Properties

Label 161.2.e
Level $161$
Weight $2$
Character orbit 161.e
Rep. character $\chi_{161}(93,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $28$
Newform subspaces $2$
Sturm bound $32$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 161 = 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 161.e (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 7 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 2 \)
Sturm bound: \(32\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(161, [\chi])\).

Total New Old
Modular forms 36 28 8
Cusp forms 28 28 0
Eisenstein series 8 0 8

Trace form

\( 28 q - 2 q^{3} - 12 q^{4} + 8 q^{6} - 2 q^{7} - 12 q^{8} - 16 q^{9} + 10 q^{10} - 4 q^{11} + 6 q^{12} - 8 q^{13} - 4 q^{14} - 12 q^{15} + 10 q^{17} + 10 q^{18} + 2 q^{19} + 8 q^{20} + 2 q^{21} - 40 q^{22}+ \cdots + 128 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(161, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
161.2.e.a 161.e 7.c $14$ $1.286$ \(\mathbb{Q}[x]/(x^{14} + \cdots)\) None 161.2.e.a \(0\) \(-5\) \(-4\) \(-2\) $\mathrm{SU}(2)[C_{3}]$ \(q-\beta _{2}q^{2}+(-1-\beta _{6}-\beta _{10}-\beta _{11}+\cdots)q^{3}+\cdots\)
161.2.e.b 161.e 7.c $14$ $1.286$ \(\mathbb{Q}[x]/(x^{14} + \cdots)\) None 161.2.e.b \(0\) \(3\) \(4\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q-\beta _{1}q^{2}+(-\beta _{5}-\beta _{12})q^{3}+(-1+\beta _{2}+\cdots)q^{4}+\cdots\)