Properties

Label 161.4.a.c
Level $161$
Weight $4$
Character orbit 161.a
Self dual yes
Analytic conductor $9.499$
Analytic rank $0$
Dimension $9$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [161,4,Mod(1,161)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(161, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("161.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 161 = 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 161.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(9.49930751092\)
Analytic rank: \(0\)
Dimension: \(9\)
Coefficient field: \(\mathbb{Q}[x]/(x^{9} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{9} - 60x^{7} - 22x^{6} + 1179x^{5} + 694x^{4} - 7936x^{3} - 4352x^{2} + 11008x + 3072 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{8}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} + ( - \beta_{4} + 1) q^{3} + (\beta_{2} + \beta_1 + 5) q^{4} + \beta_{6} q^{5} + ( - \beta_{7} - \beta_{6} + \beta_{5} + \cdots + 4) q^{6} - 7 q^{7} + ( - 2 \beta_{4} + 2 \beta_{3} + \cdots + 8) q^{8}+ \cdots + (3 \beta_{8} + 50 \beta_{7} + \cdots - 102) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 9 q + 9 q^{3} + 48 q^{4} - 4 q^{5} + 46 q^{6} - 63 q^{7} + 66 q^{8} + 122 q^{9} + 50 q^{10} - 8 q^{11} + 220 q^{12} + 25 q^{13} + 88 q^{15} + 180 q^{16} - 28 q^{17} - 54 q^{18} + 254 q^{19} + 302 q^{20}+ \cdots - 618 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{9} - 60x^{7} - 22x^{6} + 1179x^{5} + 694x^{4} - 7936x^{3} - 4352x^{2} + 11008x + 3072 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - \nu - 13 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{4} + 2\nu^{3} - 25\nu^{2} - 50\nu + 40 ) / 8 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( \nu^{4} - 2\nu^{3} - 25\nu^{2} + 26\nu + 72 ) / 8 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( \nu^{6} - 3\nu^{5} - 35\nu^{4} + 83\nu^{3} + 306\nu^{2} - 480\nu - 288 ) / 32 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( \nu^{8} - 4\nu^{7} - 40\nu^{6} + 142\nu^{5} + 455\nu^{4} - 1354\nu^{3} - 1024\nu^{2} + 2592\nu - 768 ) / 128 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( -\nu^{8} + 4\nu^{7} + 44\nu^{6} - 138\nu^{5} - 611\nu^{4} + 1190\nu^{3} + 2520\nu^{2} - 1472\nu - 1536 ) / 128 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( \nu^{8} - 56\nu^{6} - 18\nu^{5} + 1007\nu^{4} + 498\nu^{3} - 5912\nu^{2} - 2304\nu + 5120 ) / 128 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + \beta _1 + 13 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -2\beta_{4} + 2\beta_{3} + 19\beta _1 + 8 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 4\beta_{4} + 4\beta_{3} + 25\beta_{2} + 37\beta _1 + 269 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 8\beta_{7} + 8\beta_{6} - 8\beta_{5} - 58\beta_{4} + 66\beta_{3} + 8\beta_{2} + 419\beta _1 + 368 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 24\beta_{7} + 24\beta_{6} + 8\beta_{5} + 132\beta_{4} + 172\beta_{3} + 593\beta_{2} + 1149\beta _1 + 6165 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( 32 \beta_{8} + 416 \beta_{7} + 384 \beta_{6} - 288 \beta_{5} - 1418 \beta_{4} + 1850 \beta_{3} + \cdots + 12968 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( 128 \beta_{8} + 1488 \beta_{7} + 1488 \beta_{6} + 304 \beta_{5} + 3316 \beta_{4} + 5796 \beta_{3} + \cdots + 148733 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−4.55260
−4.38565
−3.73922
−1.58693
−0.264899
1.22159
3.04896
4.95572
5.30303
−4.55260 −5.72089 12.7261 17.5795 26.0449 −7.00000 −21.5162 5.72860 −80.0322
1.2 −4.38565 −0.971823 11.2339 −20.4381 4.26207 −7.00000 −14.1827 −26.0556 89.6341
1.3 −3.73922 10.3390 5.98179 7.23273 −38.6599 −7.00000 7.54655 79.8951 −27.0448
1.4 −1.58693 3.23551 −5.48164 −8.51310 −5.13454 −7.00000 21.3945 −16.5315 13.5097
1.5 −0.264899 −6.92505 −7.92983 −11.7130 1.83444 −7.00000 4.21980 20.9564 3.10276
1.6 1.22159 −7.12940 −6.50771 −2.67729 −8.70922 −7.00000 −17.7225 23.8284 −3.27056
1.7 3.04896 7.42499 1.29618 11.7973 22.6385 −7.00000 −20.4397 28.1305 35.9694
1.8 4.95572 7.67438 16.5591 −10.4913 38.0320 −7.00000 42.4166 31.8961 −51.9921
1.9 5.30303 1.07328 20.1221 13.2233 5.69164 −7.00000 64.2837 −25.8481 70.1237
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.9
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(7\) \( +1 \)
\(23\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 161.4.a.c 9
3.b odd 2 1 1449.4.a.n 9
7.b odd 2 1 1127.4.a.f 9
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
161.4.a.c 9 1.a even 1 1 trivial
1127.4.a.f 9 7.b odd 2 1
1449.4.a.n 9 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{9} - 60T_{2}^{7} - 22T_{2}^{6} + 1179T_{2}^{5} + 694T_{2}^{4} - 7936T_{2}^{3} - 4352T_{2}^{2} + 11008T_{2} + 3072 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(161))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{9} - 60 T^{7} + \cdots + 3072 \) Copy content Toggle raw display
$3$ \( T^{9} - 9 T^{8} + \cdots - 561568 \) Copy content Toggle raw display
$5$ \( T^{9} + \cdots + 1135409856 \) Copy content Toggle raw display
$7$ \( (T + 7)^{9} \) Copy content Toggle raw display
$11$ \( T^{9} + \cdots + 43666792951552 \) Copy content Toggle raw display
$13$ \( T^{9} + \cdots - 6636351117312 \) Copy content Toggle raw display
$17$ \( T^{9} + \cdots + 80\!\cdots\!88 \) Copy content Toggle raw display
$19$ \( T^{9} + \cdots + 95\!\cdots\!20 \) Copy content Toggle raw display
$23$ \( (T + 23)^{9} \) Copy content Toggle raw display
$29$ \( T^{9} + \cdots + 87\!\cdots\!60 \) Copy content Toggle raw display
$31$ \( T^{9} + \cdots - 42\!\cdots\!44 \) Copy content Toggle raw display
$37$ \( T^{9} + \cdots + 78\!\cdots\!00 \) Copy content Toggle raw display
$41$ \( T^{9} + \cdots + 51\!\cdots\!48 \) Copy content Toggle raw display
$43$ \( T^{9} + \cdots + 13\!\cdots\!28 \) Copy content Toggle raw display
$47$ \( T^{9} + \cdots + 15\!\cdots\!76 \) Copy content Toggle raw display
$53$ \( T^{9} + \cdots + 27\!\cdots\!12 \) Copy content Toggle raw display
$59$ \( T^{9} + \cdots + 12\!\cdots\!40 \) Copy content Toggle raw display
$61$ \( T^{9} + \cdots + 12\!\cdots\!56 \) Copy content Toggle raw display
$67$ \( T^{9} + \cdots - 11\!\cdots\!56 \) Copy content Toggle raw display
$71$ \( T^{9} + \cdots - 36\!\cdots\!72 \) Copy content Toggle raw display
$73$ \( T^{9} + \cdots + 17\!\cdots\!12 \) Copy content Toggle raw display
$79$ \( T^{9} + \cdots - 92\!\cdots\!20 \) Copy content Toggle raw display
$83$ \( T^{9} + \cdots + 20\!\cdots\!56 \) Copy content Toggle raw display
$89$ \( T^{9} + \cdots + 79\!\cdots\!60 \) Copy content Toggle raw display
$97$ \( T^{9} + \cdots - 44\!\cdots\!92 \) Copy content Toggle raw display
show more
show less