Properties

Label 161.2.a.d
Level $161$
Weight $2$
Character orbit 161.a
Self dual yes
Analytic conductor $1.286$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [161,2,Mod(1,161)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("161.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(161, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 161 = 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 161.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(1.28559147254\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: 5.5.2147108.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 2x^{4} - 9x^{3} + 17x^{2} + 16x - 27 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3,\beta_4\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} + \beta_{3} q^{3} + (\beta_{2} + 2) q^{4} + ( - \beta_{4} - 1) q^{5} + (\beta_{4} - \beta_{2}) q^{6} + q^{7} + (\beta_{4} - \beta_{3} + \beta_{2} + \beta_1) q^{8} + ( - \beta_{2} - \beta_1 + 3) q^{9}+ \cdots + (\beta_{4} - \beta_{3} + \beta_{2} + \cdots - 3) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + 2 q^{2} + 12 q^{4} - 4 q^{5} - 3 q^{6} + 5 q^{7} + 3 q^{8} + 11 q^{9} - 8 q^{10} - 4 q^{11} + 3 q^{12} - 6 q^{13} + 2 q^{14} + 10 q^{15} + 10 q^{16} - 12 q^{17} - 19 q^{18} + 6 q^{19} + 14 q^{22}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{5} - 2x^{4} - 9x^{3} + 17x^{2} + 16x - 27 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 4 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{4} - \nu^{3} - 8\nu^{2} + 5\nu + 11 ) / 2 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( \nu^{4} + \nu^{3} - 10\nu^{2} - 5\nu + 19 ) / 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 4 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{4} - \beta_{3} + \beta_{2} + 5\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{4} + \beta_{3} + 9\beta_{2} + 21 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−2.54577
−1.50216
1.23828
2.11948
2.69017
−2.54577 2.46268 4.48096 2.78847 −6.26943 1.00000 −6.31597 3.06481 −7.09882
1.2 −1.50216 −3.04067 0.256481 −3.82405 4.56757 1.00000 2.61904 6.24568 5.74433
1.3 1.23828 2.68857 −0.466664 −1.86253 3.32920 1.00000 −3.05442 4.22838 −2.30633
1.4 2.11948 −1.84074 2.49221 2.40920 −3.90141 1.00000 1.04322 0.388311 5.10626
1.5 2.69017 −0.269842 5.23702 −3.51109 −0.725921 1.00000 8.70812 −2.92719 −9.44544
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.5
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(7\) \( -1 \)
\(23\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 161.2.a.d 5
3.b odd 2 1 1449.2.a.r 5
4.b odd 2 1 2576.2.a.bd 5
5.b even 2 1 4025.2.a.p 5
7.b odd 2 1 1127.2.a.h 5
23.b odd 2 1 3703.2.a.j 5
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
161.2.a.d 5 1.a even 1 1 trivial
1127.2.a.h 5 7.b odd 2 1
1449.2.a.r 5 3.b odd 2 1
2576.2.a.bd 5 4.b odd 2 1
3703.2.a.j 5 23.b odd 2 1
4025.2.a.p 5 5.b even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{5} - 2T_{2}^{4} - 9T_{2}^{3} + 17T_{2}^{2} + 16T_{2} - 27 \) acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(161))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{5} - 2 T^{4} + \cdots - 27 \) Copy content Toggle raw display
$3$ \( T^{5} - 13 T^{3} + \cdots + 10 \) Copy content Toggle raw display
$5$ \( T^{5} + 4 T^{4} + \cdots + 168 \) Copy content Toggle raw display
$7$ \( (T - 1)^{5} \) Copy content Toggle raw display
$11$ \( T^{5} + 4 T^{4} + \cdots - 48 \) Copy content Toggle raw display
$13$ \( T^{5} + 6 T^{4} + \cdots + 56 \) Copy content Toggle raw display
$17$ \( T^{5} + 12 T^{4} + \cdots - 1536 \) Copy content Toggle raw display
$19$ \( T^{5} - 6 T^{4} + \cdots + 128 \) Copy content Toggle raw display
$23$ \( (T + 1)^{5} \) Copy content Toggle raw display
$29$ \( T^{5} + 4 T^{4} + \cdots - 1452 \) Copy content Toggle raw display
$31$ \( T^{5} - 30 T^{4} + \cdots - 5206 \) Copy content Toggle raw display
$37$ \( T^{5} - 4 T^{4} + \cdots - 32 \) Copy content Toggle raw display
$41$ \( T^{5} - 6 T^{4} + \cdots - 456 \) Copy content Toggle raw display
$43$ \( T^{5} + 12 T^{4} + \cdots + 256 \) Copy content Toggle raw display
$47$ \( T^{5} - 10 T^{4} + \cdots + 11142 \) Copy content Toggle raw display
$53$ \( T^{5} - 16 T^{4} + \cdots - 480 \) Copy content Toggle raw display
$59$ \( T^{5} - 22 T^{4} + \cdots + 1440 \) Copy content Toggle raw display
$61$ \( T^{5} + 18 T^{4} + \cdots + 56 \) Copy content Toggle raw display
$67$ \( T^{5} + 2 T^{4} + \cdots + 61936 \) Copy content Toggle raw display
$71$ \( T^{5} - 4 T^{4} + \cdots - 5184 \) Copy content Toggle raw display
$73$ \( T^{5} + 2 T^{4} + \cdots - 27656 \) Copy content Toggle raw display
$79$ \( T^{5} - 30 T^{4} + \cdots + 1936 \) Copy content Toggle raw display
$83$ \( T^{5} - 8 T^{4} + \cdots - 5376 \) Copy content Toggle raw display
$89$ \( T^{5} + 20 T^{4} + \cdots - 4704 \) Copy content Toggle raw display
$97$ \( T^{5} + 12 T^{4} + \cdots + 4120 \) Copy content Toggle raw display
show more
show less