 0.878233i \(-0.341277\pi\)
0.478233 + 0.878233i \(0.341277\pi\)
\(38\) 133.645 0.570530
\(39\) 482.242 1.98001
\(40\) 457.237 1.80739
\(41\) 43.5124 0.165744 0.0828718 0.996560i \(-0.473591\pi\)
0.0828718 + 0.996560i \(0.473591\pi\)
\(42\) 313.517 1.15183
\(43\) −165.407 −0.586611 −0.293305 0.956019i \(-0.594755\pi\)
−0.293305 + 0.956019i \(0.594755\pi\)
\(44\) −1175.65 −4.02810
\(45\) −193.679 −0.641600
\(46\) −129.018 −0.413537
\(47\) −54.1931 −0.168189 −0.0840944 0.996458i \(-0.526800\pi\)
−0.0840944 + 0.996458i \(0.526800\pi\)
\(48\) −2386.86 −7.17736
\(49\) 49.0000 0.142857
\(50\) 545.383 1.54258
\(51\) 699.366 1.92021
\(52\) −1417.34 −3.77979
\(53\) −228.769 −0.592902 −0.296451 0.955048i \(-0.595803\pi\)
−0.296451 + 0.955048i \(0.595803\pi\)
\(54\) 436.677 1.10045
\(55\) 264.034 0.647316
\(56\) −607.312 −1.44921
\(57\) 190.226 0.442036
\(58\) −573.442 −1.29822
\(59\) 606.700 1.33874 0.669370 0.742929i \(-0.266564\pi\)
0.669370 + 0.742929i \(0.266564\pi\)
\(60\) 987.448 2.12465
\(61\) −752.848 −1.58020 −0.790100 0.612977i \(-0.789972\pi\)
−0.790100 + 0.612977i \(0.789972\pi\)
\(62\) 664.348 1.36084
\(63\) 257.249 0.514449
\(64\) 3121.71 6.09710
\(65\) 318.312 0.607412
\(66\) −2243.86 −4.18485
\(67\) 358.015 0.652813 0.326407 0.945229i \(-0.394162\pi\)
0.326407 + 0.945229i \(0.394162\pi\)
\(68\) −2055.47 −3.66563
\(69\) −183.640 −0.320401
\(70\) 206.942 0.353348
\(71\) 699.435 1.16912 0.584561 0.811350i \(-0.301267\pi\)
0.584561 + 0.811350i \(0.301267\pi\)
\(72\) −3188.37 −5.21880
\(73\) 255.823 0.410162 0.205081 0.978745i \(-0.434254\pi\)
0.205081 + 0.978745i \(0.434254\pi\)
\(74\) −1207.52 −1.89692
\(75\) 776.278 1.19516
\(76\) −559.085 −0.843834
\(77\) −350.696 −0.519033
\(78\) −2705.13 −3.92687
\(79\) 1323.95 1.88552 0.942758 0.333476i \(-0.108222\pi\)
0.942758 + 0.333476i \(0.108222\pi\)
\(80\) −1575.49 −2.20181
\(81\) −370.695 −0.508498
\(82\) −244.082 −0.328712
\(83\) −43.6097 −0.0576721 −0.0288361 0.999584i \(-0.509180\pi\)
−0.0288361 + 0.999584i \(0.509180\pi\)
\(84\) −1311.55 −1.70359
\(85\) 461.629 0.589066
\(86\) 927.847 1.16340
\(87\) −816.217 −1.00583
\(88\) 4346.57 5.26529
\(89\) 896.533 1.06778 0.533890 0.845554i \(-0.320730\pi\)
0.533890 + 0.845554i \(0.320730\pi\)
\(90\) 1086.44 1.27246
\(91\) −422.789 −0.487037
\(92\) 539.728 0.611636
\(93\) 945.608 1.05435
\(94\) 303.996 0.333562
\(95\) 125.562 0.135604
\(96\) 7847.36 8.34289
\(97\) 56.3866 0.0590226 0.0295113 0.999564i \(-0.490605\pi\)
0.0295113 + 0.999564i \(0.490605\pi\)
\(98\) −274.865 −0.283322
\(99\) −1841.15 −1.86911
\(100\) −2281.52 −2.28152
\(101\) −1496.27 −1.47410 −0.737051 0.675837i \(-0.763782\pi\)
−0.737051 + 0.675837i \(0.763782\pi\)
\(102\) −3923.09 −3.80827
\(103\) 1009.29 0.965521 0.482761 0.875752i \(-0.339634\pi\)
0.482761 + 0.875752i \(0.339634\pi\)
\(104\) 5240.10 4.94071
\(105\) 294.554 0.273767
\(106\) 1283.28 1.17588
\(107\) 1344.24 1.21451 0.607255 0.794507i \(-0.292270\pi\)
0.607255 + 0.794507i \(0.292270\pi\)
\(108\) −1826.77 −1.62760
\(109\) −862.818 −0.758192 −0.379096 0.925357i \(-0.623765\pi\)
−0.379096 + 0.925357i \(0.623765\pi\)
\(110\) −1481.10 −1.28379
\(111\) −1718.75 −1.46969
\(112\) 2092.59 1.76546
\(113\) −411.007 −0.342162 −0.171081 0.985257i \(-0.554726\pi\)
−0.171081 + 0.985257i \(0.554726\pi\)
\(114\) −1067.07 −0.876671
\(115\) −121.215 −0.0982899
\(116\) 2398.91 1.92011
\(117\) −2219.63 −1.75389
\(118\) −3403.28 −2.65506
\(119\) −613.145 −0.472327
\(120\) −3650.74 −2.77721
\(121\) 1178.95 0.885764
\(122\) 4223.09 3.13394
\(123\) −347.418 −0.254680
\(124\) −2779.19 −2.01273
\(125\) 1171.17 0.838022
\(126\) −1443.04 −1.02028
\(127\) 312.819 0.218569 0.109284 0.994011i \(-0.465144\pi\)
0.109284 + 0.994011i \(0.465144\pi\)
\(128\) −9648.49 −6.66261
\(129\) 1320.66 0.901379
\(130\) −1785.57 −1.20465
\(131\) −1739.81 −1.16037 −0.580183 0.814486i \(-0.697019\pi\)
−0.580183 + 0.814486i \(0.697019\pi\)
\(132\) 9386.84 6.18954
\(133\) −166.774 −0.108730
\(134\) −2008.28 −1.29470
\(135\) 410.265 0.261556
\(136\) 7599.39 4.79149
\(137\) 793.877 0.495076 0.247538 0.968878i \(-0.420378\pi\)
0.247538 + 0.968878i \(0.420378\pi\)
\(138\) 1030.13 0.635437
\(139\) −981.223 −0.598750 −0.299375 0.954136i \(-0.596778\pi\)
−0.299375 + 0.954136i \(0.596778\pi\)
\(140\) −865.711 −0.522614
\(141\) 432.697 0.258437
\(142\) −3923.47 −2.31867
\(143\) 3025.93 1.76952
\(144\) 10986.1 6.35768
\(145\) −538.758 −0.308561
\(146\) −1435.04 −0.813457
\(147\) −391.233 −0.219513
\(148\) 5051.49 2.80561
\(149\) 709.813 0.390269 0.195135 0.980776i \(-0.437486\pi\)
0.195135 + 0.980776i \(0.437486\pi\)
\(150\) −4354.53 −2.37030
\(151\) −378.499 −0.203986 −0.101993 0.994785i \(-0.532522\pi\)
−0.101993 + 0.994785i \(0.532522\pi\)
\(152\) 2067.02 1.10301
\(153\) −3219.00 −1.70092
\(154\) 1967.23 1.02937
\(155\) 624.165 0.323446
\(156\) 11316.5 5.80798
\(157\) −831.675 −0.422770 −0.211385 0.977403i \(-0.567797\pi\)
−0.211385 + 0.977403i \(0.567797\pi\)
\(158\) −7426.68 −3.73946
\(159\) 1826.57 0.911047
\(160\) 5179.78 2.55936
\(161\) 161.000 0.0788110
\(162\) 2079.41 1.00848
\(163\) 276.507 0.132869 0.0664346 0.997791i \(-0.478838\pi\)
0.0664346 + 0.997791i \(0.478838\pi\)
\(164\) 1021.08 0.486177
\(165\) −2108.14 −0.994659
\(166\) 244.628 0.114379
\(167\) 2046.63 0.948343 0.474171 0.880433i \(-0.342748\pi\)
0.474171 + 0.880433i \(0.342748\pi\)
\(168\) 4848.99 2.22683
\(169\) 1450.97 0.660432
\(170\) −2589.50 −1.16827
\(171\) −875.560 −0.391554
\(172\) −3881.50 −1.72071
\(173\) −1813.60 −0.797024 −0.398512 0.917163i \(-0.630473\pi\)
−0.398512 + 0.917163i \(0.630473\pi\)
\(174\) 4578.56 1.99483
\(175\) −680.574 −0.293981
\(176\) −14976.8 −6.41432
\(177\) −4844.11 −2.05709
\(178\) −5029.10 −2.11768
\(179\) −2396.58 −1.00072 −0.500359 0.865818i \(-0.666799\pi\)
−0.500359 + 0.865818i \(0.666799\pi\)
\(180\) −4544.96 −1.88201
\(181\) −3473.98 −1.42663 −0.713313 0.700846i \(-0.752806\pi\)
−0.713313 + 0.700846i \(0.752806\pi\)
\(182\) 2371.63 0.965918
\(183\) 6011.00 2.42812
\(184\) −1995.45 −0.799493
\(185\) −1134.49 −0.450860
\(186\) −5304.38 −2.09106
\(187\) 4388.31 1.71607
\(188\) −1271.72 −0.493349
\(189\) −544.923 −0.209721
\(190\) −704.339 −0.268938
\(191\) 1151.44 0.436207 0.218103 0.975926i \(-0.430013\pi\)
0.218103 + 0.975926i \(0.430013\pi\)
\(192\) −24924.8 −9.36873
\(193\) 4974.32 1.85523 0.927615 0.373537i \(-0.121855\pi\)
0.927615 + 0.373537i \(0.121855\pi\)
\(194\) −316.301 −0.117057
\(195\) −2541.52 −0.933342
\(196\) 1149.86 0.419043
\(197\) −628.269 −0.227220 −0.113610 0.993525i \(-0.536241\pi\)
−0.113610 + 0.993525i \(0.536241\pi\)
\(198\) 10327.9 3.70693
\(199\) −1303.52 −0.464342 −0.232171 0.972675i \(-0.574583\pi\)
−0.232171 + 0.972675i \(0.574583\pi\)
\(200\) 8435.12 2.98227
\(201\) −2858.52 −1.00311
\(202\) 8393.31 2.92352
\(203\) 715.590 0.247412
\(204\) 16411.6 5.63257
\(205\) −229.319 −0.0781285
\(206\) −5661.63 −1.91488
\(207\) 845.246 0.283810
\(208\) −18055.6 −6.01890
\(209\) 1193.61 0.395042
\(210\) −1652.30 −0.542950
\(211\) −4341.94 −1.41664 −0.708321 0.705891i \(-0.750547\pi\)
−0.708321 + 0.705891i \(0.750547\pi\)
\(212\) −5368.39 −1.73916
\(213\) −5584.53 −1.79646
\(214\) −7540.51 −2.40869
\(215\) 871.727 0.276517
\(216\) 6753.84 2.12750
\(217\) −829.029 −0.259346
\(218\) 4839.97 1.50369
\(219\) −2042.58 −0.630251
\(220\) 6195.94 1.89877
\(221\) 5290.43 1.61028
\(222\) 9641.30 2.91478
\(223\) −1582.33 −0.475159 −0.237580 0.971368i \(-0.576354\pi\)
−0.237580 + 0.971368i \(0.576354\pi\)
\(224\) −6879.90 −2.05215
\(225\) −3573.00 −1.05867
\(226\) 2305.54 0.678594
\(227\) −1525.73 −0.446108 −0.223054 0.974806i \(-0.571603\pi\)
−0.223054 + 0.974806i \(0.571603\pi\)
\(228\) 4463.93 1.29663
\(229\) −3725.48 −1.07505 −0.537525 0.843248i \(-0.680641\pi\)
−0.537525 + 0.843248i \(0.680641\pi\)
\(230\) 679.954 0.194934
\(231\) 2800.08 0.797540
\(232\) −8869.11 −2.50985
\(233\) −1143.17 −0.321424 −0.160712 0.987001i \(-0.551379\pi\)
−0.160712 + 0.987001i \(0.551379\pi\)
\(234\) 12451.0 3.47841
\(235\) 285.609 0.0792812
\(236\) 14237.1 3.92693
\(237\) −10570.9 −2.89726
\(238\) 3439.43 0.936745
\(239\) 5817.23 1.57441 0.787207 0.616688i \(-0.211526\pi\)
0.787207 + 0.616688i \(0.211526\pi\)
\(240\) 12579.2 3.38327
\(241\) 3255.03 0.870020 0.435010 0.900426i \(-0.356745\pi\)
0.435010 + 0.900426i \(0.356745\pi\)
\(242\) −6613.33 −1.75670
\(243\) 5061.60 1.33622
\(244\) −17666.6 −4.63521
\(245\) −258.240 −0.0673402
\(246\) 1948.84 0.505095
\(247\) 1438.98 0.370690
\(248\) 10275.1 2.63092
\(249\) 348.195 0.0886183
\(250\) −6569.68 −1.66201
\(251\) 7925.04 1.99292 0.996462 0.0840389i \(-0.0267820\pi\)
0.996462 + 0.0840389i \(0.0267820\pi\)
\(252\) 6036.71 1.50904
\(253\) −1152.29 −0.286339
\(254\) −1754.76 −0.433478
\(255\) −3685.80 −0.905153
\(256\) 29149.5 7.11657
\(257\) −1394.72 −0.338522 −0.169261 0.985571i \(-0.554138\pi\)
−0.169261 + 0.985571i \(0.554138\pi\)
\(258\) −7408.25 −1.78767
\(259\) 1506.85 0.361510
\(260\) 7469.65 1.78172
\(261\) 3756.83 0.890965
\(262\) 9759.46 2.30130
\(263\) −2524.37 −0.591862 −0.295931 0.955209i \(-0.595630\pi\)
−0.295931 + 0.955209i \(0.595630\pi\)
\(264\) −34704.5 −8.09059
\(265\) 1205.66 0.279483
\(266\) 935.518 0.215640
\(267\) −7158.23 −1.64074
\(268\) 8401.33 1.91490
\(269\) −7320.11 −1.65916 −0.829582 0.558385i \(-0.811421\pi\)
−0.829582 + 0.558385i \(0.811421\pi\)
\(270\) −2301.38 −0.518732
\(271\) 4355.80 0.976370 0.488185 0.872740i \(-0.337659\pi\)
0.488185 + 0.872740i \(0.337659\pi\)
\(272\) −26185.0 −5.83712
\(273\) 3375.70 0.748375
\(274\) −4453.25 −0.981863
\(275\) 4870.91 1.06810
\(276\) −4309.38 −0.939833
\(277\) 4020.66 0.872123 0.436062 0.899917i \(-0.356373\pi\)
0.436062 + 0.899917i \(0.356373\pi\)
\(278\) 5504.16 1.18747
\(279\) −4352.38 −0.933944
\(280\) 3200.66 0.683129
\(281\) 4995.19 1.06046 0.530228 0.847855i \(-0.322106\pi\)
0.530228 + 0.847855i \(0.322106\pi\)
\(282\) −2427.21 −0.512547
\(283\) 7248.64 1.52257 0.761284 0.648418i \(-0.224569\pi\)
0.761284 + 0.648418i \(0.224569\pi\)
\(284\) 16413.2 3.42939
\(285\) −1002.53 −0.208368
\(286\) −16973.9 −3.50940
\(287\) 304.587 0.0626452
\(288\) −36119.3 −7.39010
\(289\) 2759.38 0.561648
\(290\) 3022.16 0.611956
\(291\) −450.211 −0.0906935
\(292\) 6003.26 1.20313
\(293\) 1542.88 0.307632 0.153816 0.988099i \(-0.450844\pi\)
0.153816 + 0.988099i \(0.450844\pi\)
\(294\) 2194.62 0.435350
\(295\) −3197.43 −0.631057
\(296\) −18676.1 −3.66732
\(297\) 3900.05 0.761965
\(298\) −3981.69 −0.774004
\(299\) −1389.16 −0.268687
\(300\) 18216.5 3.50576
\(301\) −1157.85 −0.221718
\(302\) 2123.19 0.404556
\(303\) 11946.7 2.26509
\(304\) −7122.25 −1.34371
\(305\) 3967.66 0.744878
\(306\) 18056.9 3.37335
\(307\) −5870.75 −1.09141 −0.545703 0.837979i \(-0.683737\pi\)
−0.545703 + 0.837979i \(0.683737\pi\)
\(308\) −8229.58 −1.52248
\(309\) −8058.56 −1.48361
\(310\) −3501.25 −0.641476
\(311\) 9999.34 1.82319 0.911593 0.411094i \(-0.134853\pi\)
0.911593 + 0.411094i \(0.134853\pi\)
\(312\) −41838.8 −7.59184
\(313\) 1662.05 0.300142 0.150071 0.988675i \(-0.452050\pi\)
0.150071 + 0.988675i \(0.452050\pi\)
\(314\) 4665.28 0.838461
\(315\) −1355.75 −0.242502
\(316\) 31068.3 5.53079
\(317\) 3535.75 0.626459 0.313230 0.949677i \(-0.398589\pi\)
0.313230 + 0.949677i \(0.398589\pi\)
\(318\) −10246.1 −1.80684
\(319\) −5121.52 −0.898903
\(320\) −16452.1 −2.87406
\(321\) −10732.9 −1.86620
\(322\) −903.129 −0.156302
\(323\) 2086.87 0.359494
\(324\) −8698.89 −1.49158
\(325\) 5872.23 1.00225
\(326\) −1551.06 −0.263514
\(327\) 6889.04 1.16503
\(328\) −3775.08 −0.635500
\(329\) −379.352 −0.0635694
\(330\) 11825.6 1.97266
\(331\) −2313.43 −0.384162 −0.192081 0.981379i \(-0.561524\pi\)
−0.192081 + 0.981379i \(0.561524\pi\)
\(332\) −1023.36 −0.169170
\(333\) 7910.93 1.30185
\(334\) −11480.6 −1.88081
\(335\) −1886.81 −0.307724
\(336\) −16708.0 −2.71279
\(337\) −3759.06 −0.607623 −0.303811 0.952732i \(-0.598259\pi\)
−0.303811 + 0.952732i \(0.598259\pi\)
\(338\) −8139.21 −1.30981
\(339\) 3281.62 0.525762
\(340\) 10832.8 1.72791
\(341\) 5933.41 0.942264
\(342\) 4911.45 0.776552
\(343\) 343.000 0.0539949
\(344\) 14350.5 2.24920
\(345\) 967.821 0.151031
\(346\) 10173.4 1.58070
\(347\) 2325.43 0.359757 0.179878 0.983689i \(-0.442430\pi\)
0.179878 + 0.983689i \(0.442430\pi\)
\(348\) −19153.7 −2.95042
\(349\) −5221.38 −0.800842 −0.400421 0.916331i \(-0.631136\pi\)
−0.400421 + 0.916331i \(0.631136\pi\)
\(350\) 3817.68 0.583039
\(351\) 4701.78 0.714993
\(352\) 49239.8 7.45594
\(353\) 2289.05 0.345139 0.172570 0.984997i \(-0.444793\pi\)
0.172570 + 0.984997i \(0.444793\pi\)
\(354\) 27173.0 4.07974
\(355\) −3686.16 −0.551102
\(356\) 21038.4 3.13212
\(357\) 4895.56 0.725772
\(358\) 13443.6 1.98468
\(359\) −7106.12 −1.04470 −0.522349 0.852732i \(-0.674944\pi\)
−0.522349 + 0.852732i \(0.674944\pi\)
\(360\) 16803.4 2.46005
\(361\) −6291.38 −0.917244
\(362\) 19487.3 2.82936
\(363\) −9413.17 −1.36106
\(364\) −9921.35 −1.42863
\(365\) −1348.24 −0.193343
\(366\) −33718.7 −4.81558
\(367\) −6995.60 −0.995006 −0.497503 0.867462i \(-0.665750\pi\)
−0.497503 + 0.867462i \(0.665750\pi\)
\(368\) 6875.66 0.973964
\(369\) 1599.07 0.225595
\(370\) 6363.90 0.894172
\(371\) −1601.38 −0.224096
\(372\) 22190.0 3.09274
\(373\) 7644.34 1.06115 0.530575 0.847638i \(-0.321976\pi\)
0.530575 + 0.847638i \(0.321976\pi\)
\(374\) −24616.2 −3.40341
\(375\) −9351.04 −1.28770
\(376\) 4701.73 0.644876
\(377\) −6174.36 −0.843489
\(378\) 3056.74 0.415931
\(379\) −10257.7 −1.39024 −0.695121 0.718893i \(-0.744649\pi\)
−0.695121 + 0.718893i \(0.744649\pi\)
\(380\) 2946.49 0.397768
\(381\) −2497.66 −0.335850
\(382\) −6459.01 −0.865110
\(383\) −8499.33 −1.13393 −0.566965 0.823742i \(-0.691883\pi\)
−0.566965 + 0.823742i \(0.691883\pi\)
\(384\) 77036.9 10.2377
\(385\) 1848.24 0.244662
\(386\) −27903.4 −3.67940
\(387\) −6078.66 −0.798439
\(388\) 1323.19 0.173131
\(389\) −7464.98 −0.972981 −0.486491 0.873686i \(-0.661723\pi\)
−0.486491 + 0.873686i \(0.661723\pi\)
\(390\) 14256.6 1.85106
\(391\) −2014.62 −0.260572
\(392\) −4251.18 −0.547748
\(393\) 13891.3 1.78301
\(394\) 3524.27 0.450635
\(395\) −6977.48 −0.888798
\(396\) −43205.1 −5.48267
\(397\) 6055.77 0.765568 0.382784 0.923838i \(-0.374965\pi\)
0.382784 + 0.923838i \(0.374965\pi\)
\(398\) 7312.09 0.920910
\(399\) 1331.58 0.167074
\(400\) −29064.6 −3.63308
\(401\) −7500.25 −0.934027 −0.467013 0.884250i \(-0.654670\pi\)
−0.467013 + 0.884250i \(0.654670\pi\)
\(402\) 16034.8 1.98941
\(403\) 7153.15 0.884178
\(404\) −35112.1 −4.32399
\(405\) 1953.64 0.239697
\(406\) −4014.10 −0.490680
\(407\) −10784.6 −1.31345
\(408\) −60676.2 −7.36255
\(409\) 4038.55 0.488248 0.244124 0.969744i \(-0.421500\pi\)
0.244124 + 0.969744i \(0.421500\pi\)
\(410\) 1286.36 0.154949
\(411\) −6338.59 −0.760729
\(412\) 23684.5 2.83217
\(413\) 4246.90 0.505996
\(414\) −4741.40 −0.562868
\(415\) 229.832 0.0271856
\(416\) 59362.1 6.99632
\(417\) 7834.43 0.920032
\(418\) −6695.56 −0.783470
\(419\) 8021.59 0.935275 0.467638 0.883920i \(-0.345105\pi\)
0.467638 + 0.883920i \(0.345105\pi\)
\(420\) 6912.14 0.803042
\(421\) 8258.24 0.956014 0.478007 0.878356i \(-0.341359\pi\)
0.478007 + 0.878356i \(0.341359\pi\)
\(422\) 24356.1 2.80956
\(423\) −1991.59 −0.228923
\(424\) 19847.7 2.27333
\(425\) 8516.14 0.971984
\(426\) 31326.4 3.56284
\(427\) −5269.93 −0.597260
\(428\) 31544.5 3.56253
\(429\) −24160.1 −2.71902
\(430\) −4889.95 −0.548405
\(431\) −10100.3 −1.12880 −0.564400 0.825501i \(-0.690893\pi\)
−0.564400 + 0.825501i \(0.690893\pi\)
\(432\) −23271.5 −2.59178
\(433\) −7230.28 −0.802460 −0.401230 0.915977i \(-0.631417\pi\)
−0.401230 + 0.915977i \(0.631417\pi\)
\(434\) 4650.43 0.514350
\(435\) 4301.63 0.474132
\(436\) −20247.3 −2.22401
\(437\) −547.972 −0.0599841
\(438\) 11457.9 1.24995
\(439\) −971.995 −0.105674 −0.0528369 0.998603i \(-0.516826\pi\)
−0.0528369 + 0.998603i \(0.516826\pi\)
\(440\) −22907.3 −2.48196
\(441\) 1800.74 0.194444
\(442\) −29676.6 −3.19360
\(443\) 15363.7 1.64774 0.823871 0.566777i \(-0.191810\pi\)
0.823871 + 0.566777i \(0.191810\pi\)
\(444\) −40332.8 −4.31106
\(445\) −4724.92 −0.503331
\(446\) 8876.06 0.942362
\(447\) −5667.39 −0.599684
\(448\) 21852.0 2.30449
\(449\) 417.333 0.0438645 0.0219322 0.999759i \(-0.493018\pi\)
0.0219322 + 0.999759i \(0.493018\pi\)
\(450\) 20042.7 2.09961
\(451\) −2179.94 −0.227604
\(452\) −9644.87 −1.00366
\(453\) 3022.07 0.313442
\(454\) 8558.60 0.884747
\(455\) 2228.19 0.229580
\(456\) −16503.8 −1.69487
\(457\) −15574.6 −1.59420 −0.797102 0.603845i \(-0.793635\pi\)
−0.797102 + 0.603845i \(0.793635\pi\)
\(458\) 20898.0 2.13210
\(459\) 6818.71 0.693399
\(460\) −2844.48 −0.288314
\(461\) −10543.6 −1.06522 −0.532608 0.846362i \(-0.678788\pi\)
−0.532608 + 0.846362i \(0.678788\pi\)
\(462\) −15707.0 −1.58173
\(463\) −7346.73 −0.737433 −0.368716 0.929542i \(-0.620203\pi\)
−0.368716 + 0.929542i \(0.620203\pi\)
\(464\) 30560.0 3.05757
\(465\) −4983.55 −0.497003
\(466\) 6412.62 0.637466
\(467\) 306.812 0.0304016 0.0152008 0.999884i \(-0.495161\pi\)
0.0152008 + 0.999884i \(0.495161\pi\)
\(468\) −52086.9 −5.14469
\(469\) 2506.10 0.246740
\(470\) −1602.12 −0.157235
\(471\) 6640.39 0.649624
\(472\) −52636.6 −5.13304
\(473\) 8286.77 0.805552
\(474\) 59297.2 5.74602
\(475\) 2316.37 0.223752
\(476\) −14388.3 −1.38548
\(477\) −8407.22 −0.807002
\(478\) −32631.7 −3.12247
\(479\) 5386.50 0.513811 0.256906 0.966437i \(-0.417297\pi\)
0.256906 + 0.966437i \(0.417297\pi\)
\(480\) −41357.2 −3.93268
\(481\) −13001.6 −1.23248
\(482\) −18259.1 −1.72547
\(483\) −1285.48 −0.121100
\(484\) 27665.8 2.59822
\(485\) −297.169 −0.0278222
\(486\) −28393.0 −2.65007
\(487\) 569.309 0.0529730 0.0264865 0.999649i \(-0.491568\pi\)
0.0264865 + 0.999649i \(0.491568\pi\)
\(488\) 65316.2 6.05886
\(489\) −2207.73 −0.204165
\(490\) 1448.60 0.133553
\(491\) 15189.4 1.39611 0.698053 0.716046i \(-0.254050\pi\)
0.698053 + 0.716046i \(0.254050\pi\)
\(492\) −8152.66 −0.747054
\(493\) −8954.29 −0.818014
\(494\) −8071.98 −0.735173
\(495\) 9703.22 0.881065
\(496\) −35404.5 −3.20506
\(497\) 4896.04 0.441886
\(498\) −1953.20 −0.175753
\(499\) 15120.6 1.35650 0.678248 0.734833i \(-0.262739\pi\)
0.678248 + 0.734833i \(0.262739\pi\)
\(500\) 27483.2 2.45817
\(501\) −16341.0 −1.45721
\(502\) −44455.5 −3.95248
\(503\) −15561.0 −1.37938 −0.689691 0.724104i \(-0.742253\pi\)
−0.689691 + 0.724104i \(0.742253\pi\)
\(504\) −22318.6 −1.97252
\(505\) 7885.65 0.694865
\(506\) 6463.75 0.567883
\(507\) −11585.1 −1.01481
\(508\) 7340.76 0.641129
\(509\) 423.834 0.0369079 0.0184539 0.999830i \(-0.494126\pi\)
0.0184539 + 0.999830i \(0.494126\pi\)
\(510\) 20675.5 1.79515
\(511\) 1790.76 0.155027
\(512\) −86325.8 −7.45137
\(513\) 1854.67 0.159622
\(514\) 7823.66 0.671375
\(515\) −5319.19 −0.455129
\(516\) 30991.3 2.64402
\(517\) 2715.04 0.230962
\(518\) −8452.67 −0.716967
\(519\) 14480.4 1.22470
\(520\) −27616.4 −2.32896
\(521\) 9734.77 0.818595 0.409298 0.912401i \(-0.365774\pi\)
0.409298 + 0.912401i \(0.365774\pi\)
\(522\) −21073.9 −1.76701
\(523\) −15964.7 −1.33477 −0.667386 0.744712i \(-0.732587\pi\)
−0.667386 + 0.744712i \(0.732587\pi\)
\(524\) −40827.1 −3.40371
\(525\) 5433.94 0.451727
\(526\) 14160.5 1.17381
\(527\) 10373.8 0.857473
\(528\) 119580. 9.85617
\(529\) 529.000 0.0434783
\(530\) −6763.14 −0.554287
\(531\) 22296.1 1.82217
\(532\) −3913.59 −0.318939
\(533\) −2628.08 −0.213574
\(534\) 40154.1 3.25400
\(535\) −7084.43 −0.572498
\(536\) −31061.0 −2.50304
\(537\) 19135.1 1.53769
\(538\) 41062.1 3.29055
\(539\) −2454.87 −0.196176
\(540\) 9627.46 0.767222
\(541\) −4958.35 −0.394041 −0.197021 0.980399i \(-0.563127\pi\)
−0.197021 + 0.980399i \(0.563127\pi\)
\(542\) −24433.9 −1.93639
\(543\) 27737.5 2.19214
\(544\) 86089.2 6.78501
\(545\) 4547.23 0.357398
\(546\) −18935.9 −1.48422
\(547\) 21046.3 1.64511 0.822555 0.568686i \(-0.192548\pi\)
0.822555 + 0.568686i \(0.192548\pi\)
\(548\) 18629.5 1.45221
\(549\) −27667.0 −2.15082
\(550\) −27323.4 −2.11831
\(551\) −2435.55 −0.188308
\(552\) 15932.4 1.22849
\(553\) 9267.64 0.712658
\(554\) −22553.9 −1.72964
\(555\) 9058.15 0.692787
\(556\) −23025.8 −1.75632
\(557\) 9274.42 0.705511 0.352756 0.935715i \(-0.385245\pi\)
0.352756 + 0.935715i \(0.385245\pi\)
\(558\) 24414.7 1.85225
\(559\) 9990.29 0.755893
\(560\) −11028.4 −0.832205
\(561\) −35037.8 −2.63690
\(562\) −28020.5 −2.10316
\(563\) 13772.9 1.03101 0.515504 0.856887i \(-0.327605\pi\)
0.515504 + 0.856887i \(0.327605\pi\)
\(564\) 10153.8 0.758075
\(565\) 2166.09 0.161289
\(566\) −40661.2 −3.01964
\(567\) −2594.86 −0.192194
\(568\) −60682.1 −4.48269
\(569\) 7816.80 0.575918 0.287959 0.957643i \(-0.407023\pi\)
0.287959 + 0.957643i \(0.407023\pi\)
\(570\) 5623.69 0.413246
\(571\) −14319.8 −1.04950 −0.524750 0.851256i \(-0.675841\pi\)
−0.524750 + 0.851256i \(0.675841\pi\)
\(572\) 71007.7 5.19053
\(573\) −9193.52 −0.670270
\(574\) −1708.58 −0.124242
\(575\) −2236.17 −0.162182
\(576\) 114722. 8.29879
\(577\) −2030.79 −0.146521 −0.0732606 0.997313i \(-0.523340\pi\)
−0.0732606 + 0.997313i \(0.523340\pi\)
\(578\) −15478.7 −1.11389
\(579\) −39716.7 −2.85073
\(580\) −12642.7 −0.905105
\(581\) −305.268 −0.0217980
\(582\) 2525.45 0.179868
\(583\) 11461.2 0.814192
\(584\) −22194.9 −1.57266
\(585\) 11697.9 0.826751
\(586\) −8654.80 −0.610113
\(587\) 11461.8 0.805925 0.402963 0.915216i \(-0.367980\pi\)
0.402963 + 0.915216i \(0.367980\pi\)
\(588\) −9180.85 −0.643897
\(589\) 2821.64 0.197392
\(590\) 17936.0 1.25155
\(591\) 5016.32 0.349144
\(592\) 64351.5 4.46762
\(593\) −11073.3 −0.766826 −0.383413 0.923577i \(-0.625251\pi\)
−0.383413 + 0.923577i \(0.625251\pi\)
\(594\) −21877.3 −1.51117
\(595\) 3231.40 0.222646
\(596\) 16656.8 1.14478
\(597\) 10407.8 0.713503
\(598\) 7792.51 0.532875
\(599\) −5159.54 −0.351942 −0.175971 0.984395i \(-0.556306\pi\)
−0.175971 + 0.984395i \(0.556306\pi\)
\(600\) −67349.0 −4.58252
\(601\) 5830.00 0.395692 0.197846 0.980233i \(-0.436605\pi\)
0.197846 + 0.980233i \(0.436605\pi\)
\(602\) 6494.93 0.439723
\(603\) 13157.0 0.888547
\(604\) −8882.03 −0.598352
\(605\) −6213.32 −0.417533
\(606\) −67015.2 −4.49225
\(607\) −16193.8 −1.08284 −0.541421 0.840752i \(-0.682113\pi\)
−0.541421 + 0.840752i \(0.682113\pi\)
\(608\) 23416.1 1.56192
\(609\) −5713.52 −0.380170
\(610\) −22256.6 −1.47728
\(611\) 3273.18 0.216724
\(612\) −75538.3 −4.98931
\(613\) 2992.02 0.197139 0.0985697 0.995130i \(-0.468573\pi\)
0.0985697 + 0.995130i \(0.468573\pi\)
\(614\) 32931.9 2.16454
\(615\) 1830.96 0.120051
\(616\) 30426.0 1.99009
\(617\) 22391.6 1.46102 0.730511 0.682901i \(-0.239282\pi\)
0.730511 + 0.682901i \(0.239282\pi\)
\(618\) 45204.4 2.94238
\(619\) 11228.2 0.729076 0.364538 0.931189i \(-0.381227\pi\)
0.364538 + 0.931189i \(0.381227\pi\)
\(620\) 14646.9 0.948765
\(621\) −1790.46 −0.115698
\(622\) −56091.3 −3.61584
\(623\) 6275.73 0.403583
\(624\) 144162. 9.24858
\(625\) 5980.80 0.382771
\(626\) −9323.25 −0.595259
\(627\) −9530.22 −0.607018
\(628\) −19516.5 −1.24011
\(629\) −18855.5 −1.19526
\(630\) 7605.10 0.480944
\(631\) 22797.9 1.43830 0.719152 0.694852i \(-0.244530\pi\)
0.719152 + 0.694852i \(0.244530\pi\)
\(632\) −114864. −7.22952
\(633\) 34667.6 2.17680
\(634\) −19833.8 −1.24243
\(635\) −1648.62 −0.103029
\(636\) 42863.1 2.67238
\(637\) −2959.52 −0.184083
\(638\) 28729.1 1.78275
\(639\) 25704.1 1.59130
\(640\) 50849.6 3.14063
\(641\) −6173.87 −0.380426 −0.190213 0.981743i \(-0.560918\pi\)
−0.190213 + 0.981743i \(0.560918\pi\)
\(642\) 60206.1 3.70116
\(643\) 5826.65 0.357357 0.178679 0.983908i \(-0.442818\pi\)
0.178679 + 0.983908i \(0.442818\pi\)
\(644\) 3778.10 0.231177
\(645\) −6960.17 −0.424894
\(646\) −11706.3 −0.712969
\(647\) −9121.66 −0.554265 −0.277133 0.960832i \(-0.589384\pi\)
−0.277133 + 0.960832i \(0.589384\pi\)
\(648\) 32161.1 1.94970
\(649\) −30395.3 −1.83840
\(650\) −32940.3 −1.98773
\(651\) 6619.26 0.398509
\(652\) 6488.63 0.389746
\(653\) −11041.8 −0.661712 −0.330856 0.943681i \(-0.607337\pi\)
−0.330856 + 0.943681i \(0.607337\pi\)
\(654\) −38644.0 −2.31055
\(655\) 9169.16 0.546975
\(656\) 13007.7 0.774183
\(657\) 9401.46 0.558274
\(658\) 2127.97 0.126074
\(659\) −16375.4 −0.967974 −0.483987 0.875075i \(-0.660812\pi\)
−0.483987 + 0.875075i \(0.660812\pi\)
\(660\) −49470.6 −2.91764
\(661\) 17808.9 1.04794 0.523968 0.851738i \(-0.324451\pi\)
0.523968 + 0.851738i \(0.324451\pi\)
\(662\) 12977.2 0.761892
\(663\) −42240.6 −2.47434
\(664\) 3783.53 0.221129
\(665\) 878.934 0.0512535
\(666\) −44376.3 −2.58190
\(667\) 2351.22 0.136491
\(668\) 48027.2 2.78178
\(669\) 12633.9 0.730124
\(670\) 10584.1 0.610296
\(671\) 37717.2 2.16998
\(672\) 54931.5 3.15332
\(673\) 22551.8 1.29169 0.645846 0.763468i \(-0.276505\pi\)
0.645846 + 0.763468i \(0.276505\pi\)
\(674\) 21086.4 1.20507
\(675\) 7568.58 0.431578
\(676\) 34049.1 1.93725
\(677\) 10325.3 0.586162 0.293081 0.956088i \(-0.405319\pi\)
0.293081 + 0.956088i \(0.405319\pi\)
\(678\) −18408.3 −1.04272
\(679\) 394.706 0.0223085
\(680\) −40050.4 −2.25862
\(681\) 12182.0 0.685485
\(682\) −33283.4 −1.86875
\(683\) −3693.14 −0.206902 −0.103451 0.994635i \(-0.532988\pi\)
−0.103451 + 0.994635i \(0.532988\pi\)
\(684\) −20546.3 −1.14855
\(685\) −4183.89 −0.233370
\(686\) −1924.06 −0.107086
\(687\) 29745.5 1.65191
\(688\) −49446.9 −2.74004
\(689\) 13817.3 0.764001
\(690\) −5428.99 −0.299533
\(691\) 6091.83 0.335375 0.167688 0.985840i \(-0.446370\pi\)
0.167688 + 0.985840i \(0.446370\pi\)
\(692\) −42558.6 −2.33791
\(693\) −12888.0 −0.706458
\(694\) −13044.5 −0.713490
\(695\) 5171.25 0.282240
\(696\) 70814.0 3.85661
\(697\) −3811.34 −0.207123
\(698\) 29289.3 1.58828
\(699\) 9127.49 0.493896
\(700\) −15970.7 −0.862334
\(701\) −4894.12 −0.263692 −0.131846 0.991270i \(-0.542090\pi\)
−0.131846 + 0.991270i \(0.542090\pi\)
\(702\) −26374.6 −1.41801
\(703\) −5128.64 −0.275150
\(704\) −156396. −8.37272
\(705\) −2280.40 −0.121823
\(706\) −12840.4 −0.684499
\(707\) −10473.9 −0.557158
\(708\) −113674. −6.03408
\(709\) 11264.9 0.596701 0.298350 0.954456i \(-0.403564\pi\)
0.298350 + 0.954456i \(0.403564\pi\)
\(710\) 20677.5 1.09298
\(711\) 48654.9 2.56639
\(712\) −77782.2 −4.09412
\(713\) −2723.95 −0.143075
\(714\) −27461.6 −1.43939
\(715\) −15947.3 −0.834117
\(716\) −56239.1 −2.93541
\(717\) −46446.8 −2.41923
\(718\) 39861.8 2.07190
\(719\) −22169.7 −1.14991 −0.574957 0.818183i \(-0.694981\pi\)
−0.574957 + 0.818183i \(0.694981\pi\)
\(720\) −57898.8 −2.99689
\(721\) 7065.06 0.364933
\(722\) 35291.4 1.81913
\(723\) −25989.3 −1.33686
\(724\) −81522.0 −4.18473
\(725\) −9939.02 −0.509139
\(726\) 52803.1 2.69932
\(727\) 38051.7 1.94121 0.970606 0.240676i \(-0.0773691\pi\)
0.970606 + 0.240676i \(0.0773691\pi\)
\(728\) 36680.7 1.86741
\(729\) −30404.8 −1.54473
\(730\) 7562.95 0.383449
\(731\) 14488.3 0.733063
\(732\) 141057. 7.12241
\(733\) 24590.3 1.23911 0.619553 0.784955i \(-0.287314\pi\)
0.619553 + 0.784955i \(0.287314\pi\)
\(734\) 39241.8 1.97335
\(735\) 2061.88 0.103474
\(736\) −22605.4 −1.13213
\(737\) −17936.3 −0.896463
\(738\) −8969.99 −0.447412
\(739\) −6525.22 −0.324809 −0.162405 0.986724i \(-0.551925\pi\)
−0.162405 + 0.986724i \(0.551925\pi\)
\(740\) −26622.4 −1.32251
\(741\) −11489.4 −0.569598
\(742\) 8982.94 0.444440
\(743\) −26860.1 −1.32625 −0.663123 0.748511i \(-0.730769\pi\)
−0.663123 + 0.748511i \(0.730769\pi\)
\(744\) −82039.9 −4.04264
\(745\) −3740.86 −0.183966
\(746\) −42880.9 −2.10453
\(747\) −1602.65 −0.0784978
\(748\) 102978. 5.03376
\(749\) 9409.69 0.459042
\(750\) 52454.6 2.55383
\(751\) −37313.1 −1.81301 −0.906507 0.422192i \(-0.861261\pi\)
−0.906507 + 0.422192i \(0.861261\pi\)
\(752\) −16200.6 −0.785605
\(753\) −63276.3 −3.06231
\(754\) 34635.0 1.67286
\(755\) 1994.77 0.0961551
\(756\) −12787.4 −0.615176
\(757\) 5189.56 0.249165 0.124582 0.992209i \(-0.460241\pi\)
0.124582 + 0.992209i \(0.460241\pi\)
\(758\) 57540.4 2.75720
\(759\) 9200.26 0.439985
\(760\) −10893.6 −0.519938
\(761\) −12788.0 −0.609151 −0.304576 0.952488i \(-0.598515\pi\)
−0.304576 + 0.952488i \(0.598515\pi\)
\(762\) 14010.6 0.666077
\(763\) −6039.72 −0.286570
\(764\) 27020.3 1.27953
\(765\) 16964.8 0.801781
\(766\) 47676.9 2.24887
\(767\) −36643.7 −1.72507
\(768\) −232740. −10.9352
\(769\) 38897.9 1.82405 0.912024 0.410136i \(-0.134519\pi\)
0.912024 + 0.410136i \(0.134519\pi\)
\(770\) −10367.7 −0.485228
\(771\) 11135.9 0.520169
\(772\) 116730. 5.44196
\(773\) 30819.0 1.43400 0.717000 0.697074i \(-0.245515\pi\)
0.717000 + 0.697074i \(0.245515\pi\)
\(774\) 34098.2 1.58351
\(775\) 11514.6 0.533699
\(776\) −4892.04 −0.226307
\(777\) −12031.2 −0.555492
\(778\) 41874.8 1.92967
\(779\) −1036.68 −0.0476801
\(780\) −59640.3 −2.73778
\(781\) −35041.3 −1.60547
\(782\) 11301.0 0.516781
\(783\) −7957.98 −0.363212
\(784\) 14648.2 0.667281
\(785\) 4383.10 0.199286
\(786\) −77922.9 −3.53616
\(787\) −1862.88 −0.0843766 −0.0421883 0.999110i \(-0.513433\pi\)
−0.0421883 + 0.999110i \(0.513433\pi\)
\(788\) −14743.2 −0.666505
\(789\) 20155.5 0.909448
\(790\) 39140.1 1.76271
\(791\) −2877.05 −0.129325
\(792\) 159736. 7.16662
\(793\) 45470.8 2.03621
\(794\) −33969.8 −1.51832
\(795\) −9626.41 −0.429451
\(796\) −30589.0 −1.36206
\(797\) 43214.0 1.92060 0.960301 0.278967i \(-0.0899922\pi\)
0.960301 + 0.278967i \(0.0899922\pi\)
\(798\) −7469.50 −0.331350
\(799\) 4746.89 0.210179
\(800\) 95556.8 4.22305
\(801\) 32947.5 1.45336
\(802\) 42072.6 1.85241
\(803\) −12816.6 −0.563248
\(804\) −67079.2 −2.94241
\(805\) −848.503 −0.0371501
\(806\) −40125.5 −1.75355
\(807\) 58446.3 2.54945
\(808\) 129815. 5.65206
\(809\) 14356.3 0.623906 0.311953 0.950098i \(-0.399017\pi\)
0.311953 + 0.950098i \(0.399017\pi\)
\(810\) −10958.9 −0.475380
\(811\) 43093.5 1.86587 0.932933 0.360050i \(-0.117240\pi\)
0.932933 + 0.360050i \(0.117240\pi\)
\(812\) 16792.3 0.725733
\(813\) −34778.3 −1.50028
\(814\) 60496.3 2.60491
\(815\) −1457.25 −0.0626321
\(816\) 209070. 8.96925
\(817\) 3940.79 0.168752
\(818\) −22654.2 −0.968321
\(819\) −15537.4 −0.662908
\(820\) −5381.30 −0.229175
\(821\) 6294.84 0.267590 0.133795 0.991009i \(-0.457284\pi\)
0.133795 + 0.991009i \(0.457284\pi\)
\(822\) 35556.3 1.50872
\(823\) 17139.0 0.725915 0.362958 0.931806i \(-0.381767\pi\)
0.362958 + 0.931806i \(0.381767\pi\)
\(824\) −87565.2 −3.70204
\(825\) −38891.1 −1.64123
\(826\) −23823.0 −1.00352
\(827\) −22611.2 −0.950748 −0.475374 0.879784i \(-0.657687\pi\)
−0.475374 + 0.879784i \(0.657687\pi\)
\(828\) 19834.9 0.832501
\(829\) 8042.05 0.336927 0.168463 0.985708i \(-0.446120\pi\)
0.168463 + 0.985708i \(0.446120\pi\)
\(830\) −1289.24 −0.0539160
\(831\) −32102.4 −1.34009
\(832\) −188547. −7.85658
\(833\) −4292.01 −0.178523
\(834\) −43947.2 −1.82466
\(835\) −10786.2 −0.447031
\(836\) 28009.8 1.15878
\(837\) 9219.53 0.380733
\(838\) −44997.1 −1.85489
\(839\) 25428.4 1.04635 0.523174 0.852226i \(-0.324748\pi\)
0.523174 + 0.852226i \(0.324748\pi\)
\(840\) −25555.2 −1.04969
\(841\) −13938.6 −0.571513
\(842\) −46324.5 −1.89602
\(843\) −39883.4 −1.62948
\(844\) −101890. −4.15544
\(845\) −7646.91 −0.311316
\(846\) 11171.8 0.454012
\(847\) 8252.67 0.334787
\(848\) −68388.6 −2.76943
\(849\) −57875.7 −2.33956
\(850\) −47771.2 −1.92769
\(851\) 4951.08 0.199437
\(852\) −131049. −5.26956
\(853\) 4499.13 0.180595 0.0902973 0.995915i \(-0.471218\pi\)
0.0902973 + 0.995915i \(0.471218\pi\)
\(854\) 29561.7 1.18452
\(855\) 4614.38 0.184571
\(856\) −116625. −4.65672
\(857\) 21784.8 0.868326 0.434163 0.900834i \(-0.357044\pi\)
0.434163 + 0.900834i \(0.357044\pi\)
\(858\) 135526. 5.39251
\(859\) 10079.9 0.400376 0.200188 0.979758i \(-0.435845\pi\)
0.200188 + 0.979758i \(0.435845\pi\)
\(860\) 20456.3 0.811110
\(861\) −2431.93 −0.0962600
\(862\) 56657.4 2.23870
\(863\) 5131.63 0.202414 0.101207 0.994865i \(-0.467730\pi\)
0.101207 + 0.994865i \(0.467730\pi\)
\(864\) 76510.5 3.01266
\(865\) 9558.03 0.375702
\(866\) 40558.2 1.59148
\(867\) −22031.8 −0.863023
\(868\) −19454.3 −0.760741
\(869\) −66329.1 −2.58925
\(870\) −24130.0 −0.940325
\(871\) −21623.5 −0.841200
\(872\) 74857.1 2.90709
\(873\) 2072.20 0.0803360
\(874\) 3073.85 0.118964
\(875\) 8198.20 0.316743
\(876\) −47932.1 −1.84872
\(877\) −44660.1 −1.71957 −0.859786 0.510655i \(-0.829403\pi\)
−0.859786 + 0.510655i \(0.829403\pi\)
\(878\) 5452.40 0.209578
\(879\) −12318.9 −0.472704
\(880\) 78930.9 3.02359
\(881\) 31174.4 1.19216 0.596079 0.802926i \(-0.296724\pi\)
0.596079 + 0.802926i \(0.296724\pi\)
\(882\) −10101.3 −0.385631
\(883\) −7012.11 −0.267244 −0.133622 0.991032i \(-0.542661\pi\)
−0.133622 + 0.991032i \(0.542661\pi\)
\(884\) 124147. 4.72345
\(885\) 25529.4 0.969675
\(886\) −86182.4 −3.26790
\(887\) −16341.6 −0.618600 −0.309300 0.950965i \(-0.600095\pi\)
−0.309300 + 0.950965i \(0.600095\pi\)
\(888\) 149116. 5.63516
\(889\) 2189.74 0.0826112
\(890\) 26504.4 0.998235
\(891\) 18571.6 0.698285
\(892\) −37131.6 −1.39379
\(893\) 1291.14 0.0483835
\(894\) 31791.2 1.18933
\(895\) 12630.5 0.471720
\(896\) −67539.5 −2.51823
\(897\) 11091.6 0.412861
\(898\) −2341.03 −0.0869945
\(899\) −12107.0 −0.449157
\(900\) −83845.6 −3.10539
\(901\) 20038.4 0.740926
\(902\) 12228.4 0.451398
\(903\) 9244.64 0.340689
\(904\) 35658.5 1.31193
\(905\) 18308.6 0.672485
\(906\) −16952.3 −0.621636
\(907\) 8627.63 0.315850 0.157925 0.987451i \(-0.449520\pi\)
0.157925 + 0.987451i \(0.449520\pi\)
\(908\) −35803.6 −1.30857
\(909\) −54987.7 −2.00641
\(910\) −12499.0 −0.455316
\(911\) −26972.8 −0.980954 −0.490477 0.871454i \(-0.663177\pi\)
−0.490477 + 0.871454i \(0.663177\pi\)
\(912\) 56866.5 2.06474
\(913\) 2184.82 0.0791972
\(914\) 87365.9 3.16171
\(915\) −31679.2 −1.14457
\(916\) −87423.6 −3.15345
\(917\) −12178.7 −0.438577
\(918\) −38249.5 −1.37519
\(919\) 18268.1 0.655724 0.327862 0.944726i \(-0.393672\pi\)
0.327862 + 0.944726i \(0.393672\pi\)
\(920\) 10516.5 0.376867
\(921\) 46874.1 1.67704
\(922\) 59144.3 2.11260
\(923\) −42244.7 −1.50650
\(924\) 65707.9 2.33943
\(925\) −20929.1 −0.743939
\(926\) 41211.4 1.46252
\(927\) 37091.4 1.31418
\(928\) −100473. −3.55409
\(929\) −52541.7 −1.85558 −0.927792 0.373098i \(-0.878295\pi\)
−0.927792 + 0.373098i \(0.878295\pi\)
\(930\) 27955.2 0.985685
\(931\) −1167.42 −0.0410962
\(932\) −26826.2 −0.942834
\(933\) −79838.3 −2.80149
\(934\) −1721.06 −0.0602942
\(935\) −23127.3 −0.808924
\(936\) 192573. 6.72483
\(937\) −54222.7 −1.89048 −0.945239 0.326379i \(-0.894171\pi\)
−0.945239 + 0.326379i \(0.894171\pi\)
\(938\) −14058.0 −0.489349
\(939\) −13270.4 −0.461195
\(940\) 6702.22 0.232556
\(941\) 138.848 0.00481011 0.00240505 0.999997i \(-0.499234\pi\)
0.00240505 + 0.999997i \(0.499234\pi\)
\(942\) −37249.2 −1.28837
\(943\) 1000.78 0.0345599
\(944\) 181368. 6.25321
\(945\) 2871.86 0.0988587
\(946\) −46484.6 −1.59762
\(947\) −29396.1 −1.00871 −0.504354 0.863497i \(-0.668269\pi\)
−0.504354 + 0.863497i \(0.668269\pi\)
\(948\) −248061. −8.49856
\(949\) −15451.3 −0.528526
\(950\) −12993.7 −0.443758
\(951\) −28230.7 −0.962610
\(952\) 53195.7 1.81101
\(953\) 8361.29 0.284206 0.142103 0.989852i \(-0.454614\pi\)
0.142103 + 0.989852i \(0.454614\pi\)
\(954\) 47160.3 1.60049
\(955\) −6068.34 −0.205620
\(956\) 136510. 4.61824
\(957\) 40892.0 1.38124
\(958\) −30215.5 −1.01902
\(959\) 5557.14 0.187121
\(960\) 131359. 4.41625
\(961\) −15764.7 −0.529177
\(962\) 72932.6 2.44432
\(963\) 49400.6 1.65308
\(964\) 76383.9 2.55203
\(965\) −26215.7 −0.874522
\(966\) 7210.89 0.240173
\(967\) −3913.13 −0.130132 −0.0650661 0.997881i \(-0.520726\pi\)
−0.0650661 + 0.997881i \(0.520726\pi\)
\(968\) −102285. −3.39623
\(969\) −16662.3 −0.552394
\(970\) 1666.97 0.0551785
\(971\) −7625.01 −0.252006 −0.126003 0.992030i \(-0.540215\pi\)
−0.126003 + 0.992030i \(0.540215\pi\)
\(972\) 118778. 3.91955
\(973\) −6868.56 −0.226306
\(974\) −3193.54 −0.105059
\(975\) −46886.0 −1.54005
\(976\) −225058. −7.38107
\(977\) 37621.2 1.23194 0.615972 0.787768i \(-0.288763\pi\)
0.615972 + 0.787768i \(0.288763\pi\)
\(978\) 12384.2 0.404912
\(979\) −44915.8 −1.46631
\(980\) −6059.97 −0.197529
\(981\) −31708.4 −1.03198
\(982\) −85204.8 −2.76883
\(983\) −36549.3 −1.18590 −0.592951 0.805238i \(-0.702037\pi\)
−0.592951 + 0.805238i \(0.702037\pi\)
\(984\) 30141.6 0.976503
\(985\) 3311.11 0.107107
\(986\) 50229.0 1.62233
\(987\) 3028.88 0.0976801
\(988\) 33767.8 1.08735
\(989\) −3804.35 −0.122317
\(990\) −54430.2 −1.74738
\(991\) 43639.7 1.39885 0.699426 0.714705i \(-0.253439\pi\)
0.699426 + 0.714705i \(0.253439\pi\)
\(992\) 116401. 3.72553
\(993\) 18471.2 0.590299
\(994\) −27464.3 −0.876374
\(995\) 6869.82 0.218882
\(996\) 8170.90 0.259945
\(997\) −2561.64 −0.0813719 −0.0406860 0.999172i \(-0.512954\pi\)
−0.0406860 + 0.999172i \(0.512954\pi\)
\(998\) −84819.0 −2.69028
\(999\) −16757.5 −0.530714
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 161.4.a.d.1.1 12
3.2 odd 2 1449.4.a.o.1.12 12
7.6 odd 2 1127.4.a.h.1.1 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
161.4.a.d.1.1 12 1.1 even 1 trivial
1127.4.a.h.1.1 12 7.6 odd 2
1449.4.a.o.1.12 12 3.2 odd 2