Properties

Label 161.4.a.a.1.4
Level $161$
Weight $4$
Character 161.1
Self dual yes
Analytic conductor $9.499$
Analytic rank $1$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [161,4,Mod(1,161)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(161, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("161.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 161 = 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 161.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(9.49930751092\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 18x^{3} - 4x^{2} + 44x + 24 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(1.74375\) of defining polynomial
Character \(\chi\) \(=\) 161.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.743749 q^{2} +0.765559 q^{3} -7.44684 q^{4} +3.68128 q^{5} +0.569384 q^{6} +7.00000 q^{7} -11.4886 q^{8} -26.4139 q^{9} +2.73795 q^{10} -1.75087 q^{11} -5.70100 q^{12} -35.3722 q^{13} +5.20625 q^{14} +2.81824 q^{15} +51.0301 q^{16} -72.1754 q^{17} -19.6453 q^{18} -104.019 q^{19} -27.4139 q^{20} +5.35892 q^{21} -1.30221 q^{22} -23.0000 q^{23} -8.79519 q^{24} -111.448 q^{25} -26.3080 q^{26} -40.8915 q^{27} -52.1279 q^{28} -33.5283 q^{29} +2.09606 q^{30} +39.4051 q^{31} +129.862 q^{32} -1.34039 q^{33} -53.6804 q^{34} +25.7689 q^{35} +196.700 q^{36} +276.575 q^{37} -77.3642 q^{38} -27.0795 q^{39} -42.2926 q^{40} -357.944 q^{41} +3.98569 q^{42} +63.6398 q^{43} +13.0384 q^{44} -97.2370 q^{45} -17.1062 q^{46} +483.948 q^{47} +39.0665 q^{48} +49.0000 q^{49} -82.8895 q^{50} -55.2545 q^{51} +263.411 q^{52} -535.285 q^{53} -30.4130 q^{54} -6.44544 q^{55} -80.4200 q^{56} -79.6329 q^{57} -24.9366 q^{58} +82.9537 q^{59} -20.9869 q^{60} +598.451 q^{61} +29.3075 q^{62} -184.897 q^{63} -311.656 q^{64} -130.215 q^{65} -0.996918 q^{66} -748.468 q^{67} +537.478 q^{68} -17.6079 q^{69} +19.1656 q^{70} +707.079 q^{71} +303.458 q^{72} +954.119 q^{73} +205.703 q^{74} -85.3202 q^{75} +774.614 q^{76} -12.2561 q^{77} -20.1404 q^{78} +272.311 q^{79} +187.856 q^{80} +681.871 q^{81} -266.221 q^{82} -505.317 q^{83} -39.9070 q^{84} -265.698 q^{85} +47.3321 q^{86} -25.6679 q^{87} +20.1150 q^{88} -297.219 q^{89} -72.3199 q^{90} -247.605 q^{91} +171.277 q^{92} +30.1669 q^{93} +359.936 q^{94} -382.924 q^{95} +99.4172 q^{96} -634.517 q^{97} +36.4437 q^{98} +46.2473 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 4 q^{2} - 11 q^{3} - 4 q^{5} + 35 q^{7} + 18 q^{8} + 14 q^{9} + 26 q^{10} - 36 q^{11} - 28 q^{12} - 69 q^{13} - 28 q^{14} - 88 q^{15} - 124 q^{16} - 42 q^{17} - 94 q^{18} - 140 q^{19} - 168 q^{20}+ \cdots - 990 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.743749 0.262955 0.131478 0.991319i \(-0.458028\pi\)
0.131478 + 0.991319i \(0.458028\pi\)
\(3\) 0.765559 0.147332 0.0736660 0.997283i \(-0.476530\pi\)
0.0736660 + 0.997283i \(0.476530\pi\)
\(4\) −7.44684 −0.930855
\(5\) 3.68128 0.329263 0.164632 0.986355i \(-0.447356\pi\)
0.164632 + 0.986355i \(0.447356\pi\)
\(6\) 0.569384 0.0387417
\(7\) 7.00000 0.377964
\(8\) −11.4886 −0.507728
\(9\) −26.4139 −0.978293
\(10\) 2.73795 0.0865815
\(11\) −1.75087 −0.0479915 −0.0239958 0.999712i \(-0.507639\pi\)
−0.0239958 + 0.999712i \(0.507639\pi\)
\(12\) −5.70100 −0.137145
\(13\) −35.3722 −0.754652 −0.377326 0.926080i \(-0.623156\pi\)
−0.377326 + 0.926080i \(0.623156\pi\)
\(14\) 5.20625 0.0993877
\(15\) 2.81824 0.0485110
\(16\) 51.0301 0.797345
\(17\) −72.1754 −1.02971 −0.514856 0.857277i \(-0.672155\pi\)
−0.514856 + 0.857277i \(0.672155\pi\)
\(18\) −19.6453 −0.257247
\(19\) −104.019 −1.25598 −0.627991 0.778221i \(-0.716122\pi\)
−0.627991 + 0.778221i \(0.716122\pi\)
\(20\) −27.4139 −0.306496
\(21\) 5.35892 0.0556862
\(22\) −1.30221 −0.0126196
\(23\) −23.0000 −0.208514
\(24\) −8.79519 −0.0748046
\(25\) −111.448 −0.891586
\(26\) −26.3080 −0.198440
\(27\) −40.8915 −0.291466
\(28\) −52.1279 −0.351830
\(29\) −33.5283 −0.214691 −0.107346 0.994222i \(-0.534235\pi\)
−0.107346 + 0.994222i \(0.534235\pi\)
\(30\) 2.09606 0.0127562
\(31\) 39.4051 0.228302 0.114151 0.993463i \(-0.463585\pi\)
0.114151 + 0.993463i \(0.463585\pi\)
\(32\) 129.862 0.717394
\(33\) −1.34039 −0.00707069
\(34\) −53.6804 −0.270768
\(35\) 25.7689 0.124450
\(36\) 196.700 0.910649
\(37\) 276.575 1.22888 0.614442 0.788962i \(-0.289381\pi\)
0.614442 + 0.788962i \(0.289381\pi\)
\(38\) −77.3642 −0.330267
\(39\) −27.0795 −0.111184
\(40\) −42.2926 −0.167176
\(41\) −357.944 −1.36345 −0.681725 0.731608i \(-0.738770\pi\)
−0.681725 + 0.731608i \(0.738770\pi\)
\(42\) 3.98569 0.0146430
\(43\) 63.6398 0.225697 0.112849 0.993612i \(-0.464002\pi\)
0.112849 + 0.993612i \(0.464002\pi\)
\(44\) 13.0384 0.0446732
\(45\) −97.2370 −0.322116
\(46\) −17.1062 −0.0548299
\(47\) 483.948 1.50194 0.750969 0.660338i \(-0.229587\pi\)
0.750969 + 0.660338i \(0.229587\pi\)
\(48\) 39.0665 0.117474
\(49\) 49.0000 0.142857
\(50\) −82.8895 −0.234447
\(51\) −55.2545 −0.151709
\(52\) 263.411 0.702471
\(53\) −535.285 −1.38730 −0.693652 0.720310i \(-0.743999\pi\)
−0.693652 + 0.720310i \(0.743999\pi\)
\(54\) −30.4130 −0.0766424
\(55\) −6.44544 −0.0158019
\(56\) −80.4200 −0.191903
\(57\) −79.6329 −0.185046
\(58\) −24.9366 −0.0564542
\(59\) 82.9537 0.183045 0.0915225 0.995803i \(-0.470827\pi\)
0.0915225 + 0.995803i \(0.470827\pi\)
\(60\) −20.9869 −0.0451567
\(61\) 598.451 1.25613 0.628063 0.778162i \(-0.283848\pi\)
0.628063 + 0.778162i \(0.283848\pi\)
\(62\) 29.3075 0.0600332
\(63\) −184.897 −0.369760
\(64\) −311.656 −0.608702
\(65\) −130.215 −0.248479
\(66\) −0.996918 −0.00185927
\(67\) −748.468 −1.36477 −0.682387 0.730991i \(-0.739058\pi\)
−0.682387 + 0.730991i \(0.739058\pi\)
\(68\) 537.478 0.958512
\(69\) −17.6079 −0.0307208
\(70\) 19.1656 0.0327247
\(71\) 707.079 1.18190 0.590950 0.806708i \(-0.298753\pi\)
0.590950 + 0.806708i \(0.298753\pi\)
\(72\) 303.458 0.496707
\(73\) 954.119 1.52974 0.764871 0.644183i \(-0.222803\pi\)
0.764871 + 0.644183i \(0.222803\pi\)
\(74\) 205.703 0.323142
\(75\) −85.3202 −0.131359
\(76\) 774.614 1.16914
\(77\) −12.2561 −0.0181391
\(78\) −20.1404 −0.0292365
\(79\) 272.311 0.387815 0.193907 0.981020i \(-0.437884\pi\)
0.193907 + 0.981020i \(0.437884\pi\)
\(80\) 187.856 0.262537
\(81\) 681.871 0.935351
\(82\) −266.221 −0.358526
\(83\) −505.317 −0.668262 −0.334131 0.942527i \(-0.608443\pi\)
−0.334131 + 0.942527i \(0.608443\pi\)
\(84\) −39.9070 −0.0518358
\(85\) −265.698 −0.339047
\(86\) 47.3321 0.0593482
\(87\) −25.6679 −0.0316309
\(88\) 20.1150 0.0243667
\(89\) −297.219 −0.353990 −0.176995 0.984212i \(-0.556638\pi\)
−0.176995 + 0.984212i \(0.556638\pi\)
\(90\) −72.3199 −0.0847021
\(91\) −247.605 −0.285232
\(92\) 171.277 0.194097
\(93\) 30.1669 0.0336362
\(94\) 359.936 0.394942
\(95\) −382.924 −0.413549
\(96\) 99.4172 0.105695
\(97\) −634.517 −0.664180 −0.332090 0.943248i \(-0.607754\pi\)
−0.332090 + 0.943248i \(0.607754\pi\)
\(98\) 36.4437 0.0375650
\(99\) 46.2473 0.0469498
\(100\) 829.937 0.829937
\(101\) 1277.73 1.25880 0.629400 0.777082i \(-0.283301\pi\)
0.629400 + 0.777082i \(0.283301\pi\)
\(102\) −41.0955 −0.0398928
\(103\) −791.108 −0.756798 −0.378399 0.925643i \(-0.623525\pi\)
−0.378399 + 0.925643i \(0.623525\pi\)
\(104\) 406.376 0.383158
\(105\) 19.7277 0.0183354
\(106\) −398.118 −0.364799
\(107\) −291.571 −0.263433 −0.131716 0.991287i \(-0.542049\pi\)
−0.131716 + 0.991287i \(0.542049\pi\)
\(108\) 304.512 0.271312
\(109\) −11.7810 −0.0103524 −0.00517621 0.999987i \(-0.501648\pi\)
−0.00517621 + 0.999987i \(0.501648\pi\)
\(110\) −4.79379 −0.00415518
\(111\) 211.735 0.181054
\(112\) 357.210 0.301368
\(113\) −1776.98 −1.47933 −0.739665 0.672976i \(-0.765016\pi\)
−0.739665 + 0.672976i \(0.765016\pi\)
\(114\) −59.2269 −0.0486588
\(115\) −84.6694 −0.0686562
\(116\) 249.680 0.199846
\(117\) 934.318 0.738271
\(118\) 61.6968 0.0481326
\(119\) −505.228 −0.389195
\(120\) −32.3775 −0.0246304
\(121\) −1327.93 −0.997697
\(122\) 445.097 0.330305
\(123\) −274.027 −0.200880
\(124\) −293.443 −0.212516
\(125\) −870.431 −0.622830
\(126\) −137.517 −0.0972303
\(127\) −1909.68 −1.33431 −0.667153 0.744921i \(-0.732487\pi\)
−0.667153 + 0.744921i \(0.732487\pi\)
\(128\) −1270.69 −0.877456
\(129\) 48.7200 0.0332524
\(130\) −96.8472 −0.0653389
\(131\) −40.3906 −0.0269385 −0.0134693 0.999909i \(-0.504288\pi\)
−0.0134693 + 0.999909i \(0.504288\pi\)
\(132\) 9.98170 0.00658178
\(133\) −728.134 −0.474716
\(134\) −556.672 −0.358874
\(135\) −150.533 −0.0959690
\(136\) 829.193 0.522814
\(137\) 1304.12 0.813274 0.406637 0.913590i \(-0.366701\pi\)
0.406637 + 0.913590i \(0.366701\pi\)
\(138\) −13.0958 −0.00807820
\(139\) −815.579 −0.497673 −0.248836 0.968546i \(-0.580048\pi\)
−0.248836 + 0.968546i \(0.580048\pi\)
\(140\) −191.897 −0.115845
\(141\) 370.491 0.221283
\(142\) 525.890 0.310787
\(143\) 61.9321 0.0362169
\(144\) −1347.90 −0.780037
\(145\) −123.427 −0.0706900
\(146\) 709.626 0.402254
\(147\) 37.5124 0.0210474
\(148\) −2059.61 −1.14391
\(149\) 2381.79 1.30956 0.654778 0.755821i \(-0.272762\pi\)
0.654778 + 0.755821i \(0.272762\pi\)
\(150\) −63.4569 −0.0345415
\(151\) −2417.34 −1.30279 −0.651393 0.758740i \(-0.725815\pi\)
−0.651393 + 0.758740i \(0.725815\pi\)
\(152\) 1195.03 0.637697
\(153\) 1906.44 1.00736
\(154\) −9.11546 −0.00476977
\(155\) 145.061 0.0751715
\(156\) 201.657 0.103496
\(157\) −2608.92 −1.32621 −0.663104 0.748527i \(-0.730761\pi\)
−0.663104 + 0.748527i \(0.730761\pi\)
\(158\) 202.531 0.101978
\(159\) −409.793 −0.204394
\(160\) 478.059 0.236212
\(161\) −161.000 −0.0788110
\(162\) 507.141 0.245955
\(163\) −781.664 −0.375612 −0.187806 0.982206i \(-0.560138\pi\)
−0.187806 + 0.982206i \(0.560138\pi\)
\(164\) 2665.55 1.26917
\(165\) −4.93436 −0.00232812
\(166\) −375.829 −0.175723
\(167\) −117.042 −0.0542332 −0.0271166 0.999632i \(-0.508633\pi\)
−0.0271166 + 0.999632i \(0.508633\pi\)
\(168\) −61.5663 −0.0282735
\(169\) −945.809 −0.430500
\(170\) −197.612 −0.0891540
\(171\) 2747.55 1.22872
\(172\) −473.915 −0.210091
\(173\) 1632.35 0.717369 0.358685 0.933459i \(-0.383225\pi\)
0.358685 + 0.933459i \(0.383225\pi\)
\(174\) −19.0905 −0.00831750
\(175\) −780.137 −0.336988
\(176\) −89.3470 −0.0382658
\(177\) 63.5060 0.0269684
\(178\) −221.056 −0.0930836
\(179\) −4213.76 −1.75951 −0.879753 0.475431i \(-0.842292\pi\)
−0.879753 + 0.475431i \(0.842292\pi\)
\(180\) 724.108 0.299843
\(181\) −2110.23 −0.866587 −0.433293 0.901253i \(-0.642649\pi\)
−0.433293 + 0.901253i \(0.642649\pi\)
\(182\) −184.156 −0.0750031
\(183\) 458.149 0.185068
\(184\) 264.237 0.105869
\(185\) 1018.15 0.404627
\(186\) 22.4366 0.00884481
\(187\) 126.370 0.0494175
\(188\) −3603.88 −1.39809
\(189\) −286.241 −0.110164
\(190\) −284.799 −0.108745
\(191\) 3578.43 1.35563 0.677817 0.735230i \(-0.262926\pi\)
0.677817 + 0.735230i \(0.262926\pi\)
\(192\) −238.591 −0.0896813
\(193\) −2293.68 −0.855455 −0.427727 0.903908i \(-0.640686\pi\)
−0.427727 + 0.903908i \(0.640686\pi\)
\(194\) −471.922 −0.174649
\(195\) −99.6872 −0.0366090
\(196\) −364.895 −0.132979
\(197\) 216.209 0.0781940 0.0390970 0.999235i \(-0.487552\pi\)
0.0390970 + 0.999235i \(0.487552\pi\)
\(198\) 34.3964 0.0123457
\(199\) 3761.17 1.33981 0.669905 0.742447i \(-0.266335\pi\)
0.669905 + 0.742447i \(0.266335\pi\)
\(200\) 1280.38 0.452683
\(201\) −572.996 −0.201075
\(202\) 950.310 0.331008
\(203\) −234.698 −0.0811457
\(204\) 411.472 0.141219
\(205\) −1317.69 −0.448934
\(206\) −588.386 −0.199004
\(207\) 607.520 0.203988
\(208\) −1805.04 −0.601718
\(209\) 182.124 0.0602765
\(210\) 14.6724 0.00482140
\(211\) −4232.10 −1.38080 −0.690402 0.723426i \(-0.742566\pi\)
−0.690402 + 0.723426i \(0.742566\pi\)
\(212\) 3986.18 1.29138
\(213\) 541.311 0.174132
\(214\) −216.856 −0.0692709
\(215\) 234.276 0.0743138
\(216\) 469.785 0.147985
\(217\) 275.836 0.0862900
\(218\) −8.76210 −0.00272222
\(219\) 730.435 0.225380
\(220\) 47.9981 0.0147092
\(221\) 2553.00 0.777074
\(222\) 157.478 0.0476091
\(223\) 1055.59 0.316985 0.158493 0.987360i \(-0.449337\pi\)
0.158493 + 0.987360i \(0.449337\pi\)
\(224\) 909.035 0.271149
\(225\) 2943.78 0.872232
\(226\) −1321.63 −0.388997
\(227\) 3677.25 1.07519 0.537594 0.843204i \(-0.319333\pi\)
0.537594 + 0.843204i \(0.319333\pi\)
\(228\) 593.013 0.172251
\(229\) 3094.27 0.892906 0.446453 0.894807i \(-0.352687\pi\)
0.446453 + 0.894807i \(0.352687\pi\)
\(230\) −62.9728 −0.0180535
\(231\) −9.38276 −0.00267247
\(232\) 385.192 0.109005
\(233\) 2985.42 0.839404 0.419702 0.907662i \(-0.362135\pi\)
0.419702 + 0.907662i \(0.362135\pi\)
\(234\) 694.898 0.194132
\(235\) 1781.55 0.494533
\(236\) −617.743 −0.170388
\(237\) 208.470 0.0571375
\(238\) −375.763 −0.102341
\(239\) −522.153 −0.141319 −0.0706596 0.997500i \(-0.522510\pi\)
−0.0706596 + 0.997500i \(0.522510\pi\)
\(240\) 143.815 0.0386800
\(241\) 4849.16 1.29611 0.648054 0.761594i \(-0.275583\pi\)
0.648054 + 0.761594i \(0.275583\pi\)
\(242\) −987.651 −0.262350
\(243\) 1626.08 0.429273
\(244\) −4456.56 −1.16927
\(245\) 180.383 0.0470376
\(246\) −203.808 −0.0528224
\(247\) 3679.39 0.947829
\(248\) −452.708 −0.115915
\(249\) −386.850 −0.0984564
\(250\) −647.383 −0.163776
\(251\) −1246.53 −0.313467 −0.156734 0.987641i \(-0.550096\pi\)
−0.156734 + 0.987641i \(0.550096\pi\)
\(252\) 1376.90 0.344193
\(253\) 40.2700 0.0100069
\(254\) −1420.32 −0.350862
\(255\) −203.407 −0.0499524
\(256\) 1548.17 0.377971
\(257\) 7059.92 1.71356 0.856781 0.515680i \(-0.172461\pi\)
0.856781 + 0.515680i \(0.172461\pi\)
\(258\) 36.2355 0.00874389
\(259\) 1936.03 0.464475
\(260\) 969.688 0.231298
\(261\) 885.613 0.210031
\(262\) −30.0405 −0.00708362
\(263\) −5184.11 −1.21546 −0.607730 0.794144i \(-0.707920\pi\)
−0.607730 + 0.794144i \(0.707920\pi\)
\(264\) 15.3992 0.00358999
\(265\) −1970.53 −0.456789
\(266\) −541.550 −0.124829
\(267\) −227.539 −0.0521541
\(268\) 5573.72 1.27041
\(269\) −5061.41 −1.14721 −0.573606 0.819132i \(-0.694456\pi\)
−0.573606 + 0.819132i \(0.694456\pi\)
\(270\) −111.959 −0.0252356
\(271\) −2988.65 −0.669916 −0.334958 0.942233i \(-0.608722\pi\)
−0.334958 + 0.942233i \(0.608722\pi\)
\(272\) −3683.12 −0.821036
\(273\) −189.557 −0.0420237
\(274\) 969.939 0.213855
\(275\) 195.131 0.0427886
\(276\) 131.123 0.0285966
\(277\) 5689.81 1.23418 0.617090 0.786893i \(-0.288312\pi\)
0.617090 + 0.786893i \(0.288312\pi\)
\(278\) −606.587 −0.130866
\(279\) −1040.84 −0.223346
\(280\) −296.048 −0.0631867
\(281\) −74.8343 −0.0158870 −0.00794349 0.999968i \(-0.502529\pi\)
−0.00794349 + 0.999968i \(0.502529\pi\)
\(282\) 275.552 0.0581876
\(283\) −1782.86 −0.374487 −0.187243 0.982314i \(-0.559955\pi\)
−0.187243 + 0.982314i \(0.559955\pi\)
\(284\) −5265.50 −1.10018
\(285\) −293.151 −0.0609289
\(286\) 46.0619 0.00952343
\(287\) −2505.61 −0.515336
\(288\) −3430.17 −0.701822
\(289\) 296.288 0.0603070
\(290\) −91.7987 −0.0185883
\(291\) −485.760 −0.0978549
\(292\) −7105.17 −1.42397
\(293\) 8117.63 1.61856 0.809279 0.587425i \(-0.199858\pi\)
0.809279 + 0.587425i \(0.199858\pi\)
\(294\) 27.8998 0.00553453
\(295\) 305.376 0.0602700
\(296\) −3177.46 −0.623939
\(297\) 71.5957 0.0139879
\(298\) 1771.46 0.344355
\(299\) 813.560 0.157356
\(300\) 635.366 0.122276
\(301\) 445.479 0.0853055
\(302\) −1797.90 −0.342574
\(303\) 978.177 0.185461
\(304\) −5308.11 −1.00145
\(305\) 2203.06 0.413597
\(306\) 1417.91 0.264891
\(307\) −6758.21 −1.25639 −0.628194 0.778056i \(-0.716206\pi\)
−0.628194 + 0.778056i \(0.716206\pi\)
\(308\) 91.2691 0.0168849
\(309\) −605.640 −0.111501
\(310\) 107.889 0.0197667
\(311\) 3035.80 0.553519 0.276759 0.960939i \(-0.410740\pi\)
0.276759 + 0.960939i \(0.410740\pi\)
\(312\) 311.105 0.0564514
\(313\) −9613.39 −1.73604 −0.868020 0.496529i \(-0.834608\pi\)
−0.868020 + 0.496529i \(0.834608\pi\)
\(314\) −1940.38 −0.348733
\(315\) −680.659 −0.121748
\(316\) −2027.86 −0.360999
\(317\) −3088.93 −0.547291 −0.273646 0.961831i \(-0.588230\pi\)
−0.273646 + 0.961831i \(0.588230\pi\)
\(318\) −304.783 −0.0537465
\(319\) 58.7037 0.0103034
\(320\) −1147.29 −0.200423
\(321\) −223.215 −0.0388120
\(322\) −119.744 −0.0207238
\(323\) 7507.63 1.29330
\(324\) −5077.78 −0.870676
\(325\) 3942.17 0.672837
\(326\) −581.363 −0.0987690
\(327\) −9.01905 −0.00152524
\(328\) 4112.27 0.692262
\(329\) 3387.64 0.567679
\(330\) −3.66993 −0.000612191 0
\(331\) −10197.5 −1.69336 −0.846682 0.532099i \(-0.821403\pi\)
−0.846682 + 0.532099i \(0.821403\pi\)
\(332\) 3763.01 0.622055
\(333\) −7305.44 −1.20221
\(334\) −87.0496 −0.0142609
\(335\) −2755.32 −0.449370
\(336\) 273.466 0.0444011
\(337\) 1343.64 0.217189 0.108594 0.994086i \(-0.465365\pi\)
0.108594 + 0.994086i \(0.465365\pi\)
\(338\) −703.445 −0.113202
\(339\) −1360.38 −0.217952
\(340\) 1978.61 0.315603
\(341\) −68.9932 −0.0109566
\(342\) 2043.49 0.323098
\(343\) 343.000 0.0539949
\(344\) −731.131 −0.114593
\(345\) −64.8194 −0.0101152
\(346\) 1214.06 0.188636
\(347\) 2586.63 0.400165 0.200083 0.979779i \(-0.435879\pi\)
0.200083 + 0.979779i \(0.435879\pi\)
\(348\) 191.145 0.0294438
\(349\) 1884.25 0.289002 0.144501 0.989505i \(-0.453842\pi\)
0.144501 + 0.989505i \(0.453842\pi\)
\(350\) −580.227 −0.0886126
\(351\) 1446.42 0.219955
\(352\) −227.372 −0.0344289
\(353\) −7042.58 −1.06187 −0.530933 0.847414i \(-0.678158\pi\)
−0.530933 + 0.847414i \(0.678158\pi\)
\(354\) 47.2326 0.00709148
\(355\) 2602.95 0.389156
\(356\) 2213.34 0.329514
\(357\) −386.782 −0.0573408
\(358\) −3133.98 −0.462671
\(359\) −1845.66 −0.271337 −0.135669 0.990754i \(-0.543318\pi\)
−0.135669 + 0.990754i \(0.543318\pi\)
\(360\) 1117.11 0.163547
\(361\) 3960.99 0.577489
\(362\) −1569.48 −0.227873
\(363\) −1016.61 −0.146993
\(364\) 1843.88 0.265509
\(365\) 3512.38 0.503688
\(366\) 340.748 0.0486645
\(367\) −7279.14 −1.03534 −0.517668 0.855582i \(-0.673200\pi\)
−0.517668 + 0.855582i \(0.673200\pi\)
\(368\) −1173.69 −0.166258
\(369\) 9454.70 1.33385
\(370\) 757.249 0.106399
\(371\) −3747.00 −0.524352
\(372\) −224.648 −0.0313104
\(373\) −8404.65 −1.16669 −0.583346 0.812224i \(-0.698257\pi\)
−0.583346 + 0.812224i \(0.698257\pi\)
\(374\) 93.9874 0.0129946
\(375\) −666.367 −0.0917628
\(376\) −5559.87 −0.762576
\(377\) 1185.97 0.162017
\(378\) −212.891 −0.0289681
\(379\) −2614.55 −0.354355 −0.177177 0.984179i \(-0.556697\pi\)
−0.177177 + 0.984179i \(0.556697\pi\)
\(380\) 2851.57 0.384954
\(381\) −1461.97 −0.196586
\(382\) 2661.46 0.356471
\(383\) 6160.12 0.821848 0.410924 0.911670i \(-0.365206\pi\)
0.410924 + 0.911670i \(0.365206\pi\)
\(384\) −972.790 −0.129277
\(385\) −45.1181 −0.00597254
\(386\) −1705.92 −0.224946
\(387\) −1680.98 −0.220798
\(388\) 4725.14 0.618255
\(389\) −1298.49 −0.169244 −0.0846220 0.996413i \(-0.526968\pi\)
−0.0846220 + 0.996413i \(0.526968\pi\)
\(390\) −74.1423 −0.00962651
\(391\) 1660.03 0.214710
\(392\) −562.940 −0.0725326
\(393\) −30.9214 −0.00396890
\(394\) 160.805 0.0205615
\(395\) 1002.45 0.127693
\(396\) −344.396 −0.0437034
\(397\) 6963.08 0.880269 0.440135 0.897932i \(-0.354931\pi\)
0.440135 + 0.897932i \(0.354931\pi\)
\(398\) 2797.37 0.352310
\(399\) −557.430 −0.0699409
\(400\) −5687.21 −0.710901
\(401\) 4633.09 0.576971 0.288486 0.957484i \(-0.406848\pi\)
0.288486 + 0.957484i \(0.406848\pi\)
\(402\) −426.166 −0.0528737
\(403\) −1393.84 −0.172289
\(404\) −9515.04 −1.17176
\(405\) 2510.16 0.307977
\(406\) −174.557 −0.0213377
\(407\) −484.248 −0.0589761
\(408\) 634.796 0.0770272
\(409\) −4361.04 −0.527236 −0.263618 0.964627i \(-0.584916\pi\)
−0.263618 + 0.964627i \(0.584916\pi\)
\(410\) −980.032 −0.118050
\(411\) 998.382 0.119821
\(412\) 5891.25 0.704469
\(413\) 580.676 0.0691845
\(414\) 451.843 0.0536398
\(415\) −1860.21 −0.220034
\(416\) −4593.51 −0.541383
\(417\) −624.374 −0.0733231
\(418\) 135.455 0.0158500
\(419\) −4893.57 −0.570565 −0.285282 0.958444i \(-0.592087\pi\)
−0.285282 + 0.958444i \(0.592087\pi\)
\(420\) −146.909 −0.0170676
\(421\) 11321.3 1.31061 0.655303 0.755366i \(-0.272541\pi\)
0.655303 + 0.755366i \(0.272541\pi\)
\(422\) −3147.62 −0.363089
\(423\) −12783.0 −1.46934
\(424\) 6149.67 0.704373
\(425\) 8043.82 0.918076
\(426\) 402.600 0.0457888
\(427\) 4189.15 0.474771
\(428\) 2171.29 0.245217
\(429\) 47.4127 0.00533591
\(430\) 174.242 0.0195412
\(431\) 10591.2 1.18367 0.591836 0.806059i \(-0.298403\pi\)
0.591836 + 0.806059i \(0.298403\pi\)
\(432\) −2086.70 −0.232399
\(433\) 9650.08 1.07102 0.535512 0.844528i \(-0.320119\pi\)
0.535512 + 0.844528i \(0.320119\pi\)
\(434\) 205.153 0.0226904
\(435\) −94.4906 −0.0104149
\(436\) 87.7311 0.00963660
\(437\) 2392.44 0.261890
\(438\) 543.261 0.0592648
\(439\) −15618.9 −1.69806 −0.849030 0.528344i \(-0.822813\pi\)
−0.849030 + 0.528344i \(0.822813\pi\)
\(440\) 74.0489 0.00802305
\(441\) −1294.28 −0.139756
\(442\) 1898.79 0.204336
\(443\) −1018.48 −0.109232 −0.0546158 0.998507i \(-0.517393\pi\)
−0.0546158 + 0.998507i \(0.517393\pi\)
\(444\) −1576.76 −0.168535
\(445\) −1094.15 −0.116556
\(446\) 785.096 0.0833529
\(447\) 1823.40 0.192939
\(448\) −2181.59 −0.230068
\(449\) −4780.78 −0.502492 −0.251246 0.967923i \(-0.580840\pi\)
−0.251246 + 0.967923i \(0.580840\pi\)
\(450\) 2189.44 0.229358
\(451\) 626.713 0.0654341
\(452\) 13232.9 1.37704
\(453\) −1850.62 −0.191942
\(454\) 2734.96 0.282726
\(455\) −911.504 −0.0939164
\(456\) 914.868 0.0939531
\(457\) 6633.99 0.679048 0.339524 0.940597i \(-0.389734\pi\)
0.339524 + 0.940597i \(0.389734\pi\)
\(458\) 2301.37 0.234794
\(459\) 2951.36 0.300126
\(460\) 630.519 0.0639089
\(461\) 14006.3 1.41505 0.707524 0.706689i \(-0.249812\pi\)
0.707524 + 0.706689i \(0.249812\pi\)
\(462\) −6.97842 −0.000702740 0
\(463\) 7939.96 0.796979 0.398489 0.917173i \(-0.369535\pi\)
0.398489 + 0.917173i \(0.369535\pi\)
\(464\) −1710.95 −0.171183
\(465\) 111.053 0.0110752
\(466\) 2220.40 0.220726
\(467\) 9069.00 0.898636 0.449318 0.893372i \(-0.351667\pi\)
0.449318 + 0.893372i \(0.351667\pi\)
\(468\) −6957.71 −0.687223
\(469\) −5239.27 −0.515836
\(470\) 1325.02 0.130040
\(471\) −1997.28 −0.195393
\(472\) −953.020 −0.0929371
\(473\) −111.425 −0.0108316
\(474\) 155.050 0.0150246
\(475\) 11592.8 1.11981
\(476\) 3762.35 0.362284
\(477\) 14139.0 1.35719
\(478\) −388.351 −0.0371606
\(479\) −20962.2 −1.99956 −0.999778 0.0210851i \(-0.993288\pi\)
−0.999778 + 0.0210851i \(0.993288\pi\)
\(480\) 365.982 0.0348015
\(481\) −9783.08 −0.927380
\(482\) 3606.56 0.340818
\(483\) −123.255 −0.0116114
\(484\) 9888.91 0.928711
\(485\) −2335.83 −0.218690
\(486\) 1209.40 0.112880
\(487\) −13091.6 −1.21815 −0.609075 0.793112i \(-0.708459\pi\)
−0.609075 + 0.793112i \(0.708459\pi\)
\(488\) −6875.35 −0.637771
\(489\) −598.410 −0.0553396
\(490\) 134.159 0.0123688
\(491\) −19625.2 −1.80381 −0.901906 0.431932i \(-0.857832\pi\)
−0.901906 + 0.431932i \(0.857832\pi\)
\(492\) 2040.64 0.186990
\(493\) 2419.92 0.221070
\(494\) 2736.54 0.249236
\(495\) 170.249 0.0154589
\(496\) 2010.84 0.182035
\(497\) 4949.55 0.446716
\(498\) −287.720 −0.0258896
\(499\) −3088.96 −0.277116 −0.138558 0.990354i \(-0.544247\pi\)
−0.138558 + 0.990354i \(0.544247\pi\)
\(500\) 6481.96 0.579764
\(501\) −89.6022 −0.00799029
\(502\) −927.106 −0.0824278
\(503\) −12928.1 −1.14600 −0.572999 0.819556i \(-0.694220\pi\)
−0.572999 + 0.819556i \(0.694220\pi\)
\(504\) 2124.21 0.187738
\(505\) 4703.67 0.414477
\(506\) 29.9508 0.00263137
\(507\) −724.073 −0.0634264
\(508\) 14221.1 1.24204
\(509\) 9427.54 0.820960 0.410480 0.911870i \(-0.365361\pi\)
0.410480 + 0.911870i \(0.365361\pi\)
\(510\) −151.284 −0.0131352
\(511\) 6678.83 0.578188
\(512\) 11317.0 0.976845
\(513\) 4253.50 0.366076
\(514\) 5250.81 0.450590
\(515\) −2912.29 −0.249186
\(516\) −362.810 −0.0309532
\(517\) −847.330 −0.0720803
\(518\) 1439.92 0.122136
\(519\) 1249.66 0.105691
\(520\) 1495.98 0.126160
\(521\) −10000.5 −0.840943 −0.420472 0.907306i \(-0.638135\pi\)
−0.420472 + 0.907306i \(0.638135\pi\)
\(522\) 658.675 0.0552287
\(523\) 3563.89 0.297969 0.148985 0.988840i \(-0.452400\pi\)
0.148985 + 0.988840i \(0.452400\pi\)
\(524\) 300.782 0.0250758
\(525\) −597.241 −0.0496491
\(526\) −3855.68 −0.319612
\(527\) −2844.08 −0.235085
\(528\) −68.4004 −0.00563778
\(529\) 529.000 0.0434783
\(530\) −1465.58 −0.120115
\(531\) −2191.13 −0.179072
\(532\) 5422.30 0.441892
\(533\) 12661.3 1.02893
\(534\) −169.232 −0.0137142
\(535\) −1073.36 −0.0867387
\(536\) 8598.83 0.692934
\(537\) −3225.89 −0.259231
\(538\) −3764.42 −0.301665
\(539\) −85.7926 −0.00685594
\(540\) 1120.99 0.0893332
\(541\) −15756.4 −1.25216 −0.626080 0.779759i \(-0.715342\pi\)
−0.626080 + 0.779759i \(0.715342\pi\)
\(542\) −2222.80 −0.176158
\(543\) −1615.51 −0.127676
\(544\) −9372.86 −0.738709
\(545\) −43.3691 −0.00340867
\(546\) −140.983 −0.0110504
\(547\) 3866.97 0.302266 0.151133 0.988513i \(-0.451708\pi\)
0.151133 + 0.988513i \(0.451708\pi\)
\(548\) −9711.58 −0.757040
\(549\) −15807.4 −1.22886
\(550\) 145.129 0.0112515
\(551\) 3487.59 0.269648
\(552\) 202.289 0.0155978
\(553\) 1906.18 0.146580
\(554\) 4231.79 0.324534
\(555\) 779.455 0.0596145
\(556\) 6073.49 0.463261
\(557\) −6348.96 −0.482970 −0.241485 0.970405i \(-0.577634\pi\)
−0.241485 + 0.970405i \(0.577634\pi\)
\(558\) −774.126 −0.0587301
\(559\) −2251.08 −0.170323
\(560\) 1314.99 0.0992295
\(561\) 96.7435 0.00728077
\(562\) −55.6580 −0.00417756
\(563\) −9962.84 −0.745797 −0.372898 0.927872i \(-0.621636\pi\)
−0.372898 + 0.927872i \(0.621636\pi\)
\(564\) −2758.99 −0.205983
\(565\) −6541.56 −0.487089
\(566\) −1326.00 −0.0984732
\(567\) 4773.10 0.353529
\(568\) −8123.33 −0.600084
\(569\) −4834.24 −0.356172 −0.178086 0.984015i \(-0.556991\pi\)
−0.178086 + 0.984015i \(0.556991\pi\)
\(570\) −218.031 −0.0160216
\(571\) −21810.2 −1.59847 −0.799237 0.601015i \(-0.794763\pi\)
−0.799237 + 0.601015i \(0.794763\pi\)
\(572\) −461.198 −0.0337127
\(573\) 2739.50 0.199728
\(574\) −1863.54 −0.135510
\(575\) 2563.31 0.185908
\(576\) 8232.05 0.595489
\(577\) −25561.3 −1.84424 −0.922122 0.386899i \(-0.873546\pi\)
−0.922122 + 0.386899i \(0.873546\pi\)
\(578\) 220.364 0.0158580
\(579\) −1755.95 −0.126036
\(580\) 919.140 0.0658021
\(581\) −3537.22 −0.252579
\(582\) −361.284 −0.0257315
\(583\) 937.215 0.0665789
\(584\) −10961.5 −0.776693
\(585\) 3439.48 0.243086
\(586\) 6037.49 0.425608
\(587\) 12649.4 0.889431 0.444715 0.895672i \(-0.353305\pi\)
0.444715 + 0.895672i \(0.353305\pi\)
\(588\) −279.349 −0.0195921
\(589\) −4098.89 −0.286743
\(590\) 227.123 0.0158483
\(591\) 165.520 0.0115205
\(592\) 14113.7 0.979845
\(593\) 21508.7 1.48947 0.744734 0.667361i \(-0.232576\pi\)
0.744734 + 0.667361i \(0.232576\pi\)
\(594\) 53.2493 0.00367819
\(595\) −1859.88 −0.128148
\(596\) −17736.8 −1.21901
\(597\) 2879.40 0.197397
\(598\) 605.085 0.0413775
\(599\) −15364.6 −1.04805 −0.524025 0.851703i \(-0.675570\pi\)
−0.524025 + 0.851703i \(0.675570\pi\)
\(600\) 980.208 0.0666947
\(601\) −2580.16 −0.175120 −0.0875599 0.996159i \(-0.527907\pi\)
−0.0875599 + 0.996159i \(0.527907\pi\)
\(602\) 331.324 0.0224315
\(603\) 19770.0 1.33515
\(604\) 18001.6 1.21270
\(605\) −4888.50 −0.328505
\(606\) 727.519 0.0487680
\(607\) 17447.1 1.16665 0.583325 0.812239i \(-0.301752\pi\)
0.583325 + 0.812239i \(0.301752\pi\)
\(608\) −13508.2 −0.901033
\(609\) −179.675 −0.0119554
\(610\) 1638.53 0.108757
\(611\) −17118.3 −1.13344
\(612\) −14196.9 −0.937706
\(613\) 15641.9 1.03062 0.515312 0.857003i \(-0.327676\pi\)
0.515312 + 0.857003i \(0.327676\pi\)
\(614\) −5026.41 −0.330374
\(615\) −1008.77 −0.0661424
\(616\) 140.805 0.00920973
\(617\) 17719.7 1.15619 0.578093 0.815971i \(-0.303797\pi\)
0.578093 + 0.815971i \(0.303797\pi\)
\(618\) −450.444 −0.0293196
\(619\) −3795.98 −0.246484 −0.123242 0.992377i \(-0.539329\pi\)
−0.123242 + 0.992377i \(0.539329\pi\)
\(620\) −1080.25 −0.0699737
\(621\) 940.505 0.0607748
\(622\) 2257.87 0.145551
\(623\) −2080.53 −0.133796
\(624\) −1381.87 −0.0886523
\(625\) 10726.7 0.686510
\(626\) −7149.95 −0.456501
\(627\) 139.427 0.00888065
\(628\) 19428.2 1.23451
\(629\) −19961.9 −1.26540
\(630\) −506.240 −0.0320144
\(631\) −10497.6 −0.662287 −0.331143 0.943580i \(-0.607434\pi\)
−0.331143 + 0.943580i \(0.607434\pi\)
\(632\) −3128.47 −0.196905
\(633\) −3239.92 −0.203437
\(634\) −2297.39 −0.143913
\(635\) −7030.06 −0.439338
\(636\) 3051.66 0.190261
\(637\) −1733.24 −0.107807
\(638\) 43.6608 0.00270932
\(639\) −18676.7 −1.15624
\(640\) −4677.77 −0.288914
\(641\) −9034.71 −0.556708 −0.278354 0.960479i \(-0.589789\pi\)
−0.278354 + 0.960479i \(0.589789\pi\)
\(642\) −166.016 −0.0102058
\(643\) 12838.6 0.787413 0.393706 0.919236i \(-0.371193\pi\)
0.393706 + 0.919236i \(0.371193\pi\)
\(644\) 1198.94 0.0733616
\(645\) 179.352 0.0109488
\(646\) 5583.79 0.340080
\(647\) 13518.1 0.821407 0.410703 0.911769i \(-0.365283\pi\)
0.410703 + 0.911769i \(0.365283\pi\)
\(648\) −7833.73 −0.474904
\(649\) −145.241 −0.00878461
\(650\) 2931.98 0.176926
\(651\) 211.168 0.0127133
\(652\) 5820.93 0.349640
\(653\) −18505.2 −1.10898 −0.554490 0.832190i \(-0.687087\pi\)
−0.554490 + 0.832190i \(0.687087\pi\)
\(654\) −6.70791 −0.000401070 0
\(655\) −148.689 −0.00886987
\(656\) −18265.9 −1.08714
\(657\) −25202.0 −1.49654
\(658\) 2519.55 0.149274
\(659\) 14918.6 0.881860 0.440930 0.897542i \(-0.354649\pi\)
0.440930 + 0.897542i \(0.354649\pi\)
\(660\) 36.7454 0.00216714
\(661\) 25666.1 1.51028 0.755140 0.655564i \(-0.227569\pi\)
0.755140 + 0.655564i \(0.227569\pi\)
\(662\) −7584.36 −0.445279
\(663\) 1954.47 0.114488
\(664\) 5805.37 0.339296
\(665\) −2680.46 −0.156307
\(666\) −5433.42 −0.316127
\(667\) 771.151 0.0447662
\(668\) 871.589 0.0504832
\(669\) 808.119 0.0467021
\(670\) −2049.27 −0.118164
\(671\) −1047.81 −0.0602835
\(672\) 695.921 0.0399490
\(673\) −15116.4 −0.865819 −0.432910 0.901437i \(-0.642513\pi\)
−0.432910 + 0.901437i \(0.642513\pi\)
\(674\) 999.331 0.0571110
\(675\) 4557.29 0.259867
\(676\) 7043.28 0.400733
\(677\) −29368.6 −1.66725 −0.833624 0.552333i \(-0.813738\pi\)
−0.833624 + 0.552333i \(0.813738\pi\)
\(678\) −1011.78 −0.0573117
\(679\) −4441.62 −0.251036
\(680\) 3052.49 0.172143
\(681\) 2815.16 0.158410
\(682\) −51.3136 −0.00288109
\(683\) −6749.84 −0.378148 −0.189074 0.981963i \(-0.560549\pi\)
−0.189074 + 0.981963i \(0.560549\pi\)
\(684\) −20460.6 −1.14376
\(685\) 4800.83 0.267781
\(686\) 255.106 0.0141982
\(687\) 2368.85 0.131554
\(688\) 3247.54 0.179958
\(689\) 18934.2 1.04693
\(690\) −48.2094 −0.00265986
\(691\) 30766.9 1.69382 0.846909 0.531738i \(-0.178461\pi\)
0.846909 + 0.531738i \(0.178461\pi\)
\(692\) −12155.8 −0.667767
\(693\) 323.731 0.0177454
\(694\) 1923.80 0.105226
\(695\) −3002.37 −0.163866
\(696\) 294.888 0.0160599
\(697\) 25834.8 1.40396
\(698\) 1401.41 0.0759946
\(699\) 2285.51 0.123671
\(700\) 5809.56 0.313687
\(701\) −10999.3 −0.592638 −0.296319 0.955089i \(-0.595759\pi\)
−0.296319 + 0.955089i \(0.595759\pi\)
\(702\) 1075.78 0.0578384
\(703\) −28769.2 −1.54346
\(704\) 545.668 0.0292126
\(705\) 1363.88 0.0728605
\(706\) −5237.91 −0.279223
\(707\) 8944.10 0.475782
\(708\) −472.919 −0.0251036
\(709\) −36465.8 −1.93160 −0.965798 0.259297i \(-0.916509\pi\)
−0.965798 + 0.259297i \(0.916509\pi\)
\(710\) 1935.95 0.102331
\(711\) −7192.80 −0.379397
\(712\) 3414.62 0.179731
\(713\) −906.317 −0.0476043
\(714\) −287.669 −0.0150781
\(715\) 227.989 0.0119249
\(716\) 31379.2 1.63784
\(717\) −399.739 −0.0208208
\(718\) −1372.71 −0.0713496
\(719\) −15388.3 −0.798171 −0.399086 0.916914i \(-0.630672\pi\)
−0.399086 + 0.916914i \(0.630672\pi\)
\(720\) −4962.01 −0.256838
\(721\) −5537.76 −0.286043
\(722\) 2945.99 0.151854
\(723\) 3712.32 0.190958
\(724\) 15714.5 0.806666
\(725\) 3736.67 0.191416
\(726\) −756.105 −0.0386525
\(727\) 9502.16 0.484753 0.242377 0.970182i \(-0.422073\pi\)
0.242377 + 0.970182i \(0.422073\pi\)
\(728\) 2844.63 0.144820
\(729\) −17165.7 −0.872105
\(730\) 2612.33 0.132447
\(731\) −4593.23 −0.232403
\(732\) −3411.76 −0.172271
\(733\) −16753.4 −0.844203 −0.422102 0.906548i \(-0.638707\pi\)
−0.422102 + 0.906548i \(0.638707\pi\)
\(734\) −5413.86 −0.272247
\(735\) 138.094 0.00693015
\(736\) −2986.83 −0.149587
\(737\) 1310.47 0.0654976
\(738\) 7031.93 0.350744
\(739\) 37612.2 1.87224 0.936121 0.351679i \(-0.114389\pi\)
0.936121 + 0.351679i \(0.114389\pi\)
\(740\) −7582.00 −0.376649
\(741\) 2816.79 0.139645
\(742\) −2786.83 −0.137881
\(743\) 7355.49 0.363185 0.181593 0.983374i \(-0.441875\pi\)
0.181593 + 0.983374i \(0.441875\pi\)
\(744\) −346.575 −0.0170780
\(745\) 8768.03 0.431189
\(746\) −6250.96 −0.306788
\(747\) 13347.4 0.653756
\(748\) −941.055 −0.0460005
\(749\) −2041.00 −0.0995681
\(750\) −495.610 −0.0241295
\(751\) 6945.20 0.337462 0.168731 0.985662i \(-0.446033\pi\)
0.168731 + 0.985662i \(0.446033\pi\)
\(752\) 24695.9 1.19756
\(753\) −954.293 −0.0461837
\(754\) 882.064 0.0426033
\(755\) −8898.92 −0.428960
\(756\) 2131.59 0.102546
\(757\) 22667.4 1.08832 0.544161 0.838981i \(-0.316848\pi\)
0.544161 + 0.838981i \(0.316848\pi\)
\(758\) −1944.57 −0.0931794
\(759\) 30.8291 0.00147434
\(760\) 4399.25 0.209970
\(761\) 20257.6 0.964961 0.482481 0.875907i \(-0.339736\pi\)
0.482481 + 0.875907i \(0.339736\pi\)
\(762\) −1087.34 −0.0516932
\(763\) −82.4669 −0.00391285
\(764\) −26648.0 −1.26190
\(765\) 7018.12 0.331687
\(766\) 4581.59 0.216109
\(767\) −2934.25 −0.138135
\(768\) 1185.22 0.0556872
\(769\) 30242.2 1.41815 0.709077 0.705131i \(-0.249112\pi\)
0.709077 + 0.705131i \(0.249112\pi\)
\(770\) −33.5565 −0.00157051
\(771\) 5404.78 0.252462
\(772\) 17080.7 0.796304
\(773\) 17990.0 0.837068 0.418534 0.908201i \(-0.362544\pi\)
0.418534 + 0.908201i \(0.362544\pi\)
\(774\) −1250.23 −0.0580600
\(775\) −4391.63 −0.203551
\(776\) 7289.70 0.337223
\(777\) 1482.14 0.0684320
\(778\) −965.749 −0.0445036
\(779\) 37233.1 1.71247
\(780\) 742.354 0.0340776
\(781\) −1238.00 −0.0567212
\(782\) 1234.65 0.0564591
\(783\) 1371.02 0.0625752
\(784\) 2500.47 0.113906
\(785\) −9604.16 −0.436672
\(786\) −22.9978 −0.00104364
\(787\) 8660.54 0.392268 0.196134 0.980577i \(-0.437161\pi\)
0.196134 + 0.980577i \(0.437161\pi\)
\(788\) −1610.07 −0.0727873
\(789\) −3968.75 −0.179076
\(790\) 745.573 0.0335776
\(791\) −12438.9 −0.559134
\(792\) −531.316 −0.0238377
\(793\) −21168.5 −0.947939
\(794\) 5178.79 0.231471
\(795\) −1508.56 −0.0672995
\(796\) −28008.8 −1.24717
\(797\) 15720.0 0.698660 0.349330 0.937000i \(-0.386409\pi\)
0.349330 + 0.937000i \(0.386409\pi\)
\(798\) −414.588 −0.0183913
\(799\) −34929.1 −1.54656
\(800\) −14472.9 −0.639618
\(801\) 7850.72 0.346306
\(802\) 3445.86 0.151718
\(803\) −1670.54 −0.0734147
\(804\) 4267.01 0.187171
\(805\) −592.686 −0.0259496
\(806\) −1036.67 −0.0453042
\(807\) −3874.81 −0.169021
\(808\) −14679.3 −0.639128
\(809\) 17588.8 0.764386 0.382193 0.924083i \(-0.375169\pi\)
0.382193 + 0.924083i \(0.375169\pi\)
\(810\) 1866.93 0.0809841
\(811\) 20188.6 0.874126 0.437063 0.899431i \(-0.356019\pi\)
0.437063 + 0.899431i \(0.356019\pi\)
\(812\) 1747.76 0.0755348
\(813\) −2287.99 −0.0987001
\(814\) −360.159 −0.0155081
\(815\) −2877.52 −0.123675
\(816\) −2819.64 −0.120965
\(817\) −6619.76 −0.283471
\(818\) −3243.52 −0.138639
\(819\) 6540.23 0.279040
\(820\) 9812.63 0.417893
\(821\) 32375.1 1.37625 0.688124 0.725593i \(-0.258434\pi\)
0.688124 + 0.725593i \(0.258434\pi\)
\(822\) 742.546 0.0315076
\(823\) −24971.2 −1.05764 −0.528822 0.848733i \(-0.677366\pi\)
−0.528822 + 0.848733i \(0.677366\pi\)
\(824\) 9088.70 0.384248
\(825\) 149.385 0.00630412
\(826\) 431.878 0.0181924
\(827\) 41806.8 1.75788 0.878939 0.476935i \(-0.158252\pi\)
0.878939 + 0.476935i \(0.158252\pi\)
\(828\) −4524.10 −0.189883
\(829\) 3995.99 0.167414 0.0837072 0.996490i \(-0.473324\pi\)
0.0837072 + 0.996490i \(0.473324\pi\)
\(830\) −1383.53 −0.0578592
\(831\) 4355.89 0.181834
\(832\) 11023.9 0.459359
\(833\) −3536.59 −0.147102
\(834\) −464.378 −0.0192807
\(835\) −430.862 −0.0178570
\(836\) −1356.25 −0.0561086
\(837\) −1611.33 −0.0665422
\(838\) −3639.59 −0.150033
\(839\) 5773.08 0.237555 0.118778 0.992921i \(-0.462102\pi\)
0.118778 + 0.992921i \(0.462102\pi\)
\(840\) −226.643 −0.00930942
\(841\) −23264.9 −0.953908
\(842\) 8420.19 0.344631
\(843\) −57.2901 −0.00234066
\(844\) 31515.7 1.28533
\(845\) −3481.79 −0.141748
\(846\) −9507.32 −0.386369
\(847\) −9295.54 −0.377094
\(848\) −27315.7 −1.10616
\(849\) −1364.88 −0.0551739
\(850\) 5982.59 0.241413
\(851\) −6361.24 −0.256240
\(852\) −4031.06 −0.162091
\(853\) 42543.4 1.70769 0.853844 0.520528i \(-0.174265\pi\)
0.853844 + 0.520528i \(0.174265\pi\)
\(854\) 3115.68 0.124844
\(855\) 10114.5 0.404572
\(856\) 3349.74 0.133752
\(857\) 16117.9 0.642449 0.321224 0.947003i \(-0.395906\pi\)
0.321224 + 0.947003i \(0.395906\pi\)
\(858\) 35.2631 0.00140310
\(859\) −3569.97 −0.141800 −0.0708998 0.997483i \(-0.522587\pi\)
−0.0708998 + 0.997483i \(0.522587\pi\)
\(860\) −1744.61 −0.0691754
\(861\) −1918.19 −0.0759254
\(862\) 7877.23 0.311253
\(863\) 1181.61 0.0466075 0.0233038 0.999728i \(-0.492582\pi\)
0.0233038 + 0.999728i \(0.492582\pi\)
\(864\) −5310.26 −0.209096
\(865\) 6009.12 0.236204
\(866\) 7177.24 0.281631
\(867\) 226.826 0.00888514
\(868\) −2054.10 −0.0803235
\(869\) −476.781 −0.0186118
\(870\) −70.2774 −0.00273865
\(871\) 26474.9 1.02993
\(872\) 135.347 0.00525622
\(873\) 16760.1 0.649763
\(874\) 1779.38 0.0688654
\(875\) −6093.02 −0.235408
\(876\) −5439.43 −0.209796
\(877\) −3434.54 −0.132242 −0.0661210 0.997812i \(-0.521062\pi\)
−0.0661210 + 0.997812i \(0.521062\pi\)
\(878\) −11616.5 −0.446514
\(879\) 6214.53 0.238465
\(880\) −328.911 −0.0125995
\(881\) −22864.7 −0.874382 −0.437191 0.899369i \(-0.644027\pi\)
−0.437191 + 0.899369i \(0.644027\pi\)
\(882\) −962.622 −0.0367496
\(883\) 581.005 0.0221431 0.0110716 0.999939i \(-0.496476\pi\)
0.0110716 + 0.999939i \(0.496476\pi\)
\(884\) −19011.8 −0.723343
\(885\) 233.783 0.00887970
\(886\) −757.496 −0.0287230
\(887\) 3694.06 0.139836 0.0699179 0.997553i \(-0.477726\pi\)
0.0699179 + 0.997553i \(0.477726\pi\)
\(888\) −2432.53 −0.0919262
\(889\) −13367.8 −0.504320
\(890\) −813.770 −0.0306490
\(891\) −1193.87 −0.0448889
\(892\) −7860.83 −0.295067
\(893\) −50339.9 −1.88641
\(894\) 1356.15 0.0507344
\(895\) −15512.0 −0.579341
\(896\) −8894.84 −0.331647
\(897\) 622.829 0.0231835
\(898\) −3555.70 −0.132133
\(899\) −1321.18 −0.0490144
\(900\) −21921.9 −0.811921
\(901\) 38634.4 1.42852
\(902\) 466.118 0.0172062
\(903\) 341.040 0.0125682
\(904\) 20415.0 0.751097
\(905\) −7768.34 −0.285335
\(906\) −1376.40 −0.0504722
\(907\) 14220.8 0.520611 0.260305 0.965526i \(-0.416177\pi\)
0.260305 + 0.965526i \(0.416177\pi\)
\(908\) −27383.9 −1.00084
\(909\) −33749.8 −1.23148
\(910\) −677.930 −0.0246958
\(911\) −11795.4 −0.428978 −0.214489 0.976726i \(-0.568809\pi\)
−0.214489 + 0.976726i \(0.568809\pi\)
\(912\) −4063.67 −0.147546
\(913\) 884.744 0.0320709
\(914\) 4934.02 0.178559
\(915\) 1686.58 0.0609360
\(916\) −23042.6 −0.831166
\(917\) −282.734 −0.0101818
\(918\) 2195.07 0.0789196
\(919\) 3834.29 0.137630 0.0688149 0.997629i \(-0.478078\pi\)
0.0688149 + 0.997629i \(0.478078\pi\)
\(920\) 972.731 0.0348587
\(921\) −5173.81 −0.185106
\(922\) 10417.2 0.372094
\(923\) −25010.9 −0.891923
\(924\) 69.8719 0.00248768
\(925\) −30823.8 −1.09566
\(926\) 5905.34 0.209570
\(927\) 20896.3 0.740370
\(928\) −4354.06 −0.154018
\(929\) 14037.9 0.495770 0.247885 0.968790i \(-0.420265\pi\)
0.247885 + 0.968790i \(0.420265\pi\)
\(930\) 82.5955 0.00291227
\(931\) −5096.94 −0.179426
\(932\) −22231.9 −0.781363
\(933\) 2324.08 0.0815510
\(934\) 6745.06 0.236301
\(935\) 465.202 0.0162714
\(936\) −10734.0 −0.374841
\(937\) −7139.64 −0.248924 −0.124462 0.992224i \(-0.539720\pi\)
−0.124462 + 0.992224i \(0.539720\pi\)
\(938\) −3896.71 −0.135642
\(939\) −7359.62 −0.255774
\(940\) −13266.9 −0.460338
\(941\) −3840.24 −0.133037 −0.0665187 0.997785i \(-0.521189\pi\)
−0.0665187 + 0.997785i \(0.521189\pi\)
\(942\) −1485.48 −0.0513795
\(943\) 8232.71 0.284299
\(944\) 4233.14 0.145950
\(945\) −1053.73 −0.0362729
\(946\) −82.8723 −0.00284821
\(947\) 20395.9 0.699871 0.349936 0.936774i \(-0.386203\pi\)
0.349936 + 0.936774i \(0.386203\pi\)
\(948\) −1552.44 −0.0531867
\(949\) −33749.3 −1.15442
\(950\) 8622.10 0.294461
\(951\) −2364.76 −0.0806335
\(952\) 5804.35 0.197605
\(953\) −8495.21 −0.288758 −0.144379 0.989522i \(-0.546119\pi\)
−0.144379 + 0.989522i \(0.546119\pi\)
\(954\) 10515.9 0.356880
\(955\) 13173.2 0.446361
\(956\) 3888.39 0.131548
\(957\) 44.9411 0.00151802
\(958\) −15590.6 −0.525793
\(959\) 9128.85 0.307389
\(960\) −878.319 −0.0295288
\(961\) −28238.2 −0.947878
\(962\) −7276.16 −0.243859
\(963\) 7701.55 0.257714
\(964\) −36110.9 −1.20649
\(965\) −8443.68 −0.281670
\(966\) −91.6709 −0.00305327
\(967\) 17879.3 0.594582 0.297291 0.954787i \(-0.403917\pi\)
0.297291 + 0.954787i \(0.403917\pi\)
\(968\) 15256.1 0.506559
\(969\) 5747.53 0.190544
\(970\) −1737.27 −0.0575057
\(971\) −15764.1 −0.521003 −0.260502 0.965473i \(-0.583888\pi\)
−0.260502 + 0.965473i \(0.583888\pi\)
\(972\) −12109.2 −0.399591
\(973\) −5709.06 −0.188103
\(974\) −9736.91 −0.320319
\(975\) 3017.96 0.0991304
\(976\) 30539.0 1.00157
\(977\) −9121.70 −0.298699 −0.149350 0.988784i \(-0.547718\pi\)
−0.149350 + 0.988784i \(0.547718\pi\)
\(978\) −445.067 −0.0145518
\(979\) 520.392 0.0169885
\(980\) −1343.28 −0.0437852
\(981\) 311.182 0.0101277
\(982\) −14596.2 −0.474322
\(983\) 20076.3 0.651409 0.325704 0.945472i \(-0.394399\pi\)
0.325704 + 0.945472i \(0.394399\pi\)
\(984\) 3148.18 0.101992
\(985\) 795.924 0.0257464
\(986\) 1799.81 0.0581315
\(987\) 2593.44 0.0836373
\(988\) −27399.8 −0.882291
\(989\) −1463.72 −0.0470611
\(990\) 126.623 0.00406499
\(991\) −19128.2 −0.613146 −0.306573 0.951847i \(-0.599182\pi\)
−0.306573 + 0.951847i \(0.599182\pi\)
\(992\) 5117.23 0.163783
\(993\) −7806.77 −0.249487
\(994\) 3681.23 0.117466
\(995\) 13845.9 0.441150
\(996\) 2880.81 0.0916486
\(997\) −1697.22 −0.0539132 −0.0269566 0.999637i \(-0.508582\pi\)
−0.0269566 + 0.999637i \(0.508582\pi\)
\(998\) −2297.41 −0.0728690
\(999\) −11309.6 −0.358178
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 161.4.a.a.1.4 5
3.2 odd 2 1449.4.a.e.1.2 5
7.6 odd 2 1127.4.a.d.1.4 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
161.4.a.a.1.4 5 1.1 even 1 trivial
1127.4.a.d.1.4 5 7.6 odd 2
1449.4.a.e.1.2 5 3.2 odd 2