Defining parameters
| Level: | \( N \) | \(=\) | \( 161 = 7 \cdot 23 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 161.k (of order \(22\) and degree \(10\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 161 \) |
| Character field: | \(\Q(\zeta_{22})\) | ||
| Newform subspaces: | \( 2 \) | ||
| Sturm bound: | \(32\) | ||
| Trace bound: | \(1\) | ||
| Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(161, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 180 | 180 | 0 |
| Cusp forms | 140 | 140 | 0 |
| Eisenstein series | 40 | 40 | 0 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(161, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
| 161.2.k.a | $20$ | $1.286$ | 20.0.\(\cdots\).2 | \(\Q(\sqrt{-7}) \) | \(2\) | \(0\) | \(0\) | \(0\) | \(q+(\beta _{4}+\beta _{6}-\beta _{14})q^{2}+(-\beta _{2}+\beta _{13}+\cdots)q^{4}+\cdots\) |
| 161.2.k.b | $120$ | $1.286$ | None | \(-22\) | \(0\) | \(0\) | \(-11\) | ||