Properties

Label 161.1
Level 161
Weight 1
Dimension 10
Nonzero newspaces 1
Newform subspaces 1
Sturm bound 2112
Trace bound 0

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 161 = 7 \cdot 23 \)
Weight: \( k \) = \( 1 \)
Nonzero newspaces: \( 1 \)
Newform subspaces: \( 1 \)
Sturm bound: \(2112\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(\Gamma_1(161))\).

Total New Old
Modular forms 144 114 30
Cusp forms 12 10 2
Eisenstein series 132 104 28

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 10 0 0 0

Trace form

\( 10 q - 2 q^{2} - 3 q^{4} - q^{7} - 4 q^{8} - q^{9} - 2 q^{11} - 2 q^{14} + 6 q^{16} - 2 q^{18} - 4 q^{22} - q^{23} - q^{25} - 3 q^{28} - 2 q^{29} + 5 q^{32} + 8 q^{36} - 2 q^{37} - 2 q^{43} + 5 q^{44}+ \cdots - 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{1}^{\mathrm{new}}(\Gamma_1(161))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
161.1.b \(\chi_{161}(139, \cdot)\) None 0 1
161.1.d \(\chi_{161}(22, \cdot)\) None 0 1
161.1.f \(\chi_{161}(114, \cdot)\) None 0 2
161.1.h \(\chi_{161}(24, \cdot)\) None 0 2
161.1.j \(\chi_{161}(15, \cdot)\) None 0 10
161.1.l \(\chi_{161}(6, \cdot)\) 161.1.l.a 10 10
161.1.n \(\chi_{161}(3, \cdot)\) None 0 20
161.1.p \(\chi_{161}(11, \cdot)\) None 0 20

Decomposition of \(S_{1}^{\mathrm{old}}(\Gamma_1(161))\) into lower level spaces

\( S_{1}^{\mathrm{old}}(\Gamma_1(161)) \cong \) \(S_{1}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 4}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(7))\)\(^{\oplus 2}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(23))\)\(^{\oplus 2}\)