Properties

Label 161.1.l
Level $161$
Weight $1$
Character orbit 161.l
Rep. character $\chi_{161}(6,\cdot)$
Character field $\Q(\zeta_{22})$
Dimension $10$
Newform subspaces $1$
Sturm bound $16$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 161 = 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 161.l (of order \(22\) and degree \(10\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 161 \)
Character field: \(\Q(\zeta_{22})\)
Newform subspaces: \( 1 \)
Sturm bound: \(16\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(161, [\chi])\).

Total New Old
Modular forms 30 30 0
Cusp forms 10 10 0
Eisenstein series 20 20 0

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 10 0 0 0

Trace form

\( 10 q - 2 q^{2} - 3 q^{4} - q^{7} - 4 q^{8} - q^{9} - 2 q^{11} - 2 q^{14} + 6 q^{16} - 2 q^{18} - 4 q^{22} - q^{23} - q^{25} - 3 q^{28} - 2 q^{29} + 5 q^{32} + 8 q^{36} - 2 q^{37} - 2 q^{43} + 5 q^{44}+ \cdots - 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{1}^{\mathrm{new}}(161, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field Image CM RM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
161.1.l.a 161.l 161.l $10$ $0.080$ \(\Q(\zeta_{22})\) $D_{11}$ \(\Q(\sqrt{-7}) \) None 161.1.l.a \(-2\) \(0\) \(0\) \(-1\) \(q+(-\zeta_{22}+\zeta_{22}^{8})q^{2}+(\zeta_{22}^{2}-\zeta_{22}^{5}+\cdots)q^{4}+\cdots\)