Defining parameters
Level: | \( N \) | \(=\) | \( 161 = 7 \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 161.e (of order \(3\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 7 \) |
Character field: | \(\Q(\zeta_{3})\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(32\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(161, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 36 | 28 | 8 |
Cusp forms | 28 | 28 | 0 |
Eisenstein series | 8 | 0 | 8 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(161, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
161.2.e.a | $14$ | $1.286$ | \(\mathbb{Q}[x]/(x^{14} + \cdots)\) | None | \(0\) | \(-5\) | \(-4\) | \(-2\) | \(q-\beta _{2}q^{2}+(-1-\beta _{6}-\beta _{10}-\beta _{11}+\cdots)q^{3}+\cdots\) |
161.2.e.b | $14$ | $1.286$ | \(\mathbb{Q}[x]/(x^{14} + \cdots)\) | None | \(0\) | \(3\) | \(4\) | \(0\) | \(q-\beta _{1}q^{2}+(-\beta _{5}-\beta _{12})q^{3}+(-1+\beta _{2}+\cdots)q^{4}+\cdots\) |