Properties

Label 161.4.a.a.1.5
Level $161$
Weight $4$
Character 161.1
Self dual yes
Analytic conductor $9.499$
Analytic rank $1$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [161,4,Mod(1,161)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(161, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("161.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 161 = 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 161.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(9.49930751092\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 18x^{3} - 4x^{2} + 44x + 24 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(4.59776\) of defining polynomial
Character \(\chi\) \(=\) 161.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.59776 q^{2} -4.68651 q^{3} +4.94388 q^{4} -3.25737 q^{5} -16.8609 q^{6} +7.00000 q^{7} -10.9952 q^{8} -5.03662 q^{9} -11.7192 q^{10} -52.7424 q^{11} -23.1695 q^{12} -2.09755 q^{13} +25.1843 q^{14} +15.2657 q^{15} -79.1091 q^{16} -14.6489 q^{17} -18.1205 q^{18} +6.38490 q^{19} -16.1040 q^{20} -32.8056 q^{21} -189.754 q^{22} -23.0000 q^{23} +51.5291 q^{24} -114.390 q^{25} -7.54647 q^{26} +150.140 q^{27} +34.6071 q^{28} +101.423 q^{29} +54.9223 q^{30} -96.9377 q^{31} -196.654 q^{32} +247.178 q^{33} -52.7033 q^{34} -22.8016 q^{35} -24.9004 q^{36} -219.426 q^{37} +22.9713 q^{38} +9.83018 q^{39} +35.8154 q^{40} +462.118 q^{41} -118.027 q^{42} +148.234 q^{43} -260.752 q^{44} +16.4061 q^{45} -82.7485 q^{46} -16.0617 q^{47} +370.746 q^{48} +49.0000 q^{49} -411.546 q^{50} +68.6523 q^{51} -10.3700 q^{52} +408.417 q^{53} +540.168 q^{54} +171.801 q^{55} -76.9664 q^{56} -29.9229 q^{57} +364.895 q^{58} +194.836 q^{59} +75.4717 q^{60} +272.396 q^{61} -348.759 q^{62} -35.2563 q^{63} -74.6411 q^{64} +6.83248 q^{65} +889.286 q^{66} -811.909 q^{67} -72.4224 q^{68} +107.790 q^{69} -82.0346 q^{70} -867.936 q^{71} +55.3786 q^{72} -948.048 q^{73} -789.441 q^{74} +536.088 q^{75} +31.5662 q^{76} -369.197 q^{77} +35.3666 q^{78} -149.385 q^{79} +257.687 q^{80} -567.644 q^{81} +1662.59 q^{82} -824.893 q^{83} -162.187 q^{84} +47.7169 q^{85} +533.312 q^{86} -475.319 q^{87} +579.913 q^{88} +370.815 q^{89} +59.0253 q^{90} -14.6828 q^{91} -113.709 q^{92} +454.300 q^{93} -57.7863 q^{94} -20.7980 q^{95} +921.621 q^{96} -1648.19 q^{97} +176.290 q^{98} +265.643 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 4 q^{2} - 11 q^{3} - 4 q^{5} + 35 q^{7} + 18 q^{8} + 14 q^{9} + 26 q^{10} - 36 q^{11} - 28 q^{12} - 69 q^{13} - 28 q^{14} - 88 q^{15} - 124 q^{16} - 42 q^{17} - 94 q^{18} - 140 q^{19} - 168 q^{20}+ \cdots - 990 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 3.59776 1.27200 0.636000 0.771689i \(-0.280588\pi\)
0.636000 + 0.771689i \(0.280588\pi\)
\(3\) −4.68651 −0.901919 −0.450960 0.892544i \(-0.648918\pi\)
−0.450960 + 0.892544i \(0.648918\pi\)
\(4\) 4.94388 0.617985
\(5\) −3.25737 −0.291348 −0.145674 0.989333i \(-0.546535\pi\)
−0.145674 + 0.989333i \(0.546535\pi\)
\(6\) −16.8609 −1.14724
\(7\) 7.00000 0.377964
\(8\) −10.9952 −0.485924
\(9\) −5.03662 −0.186541
\(10\) −11.7192 −0.370594
\(11\) −52.7424 −1.44568 −0.722838 0.691018i \(-0.757163\pi\)
−0.722838 + 0.691018i \(0.757163\pi\)
\(12\) −23.1695 −0.557372
\(13\) −2.09755 −0.0447504 −0.0223752 0.999750i \(-0.507123\pi\)
−0.0223752 + 0.999750i \(0.507123\pi\)
\(14\) 25.1843 0.480771
\(15\) 15.2657 0.262772
\(16\) −79.1091 −1.23608
\(17\) −14.6489 −0.208993 −0.104497 0.994525i \(-0.533323\pi\)
−0.104497 + 0.994525i \(0.533323\pi\)
\(18\) −18.1205 −0.237281
\(19\) 6.38490 0.0770945 0.0385473 0.999257i \(-0.487727\pi\)
0.0385473 + 0.999257i \(0.487727\pi\)
\(20\) −16.1040 −0.180048
\(21\) −32.8056 −0.340893
\(22\) −189.754 −1.83890
\(23\) −23.0000 −0.208514
\(24\) 51.5291 0.438264
\(25\) −114.390 −0.915116
\(26\) −7.54647 −0.0569225
\(27\) 150.140 1.07016
\(28\) 34.6071 0.233576
\(29\) 101.423 0.649439 0.324720 0.945810i \(-0.394730\pi\)
0.324720 + 0.945810i \(0.394730\pi\)
\(30\) 54.9223 0.334246
\(31\) −96.9377 −0.561630 −0.280815 0.959762i \(-0.590605\pi\)
−0.280815 + 0.959762i \(0.590605\pi\)
\(32\) −196.654 −1.08637
\(33\) 247.178 1.30388
\(34\) −52.7033 −0.265839
\(35\) −22.8016 −0.110119
\(36\) −24.9004 −0.115280
\(37\) −219.426 −0.974956 −0.487478 0.873135i \(-0.662083\pi\)
−0.487478 + 0.873135i \(0.662083\pi\)
\(38\) 22.9713 0.0980643
\(39\) 9.83018 0.0403612
\(40\) 35.8154 0.141573
\(41\) 462.118 1.76026 0.880131 0.474730i \(-0.157454\pi\)
0.880131 + 0.474730i \(0.157454\pi\)
\(42\) −118.027 −0.433617
\(43\) 148.234 0.525710 0.262855 0.964835i \(-0.415336\pi\)
0.262855 + 0.964835i \(0.415336\pi\)
\(44\) −260.752 −0.893405
\(45\) 16.4061 0.0543484
\(46\) −82.7485 −0.265230
\(47\) −16.0617 −0.0498478 −0.0249239 0.999689i \(-0.507934\pi\)
−0.0249239 + 0.999689i \(0.507934\pi\)
\(48\) 370.746 1.11484
\(49\) 49.0000 0.142857
\(50\) −411.546 −1.16403
\(51\) 68.6523 0.188495
\(52\) −10.3700 −0.0276551
\(53\) 408.417 1.05850 0.529249 0.848466i \(-0.322474\pi\)
0.529249 + 0.848466i \(0.322474\pi\)
\(54\) 540.168 1.36125
\(55\) 171.801 0.421194
\(56\) −76.9664 −0.183662
\(57\) −29.9229 −0.0695330
\(58\) 364.895 0.826087
\(59\) 194.836 0.429923 0.214962 0.976622i \(-0.431037\pi\)
0.214962 + 0.976622i \(0.431037\pi\)
\(60\) 75.4717 0.162389
\(61\) 272.396 0.571749 0.285875 0.958267i \(-0.407716\pi\)
0.285875 + 0.958267i \(0.407716\pi\)
\(62\) −348.759 −0.714394
\(63\) −35.2563 −0.0705060
\(64\) −74.6411 −0.145783
\(65\) 6.83248 0.0130379
\(66\) 889.286 1.65854
\(67\) −811.909 −1.48045 −0.740227 0.672357i \(-0.765282\pi\)
−0.740227 + 0.672357i \(0.765282\pi\)
\(68\) −72.4224 −0.129155
\(69\) 107.790 0.188063
\(70\) −82.0346 −0.140072
\(71\) −867.936 −1.45078 −0.725388 0.688340i \(-0.758340\pi\)
−0.725388 + 0.688340i \(0.758340\pi\)
\(72\) 55.3786 0.0906449
\(73\) −948.048 −1.52001 −0.760004 0.649918i \(-0.774803\pi\)
−0.760004 + 0.649918i \(0.774803\pi\)
\(74\) −789.441 −1.24014
\(75\) 536.088 0.825361
\(76\) 31.5662 0.0476432
\(77\) −369.197 −0.546414
\(78\) 35.3666 0.0513395
\(79\) −149.385 −0.212748 −0.106374 0.994326i \(-0.533924\pi\)
−0.106374 + 0.994326i \(0.533924\pi\)
\(80\) 257.687 0.360129
\(81\) −567.644 −0.778661
\(82\) 1662.59 2.23906
\(83\) −824.893 −1.09089 −0.545445 0.838147i \(-0.683639\pi\)
−0.545445 + 0.838147i \(0.683639\pi\)
\(84\) −162.187 −0.210667
\(85\) 47.7169 0.0608897
\(86\) 533.312 0.668704
\(87\) −475.319 −0.585742
\(88\) 579.913 0.702488
\(89\) 370.815 0.441644 0.220822 0.975314i \(-0.429126\pi\)
0.220822 + 0.975314i \(0.429126\pi\)
\(90\) 59.0253 0.0691312
\(91\) −14.6828 −0.0169141
\(92\) −113.709 −0.128859
\(93\) 454.300 0.506545
\(94\) −57.7863 −0.0634064
\(95\) −20.7980 −0.0224613
\(96\) 921.621 0.979818
\(97\) −1648.19 −1.72524 −0.862619 0.505854i \(-0.831177\pi\)
−0.862619 + 0.505854i \(0.831177\pi\)
\(98\) 176.290 0.181714
\(99\) 265.643 0.269678
\(100\) −565.528 −0.565528
\(101\) −153.058 −0.150790 −0.0753952 0.997154i \(-0.524022\pi\)
−0.0753952 + 0.997154i \(0.524022\pi\)
\(102\) 246.994 0.239766
\(103\) 624.753 0.597657 0.298829 0.954307i \(-0.403404\pi\)
0.298829 + 0.954307i \(0.403404\pi\)
\(104\) 23.0629 0.0217453
\(105\) 106.860 0.0993186
\(106\) 1469.39 1.34641
\(107\) −16.5010 −0.0149085 −0.00745427 0.999972i \(-0.502373\pi\)
−0.00745427 + 0.999972i \(0.502373\pi\)
\(108\) 742.274 0.661345
\(109\) −242.588 −0.213172 −0.106586 0.994303i \(-0.533992\pi\)
−0.106586 + 0.994303i \(0.533992\pi\)
\(110\) 618.100 0.535759
\(111\) 1028.34 0.879331
\(112\) −553.764 −0.467194
\(113\) 728.565 0.606528 0.303264 0.952907i \(-0.401924\pi\)
0.303264 + 0.952907i \(0.401924\pi\)
\(114\) −107.655 −0.0884460
\(115\) 74.9195 0.0607502
\(116\) 501.422 0.401344
\(117\) 10.5645 0.00834780
\(118\) 700.973 0.546862
\(119\) −102.542 −0.0789920
\(120\) −167.849 −0.127687
\(121\) 1450.76 1.08998
\(122\) 980.014 0.727265
\(123\) −2165.72 −1.58762
\(124\) −479.248 −0.347079
\(125\) 779.780 0.557965
\(126\) −126.844 −0.0896837
\(127\) 1197.87 0.836959 0.418479 0.908226i \(-0.362563\pi\)
0.418479 + 0.908226i \(0.362563\pi\)
\(128\) 1304.69 0.900933
\(129\) −694.702 −0.474148
\(130\) 24.5816 0.0165842
\(131\) −1602.54 −1.06881 −0.534405 0.845228i \(-0.679464\pi\)
−0.534405 + 0.845228i \(0.679464\pi\)
\(132\) 1222.02 0.805780
\(133\) 44.6943 0.0291390
\(134\) −2921.05 −1.88314
\(135\) −489.061 −0.311790
\(136\) 161.068 0.101555
\(137\) −2757.17 −1.71942 −0.859710 0.510782i \(-0.829356\pi\)
−0.859710 + 0.510782i \(0.829356\pi\)
\(138\) 387.802 0.239216
\(139\) −2212.09 −1.34984 −0.674918 0.737892i \(-0.735821\pi\)
−0.674918 + 0.737892i \(0.735821\pi\)
\(140\) −112.728 −0.0680519
\(141\) 75.2735 0.0449587
\(142\) −3122.63 −1.84539
\(143\) 110.630 0.0646945
\(144\) 398.442 0.230580
\(145\) −330.371 −0.189213
\(146\) −3410.85 −1.93345
\(147\) −229.639 −0.128846
\(148\) −1084.81 −0.602508
\(149\) 1365.23 0.750632 0.375316 0.926897i \(-0.377534\pi\)
0.375316 + 0.926897i \(0.377534\pi\)
\(150\) 1928.72 1.04986
\(151\) −1429.58 −0.770445 −0.385223 0.922824i \(-0.625875\pi\)
−0.385223 + 0.922824i \(0.625875\pi\)
\(152\) −70.2032 −0.0374620
\(153\) 73.7810 0.0389859
\(154\) −1328.28 −0.695039
\(155\) 315.762 0.163630
\(156\) 48.5992 0.0249426
\(157\) 2969.39 1.50945 0.754723 0.656043i \(-0.227771\pi\)
0.754723 + 0.656043i \(0.227771\pi\)
\(158\) −537.451 −0.270616
\(159\) −1914.05 −0.954680
\(160\) 640.574 0.316512
\(161\) −161.000 −0.0788110
\(162\) −2042.25 −0.990457
\(163\) −645.541 −0.310200 −0.155100 0.987899i \(-0.549570\pi\)
−0.155100 + 0.987899i \(0.549570\pi\)
\(164\) 2284.66 1.08782
\(165\) −805.149 −0.379883
\(166\) −2967.77 −1.38761
\(167\) −3579.97 −1.65884 −0.829420 0.558625i \(-0.811329\pi\)
−0.829420 + 0.558625i \(0.811329\pi\)
\(168\) 360.704 0.165648
\(169\) −2192.60 −0.997997
\(170\) 171.674 0.0774517
\(171\) −32.1583 −0.0143813
\(172\) 732.853 0.324881
\(173\) 1548.06 0.680327 0.340163 0.940366i \(-0.389518\pi\)
0.340163 + 0.940366i \(0.389518\pi\)
\(174\) −1710.08 −0.745064
\(175\) −800.727 −0.345882
\(176\) 4172.40 1.78697
\(177\) −913.100 −0.387756
\(178\) 1334.10 0.561771
\(179\) −786.566 −0.328440 −0.164220 0.986424i \(-0.552511\pi\)
−0.164220 + 0.986424i \(0.552511\pi\)
\(180\) 81.1099 0.0335865
\(181\) 3192.62 1.31108 0.655539 0.755161i \(-0.272441\pi\)
0.655539 + 0.755161i \(0.272441\pi\)
\(182\) −52.8253 −0.0215147
\(183\) −1276.59 −0.515672
\(184\) 252.889 0.101322
\(185\) 714.750 0.284051
\(186\) 1634.46 0.644325
\(187\) 772.619 0.302136
\(188\) −79.4073 −0.0308052
\(189\) 1050.98 0.404484
\(190\) −74.8261 −0.0285708
\(191\) −656.034 −0.248528 −0.124264 0.992249i \(-0.539657\pi\)
−0.124264 + 0.992249i \(0.539657\pi\)
\(192\) 349.807 0.131485
\(193\) −2138.50 −0.797580 −0.398790 0.917042i \(-0.630570\pi\)
−0.398790 + 0.917042i \(0.630570\pi\)
\(194\) −5929.78 −2.19450
\(195\) −32.0205 −0.0117592
\(196\) 242.250 0.0882835
\(197\) 3550.69 1.28414 0.642071 0.766645i \(-0.278075\pi\)
0.642071 + 0.766645i \(0.278075\pi\)
\(198\) 955.721 0.343031
\(199\) −644.764 −0.229679 −0.114839 0.993384i \(-0.536635\pi\)
−0.114839 + 0.993384i \(0.536635\pi\)
\(200\) 1257.74 0.444677
\(201\) 3805.02 1.33525
\(202\) −550.666 −0.191805
\(203\) 709.960 0.245465
\(204\) 339.409 0.116487
\(205\) −1505.29 −0.512849
\(206\) 2247.71 0.760220
\(207\) 115.842 0.0388966
\(208\) 165.935 0.0553150
\(209\) −336.755 −0.111454
\(210\) 384.456 0.126333
\(211\) 532.889 0.173865 0.0869326 0.996214i \(-0.472294\pi\)
0.0869326 + 0.996214i \(0.472294\pi\)
\(212\) 2019.16 0.654136
\(213\) 4067.59 1.30848
\(214\) −59.3667 −0.0189637
\(215\) −482.854 −0.153165
\(216\) −1650.82 −0.520018
\(217\) −678.564 −0.212276
\(218\) −872.774 −0.271155
\(219\) 4443.04 1.37092
\(220\) 849.365 0.260292
\(221\) 30.7268 0.00935252
\(222\) 3699.72 1.11851
\(223\) 1075.23 0.322882 0.161441 0.986882i \(-0.448386\pi\)
0.161441 + 0.986882i \(0.448386\pi\)
\(224\) −1376.58 −0.410609
\(225\) 576.137 0.170707
\(226\) 2621.20 0.771504
\(227\) 5265.86 1.53968 0.769840 0.638237i \(-0.220336\pi\)
0.769840 + 0.638237i \(0.220336\pi\)
\(228\) −147.935 −0.0429704
\(229\) 170.334 0.0491528 0.0245764 0.999698i \(-0.492176\pi\)
0.0245764 + 0.999698i \(0.492176\pi\)
\(230\) 269.542 0.0772743
\(231\) 1730.24 0.492821
\(232\) −1115.16 −0.315578
\(233\) 5383.24 1.51359 0.756797 0.653650i \(-0.226763\pi\)
0.756797 + 0.653650i \(0.226763\pi\)
\(234\) 38.0087 0.0106184
\(235\) 52.3190 0.0145230
\(236\) 963.245 0.265686
\(237\) 700.094 0.191882
\(238\) −368.923 −0.100478
\(239\) −5437.23 −1.47157 −0.735785 0.677216i \(-0.763186\pi\)
−0.735785 + 0.677216i \(0.763186\pi\)
\(240\) −1207.65 −0.324807
\(241\) 1193.11 0.318901 0.159450 0.987206i \(-0.449028\pi\)
0.159450 + 0.987206i \(0.449028\pi\)
\(242\) 5219.49 1.38645
\(243\) −1393.51 −0.367875
\(244\) 1346.69 0.353332
\(245\) −159.611 −0.0416211
\(246\) −7791.75 −2.01945
\(247\) −13.3926 −0.00345001
\(248\) 1065.85 0.272909
\(249\) 3865.87 0.983894
\(250\) 2805.46 0.709732
\(251\) −2527.45 −0.635583 −0.317791 0.948161i \(-0.602941\pi\)
−0.317791 + 0.948161i \(0.602941\pi\)
\(252\) −174.303 −0.0435717
\(253\) 1213.08 0.301444
\(254\) 4309.65 1.06461
\(255\) −223.626 −0.0549176
\(256\) 5291.09 1.29177
\(257\) −707.247 −0.171661 −0.0858305 0.996310i \(-0.527354\pi\)
−0.0858305 + 0.996310i \(0.527354\pi\)
\(258\) −2499.37 −0.603117
\(259\) −1535.98 −0.368499
\(260\) 33.7790 0.00805724
\(261\) −510.828 −0.121147
\(262\) −5765.54 −1.35953
\(263\) 4383.54 1.02776 0.513880 0.857862i \(-0.328208\pi\)
0.513880 + 0.857862i \(0.328208\pi\)
\(264\) −2717.77 −0.633587
\(265\) −1330.36 −0.308391
\(266\) 160.799 0.0370648
\(267\) −1737.83 −0.398327
\(268\) −4013.98 −0.914899
\(269\) 6451.97 1.46239 0.731196 0.682167i \(-0.238962\pi\)
0.731196 + 0.682167i \(0.238962\pi\)
\(270\) −1759.52 −0.396597
\(271\) −7434.30 −1.66643 −0.833213 0.552952i \(-0.813501\pi\)
−0.833213 + 0.552952i \(0.813501\pi\)
\(272\) 1158.86 0.258332
\(273\) 68.8112 0.0152551
\(274\) −9919.62 −2.18710
\(275\) 6033.18 1.32296
\(276\) 532.899 0.116220
\(277\) −4459.88 −0.967394 −0.483697 0.875236i \(-0.660706\pi\)
−0.483697 + 0.875236i \(0.660706\pi\)
\(278\) −7958.58 −1.71699
\(279\) 488.239 0.104767
\(280\) 250.708 0.0535095
\(281\) 6116.73 1.29855 0.649277 0.760552i \(-0.275072\pi\)
0.649277 + 0.760552i \(0.275072\pi\)
\(282\) 270.816 0.0571875
\(283\) −2037.96 −0.428071 −0.214036 0.976826i \(-0.568661\pi\)
−0.214036 + 0.976826i \(0.568661\pi\)
\(284\) −4290.97 −0.896557
\(285\) 97.4698 0.0202583
\(286\) 398.019 0.0822915
\(287\) 3234.83 0.665317
\(288\) 990.471 0.202653
\(289\) −4698.41 −0.956322
\(290\) −1188.60 −0.240679
\(291\) 7724.25 1.55603
\(292\) −4687.03 −0.939342
\(293\) 1234.28 0.246099 0.123050 0.992401i \(-0.460733\pi\)
0.123050 + 0.992401i \(0.460733\pi\)
\(294\) −826.186 −0.163892
\(295\) −634.652 −0.125257
\(296\) 2412.63 0.473754
\(297\) −7918.74 −1.54711
\(298\) 4911.77 0.954804
\(299\) 48.2436 0.00933110
\(300\) 2650.35 0.510061
\(301\) 1037.64 0.198700
\(302\) −5143.27 −0.980006
\(303\) 717.308 0.136001
\(304\) −505.103 −0.0952950
\(305\) −887.293 −0.166578
\(306\) 265.446 0.0495901
\(307\) −2544.58 −0.473052 −0.236526 0.971625i \(-0.576009\pi\)
−0.236526 + 0.971625i \(0.576009\pi\)
\(308\) −1825.26 −0.337675
\(309\) −2927.91 −0.539039
\(310\) 1136.04 0.208137
\(311\) 3924.86 0.715621 0.357811 0.933794i \(-0.383523\pi\)
0.357811 + 0.933794i \(0.383523\pi\)
\(312\) −108.085 −0.0196125
\(313\) 8598.16 1.55271 0.776353 0.630299i \(-0.217068\pi\)
0.776353 + 0.630299i \(0.217068\pi\)
\(314\) 10683.2 1.92002
\(315\) 114.843 0.0205418
\(316\) −738.540 −0.131475
\(317\) 1329.20 0.235506 0.117753 0.993043i \(-0.462431\pi\)
0.117753 + 0.993043i \(0.462431\pi\)
\(318\) −6886.30 −1.21435
\(319\) −5349.28 −0.938878
\(320\) 243.134 0.0424737
\(321\) 77.3322 0.0134463
\(322\) −579.239 −0.100248
\(323\) −93.5318 −0.0161122
\(324\) −2806.36 −0.481201
\(325\) 239.937 0.0409518
\(326\) −2322.50 −0.394575
\(327\) 1136.89 0.192264
\(328\) −5081.08 −0.855353
\(329\) −112.432 −0.0188407
\(330\) −2896.73 −0.483212
\(331\) −4479.47 −0.743848 −0.371924 0.928263i \(-0.621302\pi\)
−0.371924 + 0.928263i \(0.621302\pi\)
\(332\) −4078.17 −0.674153
\(333\) 1105.16 0.181870
\(334\) −12879.9 −2.11005
\(335\) 2644.69 0.431327
\(336\) 2595.22 0.421371
\(337\) 6045.75 0.977248 0.488624 0.872494i \(-0.337499\pi\)
0.488624 + 0.872494i \(0.337499\pi\)
\(338\) −7888.45 −1.26945
\(339\) −3414.43 −0.547039
\(340\) 235.906 0.0376289
\(341\) 5112.73 0.811935
\(342\) −115.698 −0.0182930
\(343\) 343.000 0.0539949
\(344\) −1629.87 −0.255455
\(345\) −351.111 −0.0547918
\(346\) 5569.54 0.865376
\(347\) 967.191 0.149630 0.0748149 0.997197i \(-0.476163\pi\)
0.0748149 + 0.997197i \(0.476163\pi\)
\(348\) −2349.92 −0.361980
\(349\) −2803.90 −0.430056 −0.215028 0.976608i \(-0.568984\pi\)
−0.215028 + 0.976608i \(0.568984\pi\)
\(350\) −2880.82 −0.439961
\(351\) −314.926 −0.0478903
\(352\) 10372.0 1.57054
\(353\) −6866.98 −1.03539 −0.517695 0.855565i \(-0.673210\pi\)
−0.517695 + 0.855565i \(0.673210\pi\)
\(354\) −3285.12 −0.493226
\(355\) 2827.19 0.422680
\(356\) 1833.26 0.272929
\(357\) 480.566 0.0712444
\(358\) −2829.88 −0.417775
\(359\) −4023.27 −0.591476 −0.295738 0.955269i \(-0.595566\pi\)
−0.295738 + 0.955269i \(0.595566\pi\)
\(360\) −180.388 −0.0264092
\(361\) −6818.23 −0.994056
\(362\) 11486.3 1.66769
\(363\) −6799.00 −0.983072
\(364\) −72.5901 −0.0104526
\(365\) 3088.14 0.442851
\(366\) −4592.85 −0.655934
\(367\) 4280.70 0.608857 0.304428 0.952535i \(-0.401535\pi\)
0.304428 + 0.952535i \(0.401535\pi\)
\(368\) 1819.51 0.257740
\(369\) −2327.51 −0.328362
\(370\) 2571.50 0.361313
\(371\) 2858.92 0.400075
\(372\) 2246.00 0.313037
\(373\) −5482.90 −0.761109 −0.380555 0.924758i \(-0.624267\pi\)
−0.380555 + 0.924758i \(0.624267\pi\)
\(374\) 2779.70 0.384317
\(375\) −3654.45 −0.503239
\(376\) 176.602 0.0242222
\(377\) −212.739 −0.0290627
\(378\) 3781.17 0.514504
\(379\) −1569.38 −0.212700 −0.106350 0.994329i \(-0.533916\pi\)
−0.106350 + 0.994329i \(0.533916\pi\)
\(380\) −102.823 −0.0138808
\(381\) −5613.83 −0.754869
\(382\) −2360.25 −0.316128
\(383\) 7169.92 0.956569 0.478285 0.878205i \(-0.341259\pi\)
0.478285 + 0.878205i \(0.341259\pi\)
\(384\) −6114.45 −0.812569
\(385\) 1202.61 0.159197
\(386\) −7693.82 −1.01452
\(387\) −746.601 −0.0980668
\(388\) −8148.44 −1.06617
\(389\) −10328.4 −1.34620 −0.673100 0.739552i \(-0.735037\pi\)
−0.673100 + 0.739552i \(0.735037\pi\)
\(390\) −115.202 −0.0149577
\(391\) 336.925 0.0435781
\(392\) −538.765 −0.0694176
\(393\) 7510.30 0.963981
\(394\) 12774.5 1.63343
\(395\) 486.601 0.0619837
\(396\) 1313.31 0.166657
\(397\) −6608.31 −0.835419 −0.417710 0.908581i \(-0.637167\pi\)
−0.417710 + 0.908581i \(0.637167\pi\)
\(398\) −2319.71 −0.292152
\(399\) −209.460 −0.0262810
\(400\) 9049.25 1.13116
\(401\) 8742.74 1.08876 0.544379 0.838840i \(-0.316765\pi\)
0.544379 + 0.838840i \(0.316765\pi\)
\(402\) 13689.6 1.69844
\(403\) 203.332 0.0251332
\(404\) −756.700 −0.0931862
\(405\) 1849.02 0.226861
\(406\) 2554.26 0.312232
\(407\) 11573.0 1.40947
\(408\) −754.845 −0.0915941
\(409\) −10270.5 −1.24167 −0.620836 0.783941i \(-0.713207\pi\)
−0.620836 + 0.783941i \(0.713207\pi\)
\(410\) −5415.67 −0.652344
\(411\) 12921.5 1.55078
\(412\) 3088.70 0.369343
\(413\) 1363.85 0.162496
\(414\) 416.773 0.0494765
\(415\) 2686.98 0.317828
\(416\) 412.491 0.0486155
\(417\) 10367.0 1.21744
\(418\) −1211.56 −0.141769
\(419\) −204.055 −0.0237917 −0.0118958 0.999929i \(-0.503787\pi\)
−0.0118958 + 0.999929i \(0.503787\pi\)
\(420\) 528.302 0.0613774
\(421\) 12498.8 1.44693 0.723464 0.690363i \(-0.242549\pi\)
0.723464 + 0.690363i \(0.242549\pi\)
\(422\) 1917.21 0.221157
\(423\) 80.8969 0.00929868
\(424\) −4490.63 −0.514349
\(425\) 1675.68 0.191253
\(426\) 14634.2 1.66439
\(427\) 1906.77 0.216101
\(428\) −81.5790 −0.00921325
\(429\) −518.467 −0.0583492
\(430\) −1737.19 −0.194825
\(431\) −11136.3 −1.24459 −0.622294 0.782784i \(-0.713799\pi\)
−0.622294 + 0.782784i \(0.713799\pi\)
\(432\) −11877.4 −1.32281
\(433\) −7168.61 −0.795615 −0.397807 0.917469i \(-0.630229\pi\)
−0.397807 + 0.917469i \(0.630229\pi\)
\(434\) −2441.31 −0.270015
\(435\) 1548.29 0.170655
\(436\) −1199.33 −0.131737
\(437\) −146.853 −0.0160753
\(438\) 15985.0 1.74382
\(439\) 8307.02 0.903126 0.451563 0.892239i \(-0.350867\pi\)
0.451563 + 0.892239i \(0.350867\pi\)
\(440\) −1888.99 −0.204668
\(441\) −246.794 −0.0266488
\(442\) 110.548 0.0118964
\(443\) −11823.7 −1.26808 −0.634042 0.773298i \(-0.718606\pi\)
−0.634042 + 0.773298i \(0.718606\pi\)
\(444\) 5083.99 0.543413
\(445\) −1207.88 −0.128672
\(446\) 3868.42 0.410706
\(447\) −6398.17 −0.677009
\(448\) −522.488 −0.0551010
\(449\) 6407.90 0.673513 0.336757 0.941592i \(-0.390670\pi\)
0.336757 + 0.941592i \(0.390670\pi\)
\(450\) 2072.80 0.217140
\(451\) −24373.2 −2.54477
\(452\) 3601.94 0.374825
\(453\) 6699.72 0.694879
\(454\) 18945.3 1.95847
\(455\) 47.8274 0.00492787
\(456\) 329.008 0.0337877
\(457\) −1254.46 −0.128406 −0.0642028 0.997937i \(-0.520450\pi\)
−0.0642028 + 0.997937i \(0.520450\pi\)
\(458\) 612.821 0.0625224
\(459\) −2199.39 −0.223657
\(460\) 370.393 0.0375427
\(461\) 8438.67 0.852555 0.426277 0.904592i \(-0.359825\pi\)
0.426277 + 0.904592i \(0.359825\pi\)
\(462\) 6225.00 0.626869
\(463\) −4172.97 −0.418864 −0.209432 0.977823i \(-0.567162\pi\)
−0.209432 + 0.977823i \(0.567162\pi\)
\(464\) −8023.47 −0.802759
\(465\) −1479.82 −0.147581
\(466\) 19367.6 1.92529
\(467\) −1053.51 −0.104391 −0.0521956 0.998637i \(-0.516622\pi\)
−0.0521956 + 0.998637i \(0.516622\pi\)
\(468\) 52.2298 0.00515881
\(469\) −5683.36 −0.559559
\(470\) 188.231 0.0184733
\(471\) −13916.1 −1.36140
\(472\) −2142.26 −0.208910
\(473\) −7818.24 −0.760007
\(474\) 2518.77 0.244074
\(475\) −730.366 −0.0705505
\(476\) −506.957 −0.0488158
\(477\) −2057.04 −0.197454
\(478\) −19561.8 −1.87184
\(479\) −6309.22 −0.601828 −0.300914 0.953651i \(-0.597292\pi\)
−0.300914 + 0.953651i \(0.597292\pi\)
\(480\) −3002.06 −0.285468
\(481\) 460.256 0.0436296
\(482\) 4292.53 0.405642
\(483\) 754.528 0.0710812
\(484\) 7172.38 0.673589
\(485\) 5368.75 0.502644
\(486\) −5013.52 −0.467938
\(487\) −5294.18 −0.492612 −0.246306 0.969192i \(-0.579217\pi\)
−0.246306 + 0.969192i \(0.579217\pi\)
\(488\) −2995.04 −0.277826
\(489\) 3025.33 0.279776
\(490\) −574.242 −0.0529421
\(491\) 4030.46 0.370453 0.185226 0.982696i \(-0.440698\pi\)
0.185226 + 0.982696i \(0.440698\pi\)
\(492\) −10707.1 −0.981122
\(493\) −1485.73 −0.135728
\(494\) −48.1834 −0.00438841
\(495\) −865.298 −0.0785702
\(496\) 7668.66 0.694220
\(497\) −6075.55 −0.548342
\(498\) 13908.5 1.25151
\(499\) 793.983 0.0712296 0.0356148 0.999366i \(-0.488661\pi\)
0.0356148 + 0.999366i \(0.488661\pi\)
\(500\) 3855.14 0.344814
\(501\) 16777.6 1.49614
\(502\) −9093.16 −0.808461
\(503\) −15179.8 −1.34559 −0.672796 0.739828i \(-0.734907\pi\)
−0.672796 + 0.739828i \(0.734907\pi\)
\(504\) 387.650 0.0342605
\(505\) 498.566 0.0439325
\(506\) 4364.35 0.383437
\(507\) 10275.6 0.900113
\(508\) 5922.12 0.517228
\(509\) 8692.69 0.756968 0.378484 0.925608i \(-0.376446\pi\)
0.378484 + 0.925608i \(0.376446\pi\)
\(510\) −804.552 −0.0698552
\(511\) −6636.33 −0.574509
\(512\) 8598.56 0.742200
\(513\) 958.628 0.0825038
\(514\) −2544.51 −0.218353
\(515\) −2035.05 −0.174126
\(516\) −3434.52 −0.293016
\(517\) 847.135 0.0720637
\(518\) −5526.09 −0.468730
\(519\) −7254.98 −0.613600
\(520\) −75.1245 −0.00633543
\(521\) 10817.9 0.909679 0.454840 0.890573i \(-0.349697\pi\)
0.454840 + 0.890573i \(0.349697\pi\)
\(522\) −1837.84 −0.154099
\(523\) 19439.4 1.62529 0.812645 0.582759i \(-0.198027\pi\)
0.812645 + 0.582759i \(0.198027\pi\)
\(524\) −7922.74 −0.660508
\(525\) 3752.62 0.311957
\(526\) 15770.9 1.30731
\(527\) 1420.03 0.117377
\(528\) −19554.0 −1.61170
\(529\) 529.000 0.0434783
\(530\) −4786.33 −0.392274
\(531\) −981.314 −0.0801985
\(532\) 220.963 0.0180075
\(533\) −969.315 −0.0787724
\(534\) −6252.29 −0.506672
\(535\) 53.7499 0.00434357
\(536\) 8927.10 0.719388
\(537\) 3686.25 0.296226
\(538\) 23212.6 1.86016
\(539\) −2584.38 −0.206525
\(540\) −2417.86 −0.192682
\(541\) −18392.4 −1.46165 −0.730823 0.682567i \(-0.760864\pi\)
−0.730823 + 0.682567i \(0.760864\pi\)
\(542\) −26746.8 −2.11969
\(543\) −14962.2 −1.18249
\(544\) 2880.77 0.227044
\(545\) 790.199 0.0621072
\(546\) 247.566 0.0194045
\(547\) 20954.3 1.63792 0.818960 0.573851i \(-0.194551\pi\)
0.818960 + 0.573851i \(0.194551\pi\)
\(548\) −13631.1 −1.06258
\(549\) −1371.95 −0.106655
\(550\) 21705.9 1.68281
\(551\) 647.574 0.0500682
\(552\) −1185.17 −0.0913843
\(553\) −1045.69 −0.0804113
\(554\) −16045.6 −1.23053
\(555\) −3349.68 −0.256191
\(556\) −10936.3 −0.834178
\(557\) 1419.22 0.107961 0.0539807 0.998542i \(-0.482809\pi\)
0.0539807 + 0.998542i \(0.482809\pi\)
\(558\) 1756.57 0.133264
\(559\) −310.929 −0.0235257
\(560\) 1803.81 0.136116
\(561\) −3620.89 −0.272503
\(562\) 22006.5 1.65176
\(563\) 654.698 0.0490093 0.0245046 0.999700i \(-0.492199\pi\)
0.0245046 + 0.999700i \(0.492199\pi\)
\(564\) 372.143 0.0277838
\(565\) −2373.21 −0.176711
\(566\) −7332.09 −0.544507
\(567\) −3973.51 −0.294306
\(568\) 9543.13 0.704966
\(569\) −4848.16 −0.357198 −0.178599 0.983922i \(-0.557156\pi\)
−0.178599 + 0.983922i \(0.557156\pi\)
\(570\) 350.673 0.0257686
\(571\) −1580.00 −0.115798 −0.0578991 0.998322i \(-0.518440\pi\)
−0.0578991 + 0.998322i \(0.518440\pi\)
\(572\) 546.940 0.0399802
\(573\) 3074.51 0.224153
\(574\) 11638.1 0.846283
\(575\) 2630.96 0.190815
\(576\) 375.939 0.0271947
\(577\) −7858.33 −0.566978 −0.283489 0.958975i \(-0.591492\pi\)
−0.283489 + 0.958975i \(0.591492\pi\)
\(578\) −16903.7 −1.21644
\(579\) 10022.1 0.719352
\(580\) −1633.32 −0.116931
\(581\) −5774.25 −0.412317
\(582\) 27790.0 1.97926
\(583\) −21540.9 −1.53024
\(584\) 10424.0 0.738608
\(585\) −34.4126 −0.00243211
\(586\) 4440.63 0.313039
\(587\) −24973.6 −1.75600 −0.878001 0.478660i \(-0.841123\pi\)
−0.878001 + 0.478660i \(0.841123\pi\)
\(588\) −1135.31 −0.0796246
\(589\) −618.938 −0.0432986
\(590\) −2283.33 −0.159327
\(591\) −16640.3 −1.15819
\(592\) 17358.6 1.20512
\(593\) −12820.2 −0.887796 −0.443898 0.896077i \(-0.646405\pi\)
−0.443898 + 0.896077i \(0.646405\pi\)
\(594\) −28489.7 −1.96793
\(595\) 334.018 0.0230141
\(596\) 6749.54 0.463879
\(597\) 3021.69 0.207152
\(598\) 173.569 0.0118692
\(599\) 11113.4 0.758067 0.379034 0.925383i \(-0.376257\pi\)
0.379034 + 0.925383i \(0.376257\pi\)
\(600\) −5894.39 −0.401062
\(601\) 27135.9 1.84176 0.920880 0.389845i \(-0.127471\pi\)
0.920880 + 0.389845i \(0.127471\pi\)
\(602\) 3733.18 0.252746
\(603\) 4089.28 0.276166
\(604\) −7067.65 −0.476123
\(605\) −4725.66 −0.317563
\(606\) 2580.70 0.172993
\(607\) −16202.8 −1.08345 −0.541724 0.840556i \(-0.682228\pi\)
−0.541724 + 0.840556i \(0.682228\pi\)
\(608\) −1255.62 −0.0837532
\(609\) −3327.23 −0.221390
\(610\) −3192.27 −0.211887
\(611\) 33.6903 0.00223071
\(612\) 364.764 0.0240927
\(613\) 11802.4 0.777645 0.388822 0.921313i \(-0.372882\pi\)
0.388822 + 0.921313i \(0.372882\pi\)
\(614\) −9154.80 −0.601723
\(615\) 7054.56 0.462548
\(616\) 4059.39 0.265515
\(617\) −26758.7 −1.74597 −0.872986 0.487746i \(-0.837819\pi\)
−0.872986 + 0.487746i \(0.837819\pi\)
\(618\) −10533.9 −0.685657
\(619\) −2640.23 −0.171438 −0.0857189 0.996319i \(-0.527319\pi\)
−0.0857189 + 0.996319i \(0.527319\pi\)
\(620\) 1561.09 0.101121
\(621\) −3453.22 −0.223145
\(622\) 14120.7 0.910270
\(623\) 2595.71 0.166926
\(624\) −777.656 −0.0498897
\(625\) 11758.7 0.752555
\(626\) 30934.1 1.97504
\(627\) 1578.20 0.100522
\(628\) 14680.3 0.932815
\(629\) 3214.35 0.203759
\(630\) 413.177 0.0261292
\(631\) 2832.03 0.178671 0.0893354 0.996002i \(-0.471526\pi\)
0.0893354 + 0.996002i \(0.471526\pi\)
\(632\) 1642.52 0.103379
\(633\) −2497.39 −0.156812
\(634\) 4782.15 0.299564
\(635\) −3901.90 −0.243846
\(636\) −9462.84 −0.589978
\(637\) −102.780 −0.00639291
\(638\) −19245.4 −1.19425
\(639\) 4371.46 0.270630
\(640\) −4249.86 −0.262485
\(641\) −28217.3 −1.73872 −0.869359 0.494181i \(-0.835468\pi\)
−0.869359 + 0.494181i \(0.835468\pi\)
\(642\) 278.223 0.0171037
\(643\) 21931.3 1.34508 0.672539 0.740062i \(-0.265204\pi\)
0.672539 + 0.740062i \(0.265204\pi\)
\(644\) −795.964 −0.0487040
\(645\) 2262.90 0.138142
\(646\) −336.505 −0.0204948
\(647\) 8915.68 0.541749 0.270874 0.962615i \(-0.412687\pi\)
0.270874 + 0.962615i \(0.412687\pi\)
\(648\) 6241.35 0.378370
\(649\) −10276.1 −0.621529
\(650\) 863.238 0.0520907
\(651\) 3180.10 0.191456
\(652\) −3191.48 −0.191699
\(653\) 28323.0 1.69735 0.848673 0.528918i \(-0.177402\pi\)
0.848673 + 0.528918i \(0.177402\pi\)
\(654\) 4090.27 0.244560
\(655\) 5220.05 0.311396
\(656\) −36557.8 −2.17583
\(657\) 4774.95 0.283544
\(658\) −404.504 −0.0239654
\(659\) 15096.9 0.892400 0.446200 0.894933i \(-0.352777\pi\)
0.446200 + 0.894933i \(0.352777\pi\)
\(660\) −3980.56 −0.234762
\(661\) −30098.5 −1.77110 −0.885549 0.464546i \(-0.846218\pi\)
−0.885549 + 0.464546i \(0.846218\pi\)
\(662\) −16116.1 −0.946175
\(663\) −144.001 −0.00843522
\(664\) 9069.86 0.530089
\(665\) −145.586 −0.00848958
\(666\) 3976.11 0.231338
\(667\) −2332.72 −0.135417
\(668\) −17698.9 −1.02514
\(669\) −5039.07 −0.291213
\(670\) 9514.95 0.548648
\(671\) −14366.8 −0.826564
\(672\) 6451.35 0.370336
\(673\) −642.804 −0.0368176 −0.0184088 0.999831i \(-0.505860\pi\)
−0.0184088 + 0.999831i \(0.505860\pi\)
\(674\) 21751.1 1.24306
\(675\) −17174.4 −0.979325
\(676\) −10839.9 −0.616747
\(677\) 29128.6 1.65363 0.826813 0.562477i \(-0.190151\pi\)
0.826813 + 0.562477i \(0.190151\pi\)
\(678\) −12284.3 −0.695834
\(679\) −11537.3 −0.652079
\(680\) −524.656 −0.0295877
\(681\) −24678.5 −1.38867
\(682\) 18394.4 1.03278
\(683\) 10168.8 0.569692 0.284846 0.958573i \(-0.408057\pi\)
0.284846 + 0.958573i \(0.408057\pi\)
\(684\) −158.987 −0.00888744
\(685\) 8981.10 0.500949
\(686\) 1234.03 0.0686816
\(687\) −798.273 −0.0443319
\(688\) −11726.7 −0.649820
\(689\) −856.674 −0.0473682
\(690\) −1263.21 −0.0696952
\(691\) 5.34100 0.000294039 0 0.000147020 1.00000i \(-0.499953\pi\)
0.000147020 1.00000i \(0.499953\pi\)
\(692\) 7653.40 0.420432
\(693\) 1859.50 0.101929
\(694\) 3479.72 0.190329
\(695\) 7205.60 0.393272
\(696\) 5226.22 0.284626
\(697\) −6769.53 −0.367883
\(698\) −10087.8 −0.547031
\(699\) −25228.6 −1.36514
\(700\) −3958.70 −0.213749
\(701\) −32821.1 −1.76838 −0.884192 0.467124i \(-0.845290\pi\)
−0.884192 + 0.467124i \(0.845290\pi\)
\(702\) −1133.03 −0.0609164
\(703\) −1401.01 −0.0751637
\(704\) 3936.75 0.210756
\(705\) −245.194 −0.0130986
\(706\) −24705.8 −1.31702
\(707\) −1071.41 −0.0569934
\(708\) −4514.26 −0.239627
\(709\) 29044.4 1.53848 0.769242 0.638957i \(-0.220634\pi\)
0.769242 + 0.638957i \(0.220634\pi\)
\(710\) 10171.5 0.537649
\(711\) 752.395 0.0396864
\(712\) −4077.18 −0.214605
\(713\) 2229.57 0.117108
\(714\) 1728.96 0.0906229
\(715\) −360.361 −0.0188486
\(716\) −3888.69 −0.202971
\(717\) 25481.6 1.32724
\(718\) −14474.8 −0.752358
\(719\) 13087.0 0.678810 0.339405 0.940640i \(-0.389774\pi\)
0.339405 + 0.940640i \(0.389774\pi\)
\(720\) −1297.87 −0.0671790
\(721\) 4373.27 0.225893
\(722\) −24530.4 −1.26444
\(723\) −5591.53 −0.287623
\(724\) 15783.9 0.810227
\(725\) −11601.7 −0.594313
\(726\) −24461.2 −1.25047
\(727\) 26656.1 1.35986 0.679931 0.733276i \(-0.262010\pi\)
0.679931 + 0.733276i \(0.262010\pi\)
\(728\) 161.441 0.00821894
\(729\) 21857.1 1.11045
\(730\) 11110.4 0.563307
\(731\) −2171.47 −0.109870
\(732\) −6311.28 −0.318677
\(733\) −8999.08 −0.453463 −0.226732 0.973957i \(-0.572804\pi\)
−0.226732 + 0.973957i \(0.572804\pi\)
\(734\) 15400.9 0.774466
\(735\) 748.019 0.0375389
\(736\) 4523.04 0.226524
\(737\) 42822.0 2.14026
\(738\) −8373.84 −0.417677
\(739\) −26287.2 −1.30851 −0.654257 0.756273i \(-0.727018\pi\)
−0.654257 + 0.756273i \(0.727018\pi\)
\(740\) 3533.64 0.175539
\(741\) 62.7647 0.00311163
\(742\) 10285.7 0.508895
\(743\) −13784.3 −0.680615 −0.340308 0.940314i \(-0.610531\pi\)
−0.340308 + 0.940314i \(0.610531\pi\)
\(744\) −4995.11 −0.246142
\(745\) −4447.06 −0.218695
\(746\) −19726.2 −0.968131
\(747\) 4154.67 0.203496
\(748\) 3819.73 0.186716
\(749\) −115.507 −0.00563490
\(750\) −13147.8 −0.640121
\(751\) −34412.8 −1.67209 −0.836046 0.548660i \(-0.815138\pi\)
−0.836046 + 0.548660i \(0.815138\pi\)
\(752\) 1270.63 0.0616158
\(753\) 11844.9 0.573244
\(754\) −765.384 −0.0369677
\(755\) 4656.65 0.224468
\(756\) 5195.92 0.249965
\(757\) −1047.44 −0.0502905 −0.0251453 0.999684i \(-0.508005\pi\)
−0.0251453 + 0.999684i \(0.508005\pi\)
\(758\) −5646.24 −0.270555
\(759\) −5685.09 −0.271878
\(760\) 228.678 0.0109145
\(761\) −29611.6 −1.41054 −0.705269 0.708940i \(-0.749174\pi\)
−0.705269 + 0.708940i \(0.749174\pi\)
\(762\) −20197.2 −0.960194
\(763\) −1698.12 −0.0805714
\(764\) −3243.35 −0.153587
\(765\) −240.332 −0.0113585
\(766\) 25795.7 1.21676
\(767\) −408.677 −0.0192392
\(768\) −24796.8 −1.16507
\(769\) 33154.6 1.55473 0.777364 0.629051i \(-0.216556\pi\)
0.777364 + 0.629051i \(0.216556\pi\)
\(770\) 4326.70 0.202498
\(771\) 3314.52 0.154824
\(772\) −10572.5 −0.492892
\(773\) 27270.2 1.26887 0.634437 0.772975i \(-0.281232\pi\)
0.634437 + 0.772975i \(0.281232\pi\)
\(774\) −2686.09 −0.124741
\(775\) 11088.7 0.513957
\(776\) 18122.1 0.838334
\(777\) 7198.39 0.332356
\(778\) −37159.2 −1.71237
\(779\) 2950.58 0.135707
\(780\) −158.305 −0.00726698
\(781\) 45777.0 2.09735
\(782\) 1212.18 0.0554313
\(783\) 15227.6 0.695007
\(784\) −3876.35 −0.176583
\(785\) −9672.39 −0.439774
\(786\) 27020.3 1.22618
\(787\) 26185.8 1.18605 0.593026 0.805183i \(-0.297933\pi\)
0.593026 + 0.805183i \(0.297933\pi\)
\(788\) 17554.2 0.793580
\(789\) −20543.5 −0.926957
\(790\) 1750.67 0.0788433
\(791\) 5099.96 0.229246
\(792\) −2920.80 −0.131043
\(793\) −571.363 −0.0255860
\(794\) −23775.1 −1.06265
\(795\) 6234.77 0.278144
\(796\) −3187.63 −0.141938
\(797\) 78.4109 0.00348489 0.00174244 0.999998i \(-0.499445\pi\)
0.00174244 + 0.999998i \(0.499445\pi\)
\(798\) −753.588 −0.0334295
\(799\) 235.287 0.0104178
\(800\) 22495.2 0.994155
\(801\) −1867.65 −0.0823849
\(802\) 31454.3 1.38490
\(803\) 50002.3 2.19744
\(804\) 18811.6 0.825165
\(805\) 524.436 0.0229614
\(806\) 731.538 0.0319694
\(807\) −30237.2 −1.31896
\(808\) 1682.90 0.0732726
\(809\) 10096.4 0.438778 0.219389 0.975637i \(-0.429594\pi\)
0.219389 + 0.975637i \(0.429594\pi\)
\(810\) 6652.35 0.288567
\(811\) −15893.9 −0.688175 −0.344087 0.938938i \(-0.611812\pi\)
−0.344087 + 0.938938i \(0.611812\pi\)
\(812\) 3509.95 0.151694
\(813\) 34840.9 1.50298
\(814\) 41637.0 1.79285
\(815\) 2102.76 0.0903762
\(816\) −5431.02 −0.232995
\(817\) 946.462 0.0405294
\(818\) −36950.8 −1.57941
\(819\) 73.9518 0.00315517
\(820\) −7441.97 −0.316933
\(821\) −19073.2 −0.810791 −0.405395 0.914141i \(-0.632866\pi\)
−0.405395 + 0.914141i \(0.632866\pi\)
\(822\) 46488.4 1.97259
\(823\) 44059.6 1.86612 0.933062 0.359716i \(-0.117126\pi\)
0.933062 + 0.359716i \(0.117126\pi\)
\(824\) −6869.28 −0.290416
\(825\) −28274.6 −1.19320
\(826\) 4906.81 0.206695
\(827\) 6393.67 0.268839 0.134419 0.990925i \(-0.457083\pi\)
0.134419 + 0.990925i \(0.457083\pi\)
\(828\) 572.710 0.0240375
\(829\) −22741.4 −0.952762 −0.476381 0.879239i \(-0.658052\pi\)
−0.476381 + 0.879239i \(0.658052\pi\)
\(830\) 9667.11 0.404278
\(831\) 20901.3 0.872511
\(832\) 156.563 0.00652387
\(833\) −717.797 −0.0298562
\(834\) 37298.0 1.54859
\(835\) 11661.3 0.483299
\(836\) −1664.87 −0.0688767
\(837\) −14554.2 −0.601037
\(838\) −734.139 −0.0302630
\(839\) −12609.1 −0.518851 −0.259426 0.965763i \(-0.583533\pi\)
−0.259426 + 0.965763i \(0.583533\pi\)
\(840\) −1174.94 −0.0482612
\(841\) −14102.4 −0.578229
\(842\) 44967.8 1.84049
\(843\) −28666.1 −1.17119
\(844\) 2634.54 0.107446
\(845\) 7142.10 0.290764
\(846\) 291.048 0.0118279
\(847\) 10155.3 0.411973
\(848\) −32309.5 −1.30839
\(849\) 9550.92 0.386086
\(850\) 6028.70 0.243274
\(851\) 5046.79 0.203292
\(852\) 20109.7 0.808622
\(853\) −2992.93 −0.120136 −0.0600680 0.998194i \(-0.519132\pi\)
−0.0600680 + 0.998194i \(0.519132\pi\)
\(854\) 6860.10 0.274880
\(855\) 104.751 0.00418997
\(856\) 181.432 0.00724441
\(857\) 31106.6 1.23988 0.619942 0.784648i \(-0.287156\pi\)
0.619942 + 0.784648i \(0.287156\pi\)
\(858\) −1865.32 −0.0742203
\(859\) −11227.2 −0.445946 −0.222973 0.974825i \(-0.571576\pi\)
−0.222973 + 0.974825i \(0.571576\pi\)
\(860\) −2387.17 −0.0946534
\(861\) −15160.1 −0.600062
\(862\) −40065.8 −1.58312
\(863\) 37362.5 1.47374 0.736869 0.676036i \(-0.236303\pi\)
0.736869 + 0.676036i \(0.236303\pi\)
\(864\) −29525.6 −1.16259
\(865\) −5042.59 −0.198212
\(866\) −25790.9 −1.01202
\(867\) 22019.1 0.862525
\(868\) −3354.74 −0.131183
\(869\) 7878.91 0.307565
\(870\) 5570.37 0.217073
\(871\) 1703.02 0.0662509
\(872\) 2667.30 0.103585
\(873\) 8301.29 0.321828
\(874\) −528.341 −0.0204478
\(875\) 5458.46 0.210891
\(876\) 21965.8 0.847210
\(877\) 2132.02 0.0820904 0.0410452 0.999157i \(-0.486931\pi\)
0.0410452 + 0.999157i \(0.486931\pi\)
\(878\) 29886.7 1.14878
\(879\) −5784.44 −0.221962
\(880\) −13591.0 −0.520630
\(881\) −18579.6 −0.710514 −0.355257 0.934769i \(-0.615607\pi\)
−0.355257 + 0.934769i \(0.615607\pi\)
\(882\) −887.907 −0.0338973
\(883\) −41495.9 −1.58148 −0.790740 0.612152i \(-0.790304\pi\)
−0.790740 + 0.612152i \(0.790304\pi\)
\(884\) 151.909 0.00577972
\(885\) 2974.30 0.112972
\(886\) −42538.9 −1.61300
\(887\) 10693.1 0.404780 0.202390 0.979305i \(-0.435129\pi\)
0.202390 + 0.979305i \(0.435129\pi\)
\(888\) −11306.8 −0.427288
\(889\) 8385.09 0.316341
\(890\) −4345.67 −0.163671
\(891\) 29938.9 1.12569
\(892\) 5315.80 0.199536
\(893\) −102.553 −0.00384299
\(894\) −23019.1 −0.861156
\(895\) 2562.13 0.0956902
\(896\) 9132.84 0.340521
\(897\) −226.094 −0.00841590
\(898\) 23054.1 0.856709
\(899\) −9831.70 −0.364745
\(900\) 2848.35 0.105494
\(901\) −5982.87 −0.221219
\(902\) −87689.1 −3.23695
\(903\) −4862.92 −0.179211
\(904\) −8010.72 −0.294726
\(905\) −10399.5 −0.381980
\(906\) 24104.0 0.883887
\(907\) 2676.02 0.0979665 0.0489833 0.998800i \(-0.484402\pi\)
0.0489833 + 0.998800i \(0.484402\pi\)
\(908\) 26033.8 0.951499
\(909\) 770.894 0.0281287
\(910\) 172.071 0.00626826
\(911\) −8827.86 −0.321054 −0.160527 0.987031i \(-0.551319\pi\)
−0.160527 + 0.987031i \(0.551319\pi\)
\(912\) 2367.17 0.0859484
\(913\) 43506.8 1.57707
\(914\) −4513.26 −0.163332
\(915\) 4158.31 0.150240
\(916\) 842.111 0.0303757
\(917\) −11217.7 −0.403972
\(918\) −7912.87 −0.284492
\(919\) −36542.5 −1.31167 −0.655836 0.754903i \(-0.727684\pi\)
−0.655836 + 0.754903i \(0.727684\pi\)
\(920\) −823.754 −0.0295200
\(921\) 11925.2 0.426655
\(922\) 30360.3 1.08445
\(923\) 1820.54 0.0649228
\(924\) 8554.12 0.304556
\(925\) 25100.0 0.892198
\(926\) −15013.3 −0.532795
\(927\) −3146.64 −0.111488
\(928\) −19945.2 −0.705531
\(929\) −44400.7 −1.56807 −0.784036 0.620715i \(-0.786842\pi\)
−0.784036 + 0.620715i \(0.786842\pi\)
\(930\) −5324.04 −0.187723
\(931\) 312.860 0.0110135
\(932\) 26614.1 0.935378
\(933\) −18393.9 −0.645433
\(934\) −3790.28 −0.132786
\(935\) −2516.70 −0.0880267
\(936\) −116.159 −0.00405639
\(937\) −16762.4 −0.584422 −0.292211 0.956354i \(-0.594391\pi\)
−0.292211 + 0.956354i \(0.594391\pi\)
\(938\) −20447.4 −0.711760
\(939\) −40295.4 −1.40041
\(940\) 258.659 0.00897502
\(941\) 9953.32 0.344813 0.172406 0.985026i \(-0.444846\pi\)
0.172406 + 0.985026i \(0.444846\pi\)
\(942\) −50066.7 −1.73170
\(943\) −10628.7 −0.367040
\(944\) −15413.3 −0.531419
\(945\) −3423.43 −0.117846
\(946\) −28128.2 −0.966729
\(947\) 25529.1 0.876013 0.438006 0.898972i \(-0.355685\pi\)
0.438006 + 0.898972i \(0.355685\pi\)
\(948\) 3461.18 0.118580
\(949\) 1988.57 0.0680209
\(950\) −2627.68 −0.0897402
\(951\) −6229.32 −0.212408
\(952\) 1127.47 0.0383841
\(953\) −10158.3 −0.345287 −0.172644 0.984984i \(-0.555231\pi\)
−0.172644 + 0.984984i \(0.555231\pi\)
\(954\) −7400.74 −0.251161
\(955\) 2136.94 0.0724082
\(956\) −26881.0 −0.909407
\(957\) 25069.5 0.846793
\(958\) −22699.0 −0.765525
\(959\) −19300.2 −0.649880
\(960\) −1139.45 −0.0383079
\(961\) −20394.1 −0.684572
\(962\) 1655.89 0.0554969
\(963\) 83.1094 0.00278106
\(964\) 5898.60 0.197076
\(965\) 6965.89 0.232373
\(966\) 2714.61 0.0904153
\(967\) −15351.4 −0.510513 −0.255257 0.966873i \(-0.582160\pi\)
−0.255257 + 0.966873i \(0.582160\pi\)
\(968\) −15951.4 −0.529646
\(969\) 438.338 0.0145319
\(970\) 19315.5 0.639364
\(971\) 30905.9 1.02144 0.510720 0.859747i \(-0.329379\pi\)
0.510720 + 0.859747i \(0.329379\pi\)
\(972\) −6889.34 −0.227341
\(973\) −15484.7 −0.510190
\(974\) −19047.2 −0.626603
\(975\) −1124.47 −0.0369352
\(976\) −21549.0 −0.706727
\(977\) −7476.01 −0.244809 −0.122405 0.992480i \(-0.539061\pi\)
−0.122405 + 0.992480i \(0.539061\pi\)
\(978\) 10884.4 0.355875
\(979\) −19557.7 −0.638474
\(980\) −789.097 −0.0257212
\(981\) 1221.82 0.0397654
\(982\) 14500.6 0.471216
\(983\) 6166.16 0.200071 0.100036 0.994984i \(-0.468104\pi\)
0.100036 + 0.994984i \(0.468104\pi\)
\(984\) 23812.5 0.771460
\(985\) −11565.9 −0.374132
\(986\) −5345.31 −0.172647
\(987\) 526.915 0.0169928
\(988\) −66.2115 −0.00213205
\(989\) −3409.39 −0.109618
\(990\) −3113.13 −0.0999413
\(991\) −34122.5 −1.09378 −0.546891 0.837204i \(-0.684189\pi\)
−0.546891 + 0.837204i \(0.684189\pi\)
\(992\) 19063.2 0.610138
\(993\) 20993.1 0.670891
\(994\) −21858.4 −0.697491
\(995\) 2100.23 0.0669164
\(996\) 19112.4 0.608032
\(997\) −54763.7 −1.73960 −0.869801 0.493403i \(-0.835753\pi\)
−0.869801 + 0.493403i \(0.835753\pi\)
\(998\) 2856.56 0.0906040
\(999\) −32944.6 −1.04336
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 161.4.a.a.1.5 5
3.2 odd 2 1449.4.a.e.1.1 5
7.6 odd 2 1127.4.a.d.1.5 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
161.4.a.a.1.5 5 1.1 even 1 trivial
1127.4.a.d.1.5 5 7.6 odd 2
1449.4.a.e.1.1 5 3.2 odd 2