Properties

Label 161.4.a.a.1.1
Level $161$
Weight $4$
Character 161.1
Self dual yes
Analytic conductor $9.499$
Analytic rank $1$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [161,4,Mod(1,161)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(161, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("161.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 161 = 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 161.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(9.49930751092\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 18x^{3} - 4x^{2} + 44x + 24 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-3.14816\) of defining polynomial
Character \(\chi\) \(=\) 161.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.14816 q^{2} -4.24155 q^{3} +9.20723 q^{4} -7.96567 q^{5} +17.5946 q^{6} +7.00000 q^{7} -5.00776 q^{8} -9.00922 q^{9} +33.0429 q^{10} +61.8101 q^{11} -39.0529 q^{12} -7.79423 q^{13} -29.0371 q^{14} +33.7868 q^{15} -52.8848 q^{16} +69.4266 q^{17} +37.3717 q^{18} +27.5368 q^{19} -73.3417 q^{20} -29.6909 q^{21} -256.398 q^{22} -23.0000 q^{23} +21.2407 q^{24} -61.5481 q^{25} +32.3317 q^{26} +152.735 q^{27} +64.4506 q^{28} -252.830 q^{29} -140.153 q^{30} -288.795 q^{31} +259.437 q^{32} -262.171 q^{33} -287.993 q^{34} -55.7597 q^{35} -82.9500 q^{36} -75.3646 q^{37} -114.227 q^{38} +33.0597 q^{39} +39.8902 q^{40} +81.1462 q^{41} +123.162 q^{42} -361.319 q^{43} +569.100 q^{44} +71.7645 q^{45} +95.4077 q^{46} +407.124 q^{47} +224.314 q^{48} +49.0000 q^{49} +255.311 q^{50} -294.477 q^{51} -71.7633 q^{52} -429.836 q^{53} -633.569 q^{54} -492.359 q^{55} -35.0543 q^{56} -116.799 q^{57} +1048.78 q^{58} +637.860 q^{59} +311.083 q^{60} -502.016 q^{61} +1197.97 q^{62} -63.0646 q^{63} -653.106 q^{64} +62.0863 q^{65} +1087.53 q^{66} +365.598 q^{67} +639.227 q^{68} +97.5557 q^{69} +231.300 q^{70} -645.350 q^{71} +45.1161 q^{72} +1043.38 q^{73} +312.624 q^{74} +261.059 q^{75} +253.537 q^{76} +432.671 q^{77} -137.137 q^{78} -563.988 q^{79} +421.263 q^{80} -404.585 q^{81} -336.607 q^{82} -513.618 q^{83} -273.371 q^{84} -553.030 q^{85} +1498.81 q^{86} +1072.39 q^{87} -309.530 q^{88} -1143.56 q^{89} -297.691 q^{90} -54.5596 q^{91} -211.766 q^{92} +1224.94 q^{93} -1688.82 q^{94} -219.349 q^{95} -1100.41 q^{96} -328.899 q^{97} -203.260 q^{98} -556.861 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 4 q^{2} - 11 q^{3} - 4 q^{5} + 35 q^{7} + 18 q^{8} + 14 q^{9} + 26 q^{10} - 36 q^{11} - 28 q^{12} - 69 q^{13} - 28 q^{14} - 88 q^{15} - 124 q^{16} - 42 q^{17} - 94 q^{18} - 140 q^{19} - 168 q^{20}+ \cdots - 990 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.14816 −1.46660 −0.733298 0.679907i \(-0.762020\pi\)
−0.733298 + 0.679907i \(0.762020\pi\)
\(3\) −4.24155 −0.816287 −0.408144 0.912918i \(-0.633824\pi\)
−0.408144 + 0.912918i \(0.633824\pi\)
\(4\) 9.20723 1.15090
\(5\) −7.96567 −0.712471 −0.356236 0.934396i \(-0.615940\pi\)
−0.356236 + 0.934396i \(0.615940\pi\)
\(6\) 17.5946 1.19716
\(7\) 7.00000 0.377964
\(8\) −5.00776 −0.221314
\(9\) −9.00922 −0.333675
\(10\) 33.0429 1.04491
\(11\) 61.8101 1.69422 0.847111 0.531415i \(-0.178340\pi\)
0.847111 + 0.531415i \(0.178340\pi\)
\(12\) −39.0529 −0.939468
\(13\) −7.79423 −0.166287 −0.0831435 0.996538i \(-0.526496\pi\)
−0.0831435 + 0.996538i \(0.526496\pi\)
\(14\) −29.0371 −0.554321
\(15\) 33.7868 0.581581
\(16\) −52.8848 −0.826325
\(17\) 69.4266 0.990496 0.495248 0.868752i \(-0.335077\pi\)
0.495248 + 0.868752i \(0.335077\pi\)
\(18\) 37.3717 0.489366
\(19\) 27.5368 0.332493 0.166246 0.986084i \(-0.446835\pi\)
0.166246 + 0.986084i \(0.446835\pi\)
\(20\) −73.3417 −0.819986
\(21\) −29.6909 −0.308528
\(22\) −256.398 −2.48474
\(23\) −23.0000 −0.208514
\(24\) 21.2407 0.180656
\(25\) −61.5481 −0.492385
\(26\) 32.3317 0.243876
\(27\) 152.735 1.08866
\(28\) 64.4506 0.435001
\(29\) −252.830 −1.61894 −0.809470 0.587161i \(-0.800246\pi\)
−0.809470 + 0.587161i \(0.800246\pi\)
\(30\) −140.153 −0.852945
\(31\) −288.795 −1.67320 −0.836600 0.547815i \(-0.815460\pi\)
−0.836600 + 0.547815i \(0.815460\pi\)
\(32\) 259.437 1.43320
\(33\) −262.171 −1.38297
\(34\) −287.993 −1.45266
\(35\) −55.7597 −0.269289
\(36\) −82.9500 −0.384028
\(37\) −75.3646 −0.334861 −0.167431 0.985884i \(-0.553547\pi\)
−0.167431 + 0.985884i \(0.553547\pi\)
\(38\) −114.227 −0.487633
\(39\) 33.0597 0.135738
\(40\) 39.8902 0.157680
\(41\) 81.1462 0.309095 0.154548 0.987985i \(-0.450608\pi\)
0.154548 + 0.987985i \(0.450608\pi\)
\(42\) 123.162 0.452485
\(43\) −361.319 −1.28141 −0.640704 0.767788i \(-0.721357\pi\)
−0.640704 + 0.767788i \(0.721357\pi\)
\(44\) 569.100 1.94989
\(45\) 71.7645 0.237734
\(46\) 95.4077 0.305806
\(47\) 407.124 1.26351 0.631757 0.775167i \(-0.282334\pi\)
0.631757 + 0.775167i \(0.282334\pi\)
\(48\) 224.314 0.674519
\(49\) 49.0000 0.142857
\(50\) 255.311 0.722129
\(51\) −294.477 −0.808529
\(52\) −71.7633 −0.191380
\(53\) −429.836 −1.11401 −0.557005 0.830509i \(-0.688050\pi\)
−0.557005 + 0.830509i \(0.688050\pi\)
\(54\) −633.569 −1.59663
\(55\) −492.359 −1.20709
\(56\) −35.0543 −0.0836488
\(57\) −116.799 −0.271410
\(58\) 1048.78 2.37433
\(59\) 637.860 1.40750 0.703748 0.710449i \(-0.251508\pi\)
0.703748 + 0.710449i \(0.251508\pi\)
\(60\) 311.083 0.669344
\(61\) −502.016 −1.05371 −0.526857 0.849954i \(-0.676630\pi\)
−0.526857 + 0.849954i \(0.676630\pi\)
\(62\) 1197.97 2.45391
\(63\) −63.0646 −0.126117
\(64\) −653.106 −1.27560
\(65\) 62.0863 0.118475
\(66\) 1087.53 2.02826
\(67\) 365.598 0.666640 0.333320 0.942814i \(-0.391831\pi\)
0.333320 + 0.942814i \(0.391831\pi\)
\(68\) 639.227 1.13996
\(69\) 97.5557 0.170208
\(70\) 231.300 0.394938
\(71\) −645.350 −1.07872 −0.539359 0.842076i \(-0.681333\pi\)
−0.539359 + 0.842076i \(0.681333\pi\)
\(72\) 45.1161 0.0738469
\(73\) 1043.38 1.67286 0.836430 0.548074i \(-0.184639\pi\)
0.836430 + 0.548074i \(0.184639\pi\)
\(74\) 312.624 0.491106
\(75\) 261.059 0.401927
\(76\) 253.537 0.382667
\(77\) 432.671 0.640356
\(78\) −137.137 −0.199073
\(79\) −563.988 −0.803210 −0.401605 0.915813i \(-0.631548\pi\)
−0.401605 + 0.915813i \(0.631548\pi\)
\(80\) 421.263 0.588733
\(81\) −404.585 −0.554986
\(82\) −336.607 −0.453318
\(83\) −513.618 −0.679240 −0.339620 0.940563i \(-0.610298\pi\)
−0.339620 + 0.940563i \(0.610298\pi\)
\(84\) −273.371 −0.355085
\(85\) −553.030 −0.705700
\(86\) 1498.81 1.87931
\(87\) 1072.39 1.32152
\(88\) −309.530 −0.374955
\(89\) −1143.56 −1.36199 −0.680993 0.732290i \(-0.738452\pi\)
−0.680993 + 0.732290i \(0.738452\pi\)
\(90\) −297.691 −0.348659
\(91\) −54.5596 −0.0628506
\(92\) −211.766 −0.239980
\(93\) 1224.94 1.36581
\(94\) −1688.82 −1.85306
\(95\) −219.349 −0.236892
\(96\) −1100.41 −1.16990
\(97\) −328.899 −0.344274 −0.172137 0.985073i \(-0.555067\pi\)
−0.172137 + 0.985073i \(0.555067\pi\)
\(98\) −203.260 −0.209514
\(99\) −556.861 −0.565320
\(100\) −566.687 −0.566687
\(101\) −1430.15 −1.40897 −0.704483 0.709721i \(-0.748821\pi\)
−0.704483 + 0.709721i \(0.748821\pi\)
\(102\) 1221.54 1.18579
\(103\) −1361.77 −1.30271 −0.651355 0.758773i \(-0.725799\pi\)
−0.651355 + 0.758773i \(0.725799\pi\)
\(104\) 39.0317 0.0368017
\(105\) 236.508 0.219817
\(106\) 1783.03 1.63380
\(107\) −1141.73 −1.03154 −0.515770 0.856727i \(-0.672494\pi\)
−0.515770 + 0.856727i \(0.672494\pi\)
\(108\) 1406.27 1.25294
\(109\) −173.687 −0.152626 −0.0763128 0.997084i \(-0.524315\pi\)
−0.0763128 + 0.997084i \(0.524315\pi\)
\(110\) 2042.38 1.77031
\(111\) 319.663 0.273343
\(112\) −370.194 −0.312322
\(113\) 1355.42 1.12838 0.564191 0.825645i \(-0.309188\pi\)
0.564191 + 0.825645i \(0.309188\pi\)
\(114\) 484.499 0.398048
\(115\) 183.210 0.148561
\(116\) −2327.86 −1.86324
\(117\) 70.2200 0.0554858
\(118\) −2645.95 −2.06423
\(119\) 485.986 0.374372
\(120\) −169.196 −0.128712
\(121\) 2489.49 1.87039
\(122\) 2082.44 1.54537
\(123\) −344.186 −0.252311
\(124\) −2659.00 −1.92569
\(125\) 1485.98 1.06328
\(126\) 261.602 0.184963
\(127\) −1584.92 −1.10739 −0.553697 0.832719i \(-0.686783\pi\)
−0.553697 + 0.832719i \(0.686783\pi\)
\(128\) 633.695 0.437588
\(129\) 1532.55 1.04600
\(130\) −257.544 −0.173755
\(131\) −1613.76 −1.07630 −0.538148 0.842850i \(-0.680876\pi\)
−0.538148 + 0.842850i \(0.680876\pi\)
\(132\) −2413.87 −1.59167
\(133\) 192.757 0.125670
\(134\) −1516.56 −0.977691
\(135\) −1216.64 −0.775641
\(136\) −347.672 −0.219211
\(137\) −350.201 −0.218392 −0.109196 0.994020i \(-0.534828\pi\)
−0.109196 + 0.994020i \(0.534828\pi\)
\(138\) −404.677 −0.249626
\(139\) 189.311 0.115519 0.0577594 0.998331i \(-0.481604\pi\)
0.0577594 + 0.998331i \(0.481604\pi\)
\(140\) −513.392 −0.309925
\(141\) −1726.84 −1.03139
\(142\) 2677.01 1.58204
\(143\) −481.763 −0.281727
\(144\) 476.451 0.275724
\(145\) 2013.96 1.15345
\(146\) −4328.12 −2.45341
\(147\) −207.836 −0.116612
\(148\) −693.899 −0.385393
\(149\) 1363.77 0.749827 0.374913 0.927060i \(-0.377672\pi\)
0.374913 + 0.927060i \(0.377672\pi\)
\(150\) −1082.92 −0.589465
\(151\) −2973.95 −1.60276 −0.801380 0.598155i \(-0.795901\pi\)
−0.801380 + 0.598155i \(0.795901\pi\)
\(152\) −137.898 −0.0735853
\(153\) −625.480 −0.330504
\(154\) −1794.79 −0.939143
\(155\) 2300.45 1.19211
\(156\) 304.388 0.156221
\(157\) −963.379 −0.489720 −0.244860 0.969558i \(-0.578742\pi\)
−0.244860 + 0.969558i \(0.578742\pi\)
\(158\) 2339.51 1.17798
\(159\) 1823.17 0.909352
\(160\) −2066.59 −1.02111
\(161\) −161.000 −0.0788110
\(162\) 1678.28 0.813940
\(163\) −1018.40 −0.489369 −0.244684 0.969603i \(-0.578684\pi\)
−0.244684 + 0.969603i \(0.578684\pi\)
\(164\) 747.132 0.355739
\(165\) 2088.37 0.985328
\(166\) 2130.57 0.996170
\(167\) −795.570 −0.368641 −0.184321 0.982866i \(-0.559008\pi\)
−0.184321 + 0.982866i \(0.559008\pi\)
\(168\) 148.685 0.0682815
\(169\) −2136.25 −0.972349
\(170\) 2294.06 1.03498
\(171\) −248.085 −0.110945
\(172\) −3326.74 −1.47478
\(173\) 1018.47 0.447590 0.223795 0.974636i \(-0.428155\pi\)
0.223795 + 0.974636i \(0.428155\pi\)
\(174\) −4448.45 −1.93814
\(175\) −430.836 −0.186104
\(176\) −3268.82 −1.39998
\(177\) −2705.52 −1.14892
\(178\) 4743.66 1.99748
\(179\) 3951.06 1.64981 0.824905 0.565271i \(-0.191228\pi\)
0.824905 + 0.565271i \(0.191228\pi\)
\(180\) 660.752 0.273609
\(181\) 1153.46 0.473681 0.236840 0.971549i \(-0.423888\pi\)
0.236840 + 0.971549i \(0.423888\pi\)
\(182\) 226.322 0.0921764
\(183\) 2129.33 0.860134
\(184\) 115.179 0.0461472
\(185\) 600.329 0.238579
\(186\) −5081.25 −2.00309
\(187\) 4291.27 1.67812
\(188\) 3748.48 1.45418
\(189\) 1069.15 0.411476
\(190\) 909.893 0.347424
\(191\) −2567.20 −0.972546 −0.486273 0.873807i \(-0.661644\pi\)
−0.486273 + 0.873807i \(0.661644\pi\)
\(192\) 2770.19 1.04125
\(193\) 801.338 0.298868 0.149434 0.988772i \(-0.452255\pi\)
0.149434 + 0.988772i \(0.452255\pi\)
\(194\) 1364.32 0.504911
\(195\) −263.342 −0.0967095
\(196\) 451.154 0.164415
\(197\) 5345.91 1.93340 0.966702 0.255906i \(-0.0823739\pi\)
0.966702 + 0.255906i \(0.0823739\pi\)
\(198\) 2309.95 0.829096
\(199\) −838.023 −0.298522 −0.149261 0.988798i \(-0.547689\pi\)
−0.149261 + 0.988798i \(0.547689\pi\)
\(200\) 308.218 0.108972
\(201\) −1550.70 −0.544170
\(202\) 5932.50 2.06638
\(203\) −1769.81 −0.611902
\(204\) −2711.31 −0.930539
\(205\) −646.384 −0.220222
\(206\) 5648.84 1.91055
\(207\) 207.212 0.0695760
\(208\) 412.197 0.137407
\(209\) 1702.05 0.563317
\(210\) −981.072 −0.322383
\(211\) −3161.04 −1.03135 −0.515675 0.856784i \(-0.672459\pi\)
−0.515675 + 0.856784i \(0.672459\pi\)
\(212\) −3957.60 −1.28212
\(213\) 2737.29 0.880544
\(214\) 4736.06 1.51285
\(215\) 2878.14 0.912967
\(216\) −764.861 −0.240936
\(217\) −2021.57 −0.632410
\(218\) 720.481 0.223840
\(219\) −4425.56 −1.36553
\(220\) −4533.26 −1.38924
\(221\) −541.127 −0.164707
\(222\) −1326.01 −0.400883
\(223\) 6265.42 1.88145 0.940725 0.339171i \(-0.110147\pi\)
0.940725 + 0.339171i \(0.110147\pi\)
\(224\) 1816.06 0.541698
\(225\) 554.500 0.164296
\(226\) −5622.49 −1.65488
\(227\) 171.936 0.0502721 0.0251361 0.999684i \(-0.491998\pi\)
0.0251361 + 0.999684i \(0.491998\pi\)
\(228\) −1075.39 −0.312366
\(229\) −139.090 −0.0401367 −0.0200683 0.999799i \(-0.506388\pi\)
−0.0200683 + 0.999799i \(0.506388\pi\)
\(230\) −759.986 −0.217878
\(231\) −1835.20 −0.522715
\(232\) 1266.11 0.358294
\(233\) −1900.80 −0.534443 −0.267222 0.963635i \(-0.586106\pi\)
−0.267222 + 0.963635i \(0.586106\pi\)
\(234\) −291.284 −0.0813753
\(235\) −3243.02 −0.900217
\(236\) 5872.92 1.61989
\(237\) 2392.19 0.655650
\(238\) −2015.95 −0.549053
\(239\) −3871.53 −1.04782 −0.523908 0.851775i \(-0.675527\pi\)
−0.523908 + 0.851775i \(0.675527\pi\)
\(240\) −1786.81 −0.480575
\(241\) −2613.26 −0.698486 −0.349243 0.937032i \(-0.613561\pi\)
−0.349243 + 0.937032i \(0.613561\pi\)
\(242\) −10326.8 −2.74311
\(243\) −2407.78 −0.635634
\(244\) −4622.18 −1.21272
\(245\) −390.318 −0.101782
\(246\) 1427.74 0.370038
\(247\) −214.628 −0.0552893
\(248\) 1446.22 0.370302
\(249\) 2178.54 0.554455
\(250\) −6164.08 −1.55940
\(251\) 2205.76 0.554687 0.277344 0.960771i \(-0.410546\pi\)
0.277344 + 0.960771i \(0.410546\pi\)
\(252\) −580.650 −0.145149
\(253\) −1421.63 −0.353270
\(254\) 6574.50 1.62410
\(255\) 2345.71 0.576054
\(256\) 2596.18 0.633833
\(257\) −1505.91 −0.365511 −0.182755 0.983158i \(-0.558502\pi\)
−0.182755 + 0.983158i \(0.558502\pi\)
\(258\) −6357.27 −1.53406
\(259\) −527.552 −0.126566
\(260\) 571.643 0.136353
\(261\) 2277.80 0.540200
\(262\) 6694.13 1.57849
\(263\) −5162.98 −1.21051 −0.605253 0.796033i \(-0.706928\pi\)
−0.605253 + 0.796033i \(0.706928\pi\)
\(264\) 1312.89 0.306071
\(265\) 3423.93 0.793700
\(266\) −799.588 −0.184308
\(267\) 4850.46 1.11177
\(268\) 3366.14 0.767238
\(269\) 895.827 0.203047 0.101523 0.994833i \(-0.467628\pi\)
0.101523 + 0.994833i \(0.467628\pi\)
\(270\) 5046.81 1.13755
\(271\) 2854.00 0.639735 0.319868 0.947462i \(-0.396362\pi\)
0.319868 + 0.947462i \(0.396362\pi\)
\(272\) −3671.61 −0.818472
\(273\) 231.418 0.0513042
\(274\) 1452.69 0.320293
\(275\) −3804.29 −0.834209
\(276\) 898.218 0.195893
\(277\) −1804.75 −0.391469 −0.195735 0.980657i \(-0.562709\pi\)
−0.195735 + 0.980657i \(0.562709\pi\)
\(278\) −785.291 −0.169419
\(279\) 2601.82 0.558305
\(280\) 279.231 0.0595974
\(281\) −2703.49 −0.573938 −0.286969 0.957940i \(-0.592648\pi\)
−0.286969 + 0.957940i \(0.592648\pi\)
\(282\) 7163.20 1.51263
\(283\) −3279.31 −0.688815 −0.344407 0.938820i \(-0.611920\pi\)
−0.344407 + 0.938820i \(0.611920\pi\)
\(284\) −5941.88 −1.24150
\(285\) 930.379 0.193372
\(286\) 1998.43 0.413180
\(287\) 568.024 0.116827
\(288\) −2337.32 −0.478223
\(289\) −92.9437 −0.0189179
\(290\) −8354.22 −1.69164
\(291\) 1395.04 0.281027
\(292\) 9606.66 1.92530
\(293\) 6504.61 1.29694 0.648469 0.761241i \(-0.275409\pi\)
0.648469 + 0.761241i \(0.275409\pi\)
\(294\) 862.137 0.171023
\(295\) −5080.98 −1.00280
\(296\) 377.408 0.0741094
\(297\) 9440.57 1.84444
\(298\) −5657.13 −1.09969
\(299\) 179.267 0.0346732
\(300\) 2403.63 0.462579
\(301\) −2529.23 −0.484327
\(302\) 12336.4 2.35060
\(303\) 6066.07 1.15012
\(304\) −1456.28 −0.274747
\(305\) 3998.90 0.750742
\(306\) 2594.59 0.484715
\(307\) 1677.26 0.311811 0.155906 0.987772i \(-0.450170\pi\)
0.155906 + 0.987772i \(0.450170\pi\)
\(308\) 3983.70 0.736988
\(309\) 5776.02 1.06339
\(310\) −9542.63 −1.74834
\(311\) −8015.21 −1.46142 −0.730709 0.682689i \(-0.760810\pi\)
−0.730709 + 0.682689i \(0.760810\pi\)
\(312\) −165.555 −0.0300407
\(313\) 3209.00 0.579500 0.289750 0.957102i \(-0.406428\pi\)
0.289750 + 0.957102i \(0.406428\pi\)
\(314\) 3996.25 0.718221
\(315\) 502.352 0.0898550
\(316\) −5192.77 −0.924417
\(317\) −5836.12 −1.03403 −0.517017 0.855975i \(-0.672958\pi\)
−0.517017 + 0.855975i \(0.672958\pi\)
\(318\) −7562.81 −1.33365
\(319\) −15627.4 −2.74285
\(320\) 5202.43 0.908827
\(321\) 4842.69 0.842034
\(322\) 667.854 0.115584
\(323\) 1911.78 0.329333
\(324\) −3725.10 −0.638735
\(325\) 479.720 0.0818772
\(326\) 4224.48 0.717706
\(327\) 736.703 0.124586
\(328\) −406.361 −0.0684071
\(329\) 2849.87 0.477563
\(330\) −8662.88 −1.44508
\(331\) −772.802 −0.128329 −0.0641647 0.997939i \(-0.520438\pi\)
−0.0641647 + 0.997939i \(0.520438\pi\)
\(332\) −4729.00 −0.781739
\(333\) 678.976 0.111735
\(334\) 3300.15 0.540647
\(335\) −2912.23 −0.474962
\(336\) 1570.20 0.254944
\(337\) −2671.61 −0.431845 −0.215923 0.976410i \(-0.569276\pi\)
−0.215923 + 0.976410i \(0.569276\pi\)
\(338\) 8861.50 1.42604
\(339\) −5749.08 −0.921083
\(340\) −5091.87 −0.812192
\(341\) −17850.5 −2.83477
\(342\) 1029.10 0.162711
\(343\) 343.000 0.0539949
\(344\) 1809.40 0.283594
\(345\) −777.097 −0.121268
\(346\) −4224.79 −0.656433
\(347\) 6495.27 1.00485 0.502427 0.864620i \(-0.332441\pi\)
0.502427 + 0.864620i \(0.332441\pi\)
\(348\) 9873.74 1.52094
\(349\) 3842.03 0.589281 0.294641 0.955608i \(-0.404800\pi\)
0.294641 + 0.955608i \(0.404800\pi\)
\(350\) 1787.18 0.272939
\(351\) −1190.45 −0.181030
\(352\) 16035.8 2.42816
\(353\) −4927.37 −0.742939 −0.371469 0.928445i \(-0.621146\pi\)
−0.371469 + 0.928445i \(0.621146\pi\)
\(354\) 11222.9 1.68500
\(355\) 5140.65 0.768555
\(356\) −10529.0 −1.56751
\(357\) −2061.34 −0.305595
\(358\) −16389.6 −2.41961
\(359\) −1213.81 −0.178448 −0.0892238 0.996012i \(-0.528439\pi\)
−0.0892238 + 0.996012i \(0.528439\pi\)
\(360\) −359.380 −0.0526138
\(361\) −6100.73 −0.889449
\(362\) −4784.75 −0.694698
\(363\) −10559.3 −1.52678
\(364\) −502.343 −0.0723350
\(365\) −8311.24 −1.19186
\(366\) −8832.80 −1.26147
\(367\) 8423.89 1.19816 0.599078 0.800691i \(-0.295534\pi\)
0.599078 + 0.800691i \(0.295534\pi\)
\(368\) 1216.35 0.172301
\(369\) −731.065 −0.103137
\(370\) −2490.26 −0.349899
\(371\) −3008.85 −0.421056
\(372\) 11278.3 1.57192
\(373\) 1519.77 0.210968 0.105484 0.994421i \(-0.466361\pi\)
0.105484 + 0.994421i \(0.466361\pi\)
\(374\) −17800.9 −2.46112
\(375\) −6302.87 −0.867943
\(376\) −2038.78 −0.279633
\(377\) 1970.61 0.269209
\(378\) −4434.99 −0.603468
\(379\) 7201.55 0.976039 0.488020 0.872833i \(-0.337719\pi\)
0.488020 + 0.872833i \(0.337719\pi\)
\(380\) −2019.59 −0.272639
\(381\) 6722.52 0.903951
\(382\) 10649.2 1.42633
\(383\) −3478.08 −0.464025 −0.232013 0.972713i \(-0.574531\pi\)
−0.232013 + 0.972713i \(0.574531\pi\)
\(384\) −2687.85 −0.357198
\(385\) −3446.51 −0.456235
\(386\) −3324.08 −0.438319
\(387\) 3255.20 0.427574
\(388\) −3028.25 −0.396226
\(389\) −848.484 −0.110591 −0.0552954 0.998470i \(-0.517610\pi\)
−0.0552954 + 0.998470i \(0.517610\pi\)
\(390\) 1092.39 0.141834
\(391\) −1596.81 −0.206533
\(392\) −245.380 −0.0316163
\(393\) 6844.85 0.878567
\(394\) −22175.7 −2.83552
\(395\) 4492.54 0.572264
\(396\) −5127.15 −0.650628
\(397\) 11355.0 1.43549 0.717747 0.696304i \(-0.245174\pi\)
0.717747 + 0.696304i \(0.245174\pi\)
\(398\) 3476.25 0.437811
\(399\) −817.590 −0.102583
\(400\) 3254.96 0.406870
\(401\) −3590.27 −0.447106 −0.223553 0.974692i \(-0.571766\pi\)
−0.223553 + 0.974692i \(0.571766\pi\)
\(402\) 6432.56 0.798077
\(403\) 2250.94 0.278231
\(404\) −13167.7 −1.62158
\(405\) 3222.79 0.395412
\(406\) 7341.44 0.897413
\(407\) −4658.29 −0.567329
\(408\) 1474.67 0.178939
\(409\) 6046.66 0.731022 0.365511 0.930807i \(-0.380894\pi\)
0.365511 + 0.930807i \(0.380894\pi\)
\(410\) 2681.30 0.322976
\(411\) 1485.40 0.178271
\(412\) −12538.1 −1.49929
\(413\) 4465.02 0.531984
\(414\) −859.549 −0.102040
\(415\) 4091.31 0.483939
\(416\) −2022.11 −0.238322
\(417\) −802.971 −0.0942966
\(418\) −7060.37 −0.826158
\(419\) 15974.2 1.86251 0.931254 0.364370i \(-0.118716\pi\)
0.931254 + 0.364370i \(0.118716\pi\)
\(420\) 2177.58 0.252988
\(421\) 17042.6 1.97294 0.986469 0.163949i \(-0.0524231\pi\)
0.986469 + 0.163949i \(0.0524231\pi\)
\(422\) 13112.5 1.51257
\(423\) −3667.87 −0.421603
\(424\) 2152.52 0.246546
\(425\) −4273.07 −0.487705
\(426\) −11354.7 −1.29140
\(427\) −3514.11 −0.398267
\(428\) −10512.1 −1.18720
\(429\) 2043.42 0.229970
\(430\) −11939.0 −1.33895
\(431\) 13516.7 1.51061 0.755307 0.655371i \(-0.227488\pi\)
0.755307 + 0.655371i \(0.227488\pi\)
\(432\) −8077.36 −0.899589
\(433\) −15003.4 −1.66516 −0.832582 0.553902i \(-0.813138\pi\)
−0.832582 + 0.553902i \(0.813138\pi\)
\(434\) 8385.78 0.927490
\(435\) −8542.31 −0.941546
\(436\) −1599.18 −0.175657
\(437\) −633.345 −0.0693295
\(438\) 18357.9 2.00269
\(439\) 4217.29 0.458497 0.229248 0.973368i \(-0.426373\pi\)
0.229248 + 0.973368i \(0.426373\pi\)
\(440\) 2465.62 0.267145
\(441\) −441.452 −0.0476679
\(442\) 2244.68 0.241558
\(443\) −2547.89 −0.273259 −0.136630 0.990622i \(-0.543627\pi\)
−0.136630 + 0.990622i \(0.543627\pi\)
\(444\) 2943.21 0.314591
\(445\) 9109.20 0.970377
\(446\) −25989.9 −2.75933
\(447\) −5784.49 −0.612074
\(448\) −4571.74 −0.482131
\(449\) −5063.60 −0.532219 −0.266109 0.963943i \(-0.585738\pi\)
−0.266109 + 0.963943i \(0.585738\pi\)
\(450\) −2300.16 −0.240956
\(451\) 5015.66 0.523676
\(452\) 12479.6 1.29866
\(453\) 12614.2 1.30831
\(454\) −713.216 −0.0737289
\(455\) 434.604 0.0447793
\(456\) 584.900 0.0600668
\(457\) 4174.18 0.427264 0.213632 0.976914i \(-0.431471\pi\)
0.213632 + 0.976914i \(0.431471\pi\)
\(458\) 576.966 0.0588643
\(459\) 10603.9 1.07832
\(460\) 1686.86 0.170979
\(461\) 8836.07 0.892704 0.446352 0.894857i \(-0.352723\pi\)
0.446352 + 0.894857i \(0.352723\pi\)
\(462\) 7612.69 0.766611
\(463\) 9688.99 0.972539 0.486270 0.873809i \(-0.338357\pi\)
0.486270 + 0.873809i \(0.338357\pi\)
\(464\) 13370.8 1.33777
\(465\) −9757.48 −0.973101
\(466\) 7884.80 0.783812
\(467\) −1061.42 −0.105175 −0.0525876 0.998616i \(-0.516747\pi\)
−0.0525876 + 0.998616i \(0.516747\pi\)
\(468\) 646.531 0.0638588
\(469\) 2559.18 0.251966
\(470\) 13452.5 1.32026
\(471\) 4086.22 0.399752
\(472\) −3194.25 −0.311499
\(473\) −22333.1 −2.17099
\(474\) −9923.17 −0.961574
\(475\) −1694.83 −0.163714
\(476\) 4474.59 0.430866
\(477\) 3872.49 0.371717
\(478\) 16059.7 1.53672
\(479\) −3042.48 −0.290218 −0.145109 0.989416i \(-0.546353\pi\)
−0.145109 + 0.989416i \(0.546353\pi\)
\(480\) 8765.54 0.833522
\(481\) 587.409 0.0556831
\(482\) 10840.2 1.02440
\(483\) 682.890 0.0643325
\(484\) 22921.3 2.15264
\(485\) 2619.90 0.245286
\(486\) 9987.85 0.932218
\(487\) −2800.58 −0.260589 −0.130294 0.991475i \(-0.541592\pi\)
−0.130294 + 0.991475i \(0.541592\pi\)
\(488\) 2513.98 0.233202
\(489\) 4319.59 0.399465
\(490\) 1619.10 0.149273
\(491\) 16055.6 1.47572 0.737862 0.674952i \(-0.235836\pi\)
0.737862 + 0.674952i \(0.235836\pi\)
\(492\) −3169.00 −0.290385
\(493\) −17553.1 −1.60355
\(494\) 890.311 0.0810870
\(495\) 4435.77 0.402774
\(496\) 15272.9 1.38261
\(497\) −4517.45 −0.407717
\(498\) −9036.92 −0.813161
\(499\) −10791.3 −0.968106 −0.484053 0.875039i \(-0.660836\pi\)
−0.484053 + 0.875039i \(0.660836\pi\)
\(500\) 13681.8 1.22373
\(501\) 3374.45 0.300917
\(502\) −9149.86 −0.813502
\(503\) −19552.1 −1.73317 −0.866587 0.499026i \(-0.833691\pi\)
−0.866587 + 0.499026i \(0.833691\pi\)
\(504\) 315.812 0.0279115
\(505\) 11392.1 1.00385
\(506\) 5897.16 0.518104
\(507\) 9061.02 0.793716
\(508\) −14592.7 −1.27450
\(509\) −7944.22 −0.691791 −0.345895 0.938273i \(-0.612425\pi\)
−0.345895 + 0.938273i \(0.612425\pi\)
\(510\) −9730.36 −0.844838
\(511\) 7303.68 0.632281
\(512\) −15838.9 −1.36717
\(513\) 4205.83 0.361972
\(514\) 6246.76 0.536056
\(515\) 10847.4 0.928143
\(516\) 14110.6 1.20384
\(517\) 25164.4 2.14067
\(518\) 2188.37 0.185621
\(519\) −4319.91 −0.365362
\(520\) −310.914 −0.0262201
\(521\) −3927.08 −0.330227 −0.165114 0.986275i \(-0.552799\pi\)
−0.165114 + 0.986275i \(0.552799\pi\)
\(522\) −9448.67 −0.792255
\(523\) −148.545 −0.0124195 −0.00620977 0.999981i \(-0.501977\pi\)
−0.00620977 + 0.999981i \(0.501977\pi\)
\(524\) −14858.2 −1.23871
\(525\) 1827.42 0.151914
\(526\) 21416.9 1.77532
\(527\) −20050.1 −1.65730
\(528\) 13864.9 1.14278
\(529\) 529.000 0.0434783
\(530\) −14203.0 −1.16404
\(531\) −5746.62 −0.469646
\(532\) 1774.76 0.144635
\(533\) −632.473 −0.0513986
\(534\) −20120.5 −1.63052
\(535\) 9094.62 0.734943
\(536\) −1830.83 −0.147537
\(537\) −16758.6 −1.34672
\(538\) −3716.03 −0.297787
\(539\) 3028.70 0.242032
\(540\) −11201.9 −0.892687
\(541\) 3261.80 0.259215 0.129608 0.991565i \(-0.458628\pi\)
0.129608 + 0.991565i \(0.458628\pi\)
\(542\) −11838.9 −0.938233
\(543\) −4892.48 −0.386660
\(544\) 18011.8 1.41958
\(545\) 1383.53 0.108741
\(546\) −959.957 −0.0752425
\(547\) −23917.9 −1.86957 −0.934785 0.355213i \(-0.884408\pi\)
−0.934785 + 0.355213i \(0.884408\pi\)
\(548\) −3224.38 −0.251348
\(549\) 4522.78 0.351598
\(550\) 15780.8 1.22345
\(551\) −6962.11 −0.538286
\(552\) −488.536 −0.0376693
\(553\) −3947.92 −0.303585
\(554\) 7486.39 0.574127
\(555\) −2546.33 −0.194749
\(556\) 1743.03 0.132951
\(557\) 19922.3 1.51550 0.757749 0.652546i \(-0.226299\pi\)
0.757749 + 0.652546i \(0.226299\pi\)
\(558\) −10792.8 −0.818807
\(559\) 2816.20 0.213082
\(560\) 2948.84 0.222520
\(561\) −18201.6 −1.36983
\(562\) 11214.5 0.841735
\(563\) −11266.3 −0.843372 −0.421686 0.906742i \(-0.638562\pi\)
−0.421686 + 0.906742i \(0.638562\pi\)
\(564\) −15899.4 −1.18703
\(565\) −10796.8 −0.803939
\(566\) 13603.1 1.01021
\(567\) −2832.09 −0.209765
\(568\) 3231.76 0.238735
\(569\) −21430.9 −1.57897 −0.789483 0.613773i \(-0.789651\pi\)
−0.789483 + 0.613773i \(0.789651\pi\)
\(570\) −3859.36 −0.283598
\(571\) 11577.3 0.848500 0.424250 0.905545i \(-0.360538\pi\)
0.424250 + 0.905545i \(0.360538\pi\)
\(572\) −4435.70 −0.324241
\(573\) 10888.9 0.793877
\(574\) −2356.25 −0.171338
\(575\) 1415.61 0.102669
\(576\) 5883.98 0.425635
\(577\) 8949.82 0.645729 0.322865 0.946445i \(-0.395354\pi\)
0.322865 + 0.946445i \(0.395354\pi\)
\(578\) 385.545 0.0277449
\(579\) −3398.92 −0.243962
\(580\) 18543.0 1.32751
\(581\) −3595.33 −0.256729
\(582\) −5786.86 −0.412153
\(583\) −26568.2 −1.88738
\(584\) −5225.01 −0.370227
\(585\) −559.350 −0.0395321
\(586\) −26982.1 −1.90209
\(587\) 21580.3 1.51740 0.758702 0.651438i \(-0.225834\pi\)
0.758702 + 0.651438i \(0.225834\pi\)
\(588\) −1913.59 −0.134210
\(589\) −7952.48 −0.556327
\(590\) 21076.7 1.47070
\(591\) −22675.0 −1.57821
\(592\) 3985.64 0.276704
\(593\) −8233.64 −0.570177 −0.285089 0.958501i \(-0.592023\pi\)
−0.285089 + 0.958501i \(0.592023\pi\)
\(594\) −39161.0 −2.70504
\(595\) −3871.21 −0.266730
\(596\) 12556.5 0.862978
\(597\) 3554.52 0.243680
\(598\) −743.630 −0.0508516
\(599\) 14044.2 0.957978 0.478989 0.877821i \(-0.341003\pi\)
0.478989 + 0.877821i \(0.341003\pi\)
\(600\) −1307.32 −0.0889521
\(601\) −4991.83 −0.338804 −0.169402 0.985547i \(-0.554184\pi\)
−0.169402 + 0.985547i \(0.554184\pi\)
\(602\) 10491.6 0.710312
\(603\) −3293.75 −0.222441
\(604\) −27381.8 −1.84462
\(605\) −19830.5 −1.33260
\(606\) −25163.0 −1.68676
\(607\) −18893.1 −1.26334 −0.631670 0.775237i \(-0.717630\pi\)
−0.631670 + 0.775237i \(0.717630\pi\)
\(608\) 7144.04 0.476528
\(609\) 7506.73 0.499488
\(610\) −16588.1 −1.10103
\(611\) −3173.22 −0.210106
\(612\) −5758.94 −0.380378
\(613\) −9303.53 −0.612995 −0.306498 0.951871i \(-0.599157\pi\)
−0.306498 + 0.951871i \(0.599157\pi\)
\(614\) −6957.52 −0.457301
\(615\) 2741.67 0.179764
\(616\) −2166.71 −0.141720
\(617\) 24943.5 1.62754 0.813768 0.581190i \(-0.197413\pi\)
0.813768 + 0.581190i \(0.197413\pi\)
\(618\) −23959.8 −1.55956
\(619\) −5040.50 −0.327294 −0.163647 0.986519i \(-0.552326\pi\)
−0.163647 + 0.986519i \(0.552326\pi\)
\(620\) 21180.8 1.37200
\(621\) −3512.91 −0.227002
\(622\) 33248.4 2.14331
\(623\) −8004.90 −0.514783
\(624\) −1748.35 −0.112164
\(625\) −4143.33 −0.265173
\(626\) −13311.4 −0.849892
\(627\) −7219.34 −0.459829
\(628\) −8870.05 −0.563620
\(629\) −5232.31 −0.331678
\(630\) −2083.83 −0.131781
\(631\) −16445.3 −1.03752 −0.518761 0.854919i \(-0.673606\pi\)
−0.518761 + 0.854919i \(0.673606\pi\)
\(632\) 2824.32 0.177762
\(633\) 13407.7 0.841879
\(634\) 24209.1 1.51651
\(635\) 12625.0 0.788986
\(636\) 16786.4 1.04658
\(637\) −381.918 −0.0237553
\(638\) 64825.1 4.02265
\(639\) 5814.10 0.359941
\(640\) −5047.81 −0.311769
\(641\) 15725.1 0.968959 0.484480 0.874803i \(-0.339009\pi\)
0.484480 + 0.874803i \(0.339009\pi\)
\(642\) −20088.3 −1.23492
\(643\) −20048.6 −1.22961 −0.614804 0.788680i \(-0.710765\pi\)
−0.614804 + 0.788680i \(0.710765\pi\)
\(644\) −1482.36 −0.0907039
\(645\) −12207.8 −0.745243
\(646\) −7930.38 −0.482998
\(647\) 4100.77 0.249177 0.124589 0.992208i \(-0.460239\pi\)
0.124589 + 0.992208i \(0.460239\pi\)
\(648\) 2026.07 0.122826
\(649\) 39426.2 2.38461
\(650\) −1989.96 −0.120081
\(651\) 8574.59 0.516228
\(652\) −9376.62 −0.563216
\(653\) −12525.0 −0.750601 −0.375300 0.926903i \(-0.622460\pi\)
−0.375300 + 0.926903i \(0.622460\pi\)
\(654\) −3055.96 −0.182718
\(655\) 12854.7 0.766830
\(656\) −4291.40 −0.255413
\(657\) −9400.07 −0.558191
\(658\) −11821.7 −0.700392
\(659\) 2962.28 0.175105 0.0875525 0.996160i \(-0.472095\pi\)
0.0875525 + 0.996160i \(0.472095\pi\)
\(660\) 19228.1 1.13402
\(661\) −21794.8 −1.28248 −0.641239 0.767341i \(-0.721579\pi\)
−0.641239 + 0.767341i \(0.721579\pi\)
\(662\) 3205.71 0.188207
\(663\) 2295.22 0.134448
\(664\) 2572.08 0.150325
\(665\) −1535.44 −0.0895366
\(666\) −2816.50 −0.163870
\(667\) 5815.08 0.337573
\(668\) −7324.99 −0.424270
\(669\) −26575.1 −1.53580
\(670\) 12080.4 0.696577
\(671\) −31029.7 −1.78523
\(672\) −7702.90 −0.442181
\(673\) −23276.4 −1.33319 −0.666596 0.745419i \(-0.732249\pi\)
−0.666596 + 0.745419i \(0.732249\pi\)
\(674\) 11082.3 0.633343
\(675\) −9400.55 −0.536040
\(676\) −19668.9 −1.11908
\(677\) 31403.5 1.78277 0.891385 0.453247i \(-0.149734\pi\)
0.891385 + 0.453247i \(0.149734\pi\)
\(678\) 23848.1 1.35086
\(679\) −2302.29 −0.130123
\(680\) 2769.44 0.156181
\(681\) −729.274 −0.0410365
\(682\) 74046.6 4.15746
\(683\) −25304.8 −1.41766 −0.708829 0.705380i \(-0.750776\pi\)
−0.708829 + 0.705380i \(0.750776\pi\)
\(684\) −2284.17 −0.127686
\(685\) 2789.59 0.155598
\(686\) −1422.82 −0.0791887
\(687\) 589.956 0.0327631
\(688\) 19108.3 1.05886
\(689\) 3350.24 0.185245
\(690\) 3223.52 0.177851
\(691\) −24270.6 −1.33618 −0.668088 0.744082i \(-0.732887\pi\)
−0.668088 + 0.744082i \(0.732887\pi\)
\(692\) 9377.30 0.515132
\(693\) −3898.03 −0.213671
\(694\) −26943.4 −1.47371
\(695\) −1507.99 −0.0823039
\(696\) −5370.28 −0.292471
\(697\) 5633.71 0.306158
\(698\) −15937.4 −0.864238
\(699\) 8062.33 0.436259
\(700\) −3966.81 −0.214188
\(701\) 18969.8 1.02208 0.511041 0.859556i \(-0.329260\pi\)
0.511041 + 0.859556i \(0.329260\pi\)
\(702\) 4938.19 0.265498
\(703\) −2075.30 −0.111339
\(704\) −40368.6 −2.16115
\(705\) 13755.4 0.734836
\(706\) 20439.5 1.08959
\(707\) −10011.1 −0.532539
\(708\) −24910.3 −1.32230
\(709\) −11496.0 −0.608943 −0.304472 0.952521i \(-0.598480\pi\)
−0.304472 + 0.952521i \(0.598480\pi\)
\(710\) −21324.2 −1.12716
\(711\) 5081.10 0.268011
\(712\) 5726.66 0.301427
\(713\) 6642.29 0.348886
\(714\) 8550.76 0.448185
\(715\) 3837.56 0.200723
\(716\) 36378.3 1.89877
\(717\) 16421.3 0.855320
\(718\) 5035.10 0.261710
\(719\) 31091.3 1.61267 0.806336 0.591457i \(-0.201447\pi\)
0.806336 + 0.591457i \(0.201447\pi\)
\(720\) −3795.25 −0.196445
\(721\) −9532.38 −0.492378
\(722\) 25306.8 1.30446
\(723\) 11084.3 0.570165
\(724\) 10620.2 0.545161
\(725\) 15561.2 0.797141
\(726\) 43801.7 2.23916
\(727\) −23915.7 −1.22006 −0.610032 0.792377i \(-0.708843\pi\)
−0.610032 + 0.792377i \(0.708843\pi\)
\(728\) 273.222 0.0139097
\(729\) 21136.5 1.07385
\(730\) 34476.4 1.74798
\(731\) −25085.1 −1.26923
\(732\) 19605.2 0.989931
\(733\) 37215.0 1.87526 0.937632 0.347628i \(-0.113013\pi\)
0.937632 + 0.347628i \(0.113013\pi\)
\(734\) −34943.6 −1.75721
\(735\) 1655.55 0.0830831
\(736\) −5967.04 −0.298843
\(737\) 22597.6 1.12944
\(738\) 3032.57 0.151261
\(739\) 4855.18 0.241679 0.120840 0.992672i \(-0.461441\pi\)
0.120840 + 0.992672i \(0.461441\pi\)
\(740\) 5527.37 0.274581
\(741\) 910.356 0.0451319
\(742\) 12481.2 0.617519
\(743\) 834.561 0.0412074 0.0206037 0.999788i \(-0.493441\pi\)
0.0206037 + 0.999788i \(0.493441\pi\)
\(744\) −6134.21 −0.302273
\(745\) −10863.3 −0.534230
\(746\) −6304.26 −0.309404
\(747\) 4627.30 0.226645
\(748\) 39510.7 1.93135
\(749\) −7992.09 −0.389886
\(750\) 26145.3 1.27292
\(751\) −15399.9 −0.748268 −0.374134 0.927375i \(-0.622060\pi\)
−0.374134 + 0.927375i \(0.622060\pi\)
\(752\) −21530.7 −1.04407
\(753\) −9355.86 −0.452784
\(754\) −8174.42 −0.394821
\(755\) 23689.5 1.14192
\(756\) 9843.86 0.473569
\(757\) 1879.55 0.0902423 0.0451212 0.998982i \(-0.485633\pi\)
0.0451212 + 0.998982i \(0.485633\pi\)
\(758\) −29873.2 −1.43145
\(759\) 6029.93 0.288370
\(760\) 1098.45 0.0524274
\(761\) 6048.22 0.288105 0.144052 0.989570i \(-0.453987\pi\)
0.144052 + 0.989570i \(0.453987\pi\)
\(762\) −27886.1 −1.32573
\(763\) −1215.81 −0.0576871
\(764\) −23636.8 −1.11931
\(765\) 4982.37 0.235474
\(766\) 14427.6 0.680537
\(767\) −4971.63 −0.234049
\(768\) −11011.8 −0.517390
\(769\) −19068.0 −0.894160 −0.447080 0.894494i \(-0.647536\pi\)
−0.447080 + 0.894494i \(0.647536\pi\)
\(770\) 14296.7 0.669113
\(771\) 6387.41 0.298362
\(772\) 7378.10 0.343968
\(773\) −13715.0 −0.638154 −0.319077 0.947729i \(-0.603373\pi\)
−0.319077 + 0.947729i \(0.603373\pi\)
\(774\) −13503.1 −0.627078
\(775\) 17774.8 0.823857
\(776\) 1647.05 0.0761927
\(777\) 2237.64 0.103314
\(778\) 3519.65 0.162192
\(779\) 2234.50 0.102772
\(780\) −2424.65 −0.111303
\(781\) −39889.2 −1.82759
\(782\) 6623.83 0.302900
\(783\) −38615.9 −1.76248
\(784\) −2591.36 −0.118046
\(785\) 7673.96 0.348911
\(786\) −28393.5 −1.28850
\(787\) −35676.1 −1.61590 −0.807952 0.589248i \(-0.799424\pi\)
−0.807952 + 0.589248i \(0.799424\pi\)
\(788\) 49221.0 2.22516
\(789\) 21899.0 0.988120
\(790\) −18635.8 −0.839281
\(791\) 9487.93 0.426488
\(792\) 2788.63 0.125113
\(793\) 3912.83 0.175219
\(794\) −47102.3 −2.10529
\(795\) −14522.8 −0.647888
\(796\) −7715.86 −0.343570
\(797\) −5428.65 −0.241271 −0.120635 0.992697i \(-0.538493\pi\)
−0.120635 + 0.992697i \(0.538493\pi\)
\(798\) 3391.49 0.150448
\(799\) 28265.2 1.25151
\(800\) −15967.8 −0.705685
\(801\) 10302.6 0.454461
\(802\) 14893.0 0.655724
\(803\) 64491.6 2.83420
\(804\) −14277.7 −0.626286
\(805\) 1282.47 0.0561506
\(806\) −9337.25 −0.408053
\(807\) −3799.70 −0.165744
\(808\) 7161.87 0.311824
\(809\) −13432.1 −0.583743 −0.291871 0.956458i \(-0.594278\pi\)
−0.291871 + 0.956458i \(0.594278\pi\)
\(810\) −13368.6 −0.579909
\(811\) 45087.0 1.95218 0.976090 0.217367i \(-0.0697468\pi\)
0.976090 + 0.217367i \(0.0697468\pi\)
\(812\) −16295.0 −0.704240
\(813\) −12105.4 −0.522208
\(814\) 19323.3 0.832043
\(815\) 8112.22 0.348661
\(816\) 15573.3 0.668108
\(817\) −9949.54 −0.426059
\(818\) −25082.5 −1.07211
\(819\) 491.540 0.0209717
\(820\) −5951.41 −0.253454
\(821\) −29491.7 −1.25368 −0.626838 0.779150i \(-0.715651\pi\)
−0.626838 + 0.779150i \(0.715651\pi\)
\(822\) −6161.67 −0.261451
\(823\) 9.51830 0.000403143 0 0.000201572 1.00000i \(-0.499936\pi\)
0.000201572 1.00000i \(0.499936\pi\)
\(824\) 6819.42 0.288308
\(825\) 16136.1 0.680954
\(826\) −18521.6 −0.780205
\(827\) −21372.1 −0.898647 −0.449323 0.893369i \(-0.648335\pi\)
−0.449323 + 0.893369i \(0.648335\pi\)
\(828\) 1907.85 0.0800753
\(829\) 28337.6 1.18722 0.593611 0.804752i \(-0.297702\pi\)
0.593611 + 0.804752i \(0.297702\pi\)
\(830\) −16971.4 −0.709743
\(831\) 7654.95 0.319551
\(832\) 5090.46 0.212115
\(833\) 3401.90 0.141499
\(834\) 3330.85 0.138295
\(835\) 6337.25 0.262646
\(836\) 15671.2 0.648323
\(837\) −44109.2 −1.82155
\(838\) −66263.6 −2.73155
\(839\) −47275.0 −1.94531 −0.972655 0.232254i \(-0.925390\pi\)
−0.972655 + 0.232254i \(0.925390\pi\)
\(840\) −1184.38 −0.0486486
\(841\) 39533.8 1.62097
\(842\) −70695.5 −2.89350
\(843\) 11467.0 0.468498
\(844\) −29104.4 −1.18698
\(845\) 17016.7 0.692771
\(846\) 15214.9 0.618321
\(847\) 17426.4 0.706941
\(848\) 22731.8 0.920534
\(849\) 13909.4 0.562271
\(850\) 17725.4 0.715266
\(851\) 1733.38 0.0698233
\(852\) 25202.8 1.01342
\(853\) 20851.3 0.836970 0.418485 0.908224i \(-0.362561\pi\)
0.418485 + 0.908224i \(0.362561\pi\)
\(854\) 14577.1 0.584096
\(855\) 1976.16 0.0790448
\(856\) 5717.50 0.228294
\(857\) −15211.2 −0.606306 −0.303153 0.952942i \(-0.598039\pi\)
−0.303153 + 0.952942i \(0.598039\pi\)
\(858\) −8476.44 −0.337274
\(859\) 21925.0 0.870862 0.435431 0.900222i \(-0.356596\pi\)
0.435431 + 0.900222i \(0.356596\pi\)
\(860\) 26499.7 1.05074
\(861\) −2409.30 −0.0953645
\(862\) −56069.3 −2.21546
\(863\) 36509.9 1.44011 0.720053 0.693919i \(-0.244117\pi\)
0.720053 + 0.693919i \(0.244117\pi\)
\(864\) 39625.1 1.56027
\(865\) −8112.82 −0.318895
\(866\) 62236.4 2.44212
\(867\) 394.226 0.0154425
\(868\) −18613.0 −0.727842
\(869\) −34860.2 −1.36082
\(870\) 35434.9 1.38087
\(871\) −2849.55 −0.110854
\(872\) 869.783 0.0337782
\(873\) 2963.12 0.114876
\(874\) 2627.22 0.101678
\(875\) 10401.9 0.401883
\(876\) −40747.2 −1.57160
\(877\) −11035.5 −0.424904 −0.212452 0.977171i \(-0.568145\pi\)
−0.212452 + 0.977171i \(0.568145\pi\)
\(878\) −17494.0 −0.672430
\(879\) −27589.6 −1.05867
\(880\) 26038.3 0.997445
\(881\) 23545.6 0.900422 0.450211 0.892922i \(-0.351349\pi\)
0.450211 + 0.892922i \(0.351349\pi\)
\(882\) 1831.21 0.0699095
\(883\) −12196.5 −0.464828 −0.232414 0.972617i \(-0.574662\pi\)
−0.232414 + 0.972617i \(0.574662\pi\)
\(884\) −4982.28 −0.189561
\(885\) 21551.3 0.818574
\(886\) 10569.1 0.400761
\(887\) 34421.0 1.30298 0.651491 0.758656i \(-0.274144\pi\)
0.651491 + 0.758656i \(0.274144\pi\)
\(888\) −1600.80 −0.0604946
\(889\) −11094.4 −0.418555
\(890\) −37786.4 −1.42315
\(891\) −25007.4 −0.940270
\(892\) 57687.1 2.16537
\(893\) 11210.9 0.420109
\(894\) 23995.0 0.897665
\(895\) −31472.8 −1.17544
\(896\) 4435.87 0.165393
\(897\) −760.372 −0.0283033
\(898\) 21004.6 0.780550
\(899\) 73016.0 2.70881
\(900\) 5105.41 0.189089
\(901\) −29842.1 −1.10342
\(902\) −20805.7 −0.768022
\(903\) 10727.9 0.395350
\(904\) −6787.62 −0.249727
\(905\) −9188.11 −0.337484
\(906\) −52325.6 −1.91877
\(907\) 870.549 0.0318700 0.0159350 0.999873i \(-0.494928\pi\)
0.0159350 + 0.999873i \(0.494928\pi\)
\(908\) 1583.05 0.0578583
\(909\) 12884.6 0.470137
\(910\) −1802.81 −0.0656731
\(911\) 48709.9 1.77149 0.885747 0.464168i \(-0.153646\pi\)
0.885747 + 0.464168i \(0.153646\pi\)
\(912\) 6176.87 0.224273
\(913\) −31746.8 −1.15078
\(914\) −17315.1 −0.626624
\(915\) −16961.5 −0.612821
\(916\) −1280.63 −0.0461934
\(917\) −11296.3 −0.406802
\(918\) −43986.6 −1.58145
\(919\) 36669.8 1.31624 0.658121 0.752912i \(-0.271352\pi\)
0.658121 + 0.752912i \(0.271352\pi\)
\(920\) −917.475 −0.0328785
\(921\) −7114.17 −0.254528
\(922\) −36653.4 −1.30924
\(923\) 5030.01 0.179377
\(924\) −16897.1 −0.601594
\(925\) 4638.54 0.164880
\(926\) −40191.5 −1.42632
\(927\) 12268.5 0.434682
\(928\) −65593.3 −2.32026
\(929\) −43182.3 −1.52504 −0.762521 0.646963i \(-0.776039\pi\)
−0.762521 + 0.646963i \(0.776039\pi\)
\(930\) 40475.6 1.42715
\(931\) 1349.30 0.0474990
\(932\) −17501.1 −0.615092
\(933\) 33997.0 1.19294
\(934\) 4402.95 0.154249
\(935\) −34182.8 −1.19561
\(936\) −351.645 −0.0122798
\(937\) 21453.6 0.747980 0.373990 0.927433i \(-0.377989\pi\)
0.373990 + 0.927433i \(0.377989\pi\)
\(938\) −10615.9 −0.369532
\(939\) −13611.1 −0.473038
\(940\) −29859.2 −1.03606
\(941\) 394.938 0.0136818 0.00684092 0.999977i \(-0.497822\pi\)
0.00684092 + 0.999977i \(0.497822\pi\)
\(942\) −16950.3 −0.586275
\(943\) −1866.36 −0.0644508
\(944\) −33733.1 −1.16305
\(945\) −8516.46 −0.293165
\(946\) 92641.4 3.18397
\(947\) −11802.4 −0.404991 −0.202496 0.979283i \(-0.564905\pi\)
−0.202496 + 0.979283i \(0.564905\pi\)
\(948\) 22025.4 0.754590
\(949\) −8132.37 −0.278175
\(950\) 7030.44 0.240103
\(951\) 24754.2 0.844070
\(952\) −2433.70 −0.0828538
\(953\) 57313.4 1.94813 0.974063 0.226279i \(-0.0726560\pi\)
0.974063 + 0.226279i \(0.0726560\pi\)
\(954\) −16063.7 −0.545159
\(955\) 20449.5 0.692911
\(956\) −35646.0 −1.20594
\(957\) 66284.6 2.23895
\(958\) 12620.7 0.425633
\(959\) −2451.41 −0.0825445
\(960\) −22066.4 −0.741864
\(961\) 53611.7 1.79960
\(962\) −2436.67 −0.0816645
\(963\) 10286.1 0.344199
\(964\) −24060.9 −0.803889
\(965\) −6383.20 −0.212935
\(966\) −2832.74 −0.0943497
\(967\) −21392.4 −0.711409 −0.355704 0.934599i \(-0.615759\pi\)
−0.355704 + 0.934599i \(0.615759\pi\)
\(968\) −12466.8 −0.413944
\(969\) −8108.93 −0.268830
\(970\) −10867.8 −0.359735
\(971\) −12646.6 −0.417968 −0.208984 0.977919i \(-0.567016\pi\)
−0.208984 + 0.977919i \(0.567016\pi\)
\(972\) −22169.0 −0.731553
\(973\) 1325.17 0.0436620
\(974\) 11617.3 0.382178
\(975\) −2034.76 −0.0668353
\(976\) 26549.0 0.870711
\(977\) 41893.1 1.37183 0.685915 0.727682i \(-0.259402\pi\)
0.685915 + 0.727682i \(0.259402\pi\)
\(978\) −17918.3 −0.585854
\(979\) −70683.4 −2.30751
\(980\) −3593.75 −0.117141
\(981\) 1564.79 0.0509274
\(982\) −66601.3 −2.16429
\(983\) −25459.3 −0.826070 −0.413035 0.910715i \(-0.635531\pi\)
−0.413035 + 0.910715i \(0.635531\pi\)
\(984\) 1723.60 0.0558399
\(985\) −42583.8 −1.37749
\(986\) 72813.1 2.35177
\(987\) −12087.9 −0.389829
\(988\) −1976.13 −0.0636326
\(989\) 8310.33 0.267192
\(990\) −18400.3 −0.590707
\(991\) 41103.7 1.31756 0.658780 0.752336i \(-0.271073\pi\)
0.658780 + 0.752336i \(0.271073\pi\)
\(992\) −74924.1 −2.39803
\(993\) 3277.88 0.104754
\(994\) 18739.1 0.597956
\(995\) 6675.41 0.212688
\(996\) 20058.3 0.638124
\(997\) 2441.28 0.0775489 0.0387744 0.999248i \(-0.487655\pi\)
0.0387744 + 0.999248i \(0.487655\pi\)
\(998\) 44764.0 1.41982
\(999\) −11510.8 −0.364550
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 161.4.a.a.1.1 5
3.2 odd 2 1449.4.a.e.1.5 5
7.6 odd 2 1127.4.a.d.1.1 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
161.4.a.a.1.1 5 1.1 even 1 trivial
1127.4.a.d.1.1 5 7.6 odd 2
1449.4.a.e.1.5 5 3.2 odd 2