# Properties

 Label 1600.4.a.j.1.1 Level $1600$ Weight $4$ Character 1600.1 Self dual yes Analytic conductor $94.403$ Analytic rank $0$ Dimension $1$ CM no Inner twists $1$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [1600,4,Mod(1,1600)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(1600, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0, 0]))

N = Newforms(chi, 4, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("1600.1");

S:= CuspForms(chi, 4);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$1600 = 2^{6} \cdot 5^{2}$$ Weight: $$k$$ $$=$$ $$4$$ Character orbit: $$[\chi]$$ $$=$$ 1600.a (trivial)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$94.4030560092$$ Analytic rank: $$0$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 40) Fricke sign: $$+1$$ Sato-Tate group: $\mathrm{SU}(2)$

## Embedding invariants

 Embedding label 1.1 Character $$\chi$$ $$=$$ 1600.1

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q-6.00000 q^{3} +34.0000 q^{7} +9.00000 q^{9} +O(q^{10})$$ $$q-6.00000 q^{3} +34.0000 q^{7} +9.00000 q^{9} -16.0000 q^{11} +58.0000 q^{13} +70.0000 q^{17} -4.00000 q^{19} -204.000 q^{21} +134.000 q^{23} +108.000 q^{27} +242.000 q^{29} +100.000 q^{31} +96.0000 q^{33} -438.000 q^{37} -348.000 q^{39} -138.000 q^{41} +178.000 q^{43} -22.0000 q^{47} +813.000 q^{49} -420.000 q^{51} +162.000 q^{53} +24.0000 q^{57} +268.000 q^{59} -250.000 q^{61} +306.000 q^{63} +422.000 q^{67} -804.000 q^{69} -852.000 q^{71} -306.000 q^{73} -544.000 q^{77} -456.000 q^{79} -891.000 q^{81} +434.000 q^{83} -1452.00 q^{87} -726.000 q^{89} +1972.00 q^{91} -600.000 q^{93} -1378.00 q^{97} -144.000 q^{99} +O(q^{100})$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ 0 0
$$3$$ −6.00000 −1.15470 −0.577350 0.816497i $$-0.695913\pi$$
−0.577350 + 0.816497i $$0.695913\pi$$
$$4$$ 0 0
$$5$$ 0 0
$$6$$ 0 0
$$7$$ 34.0000 1.83583 0.917914 0.396780i $$-0.129872\pi$$
0.917914 + 0.396780i $$0.129872\pi$$
$$8$$ 0 0
$$9$$ 9.00000 0.333333
$$10$$ 0 0
$$11$$ −16.0000 −0.438562 −0.219281 0.975662i $$-0.570371\pi$$
−0.219281 + 0.975662i $$0.570371\pi$$
$$12$$ 0 0
$$13$$ 58.0000 1.23741 0.618704 0.785624i $$-0.287658\pi$$
0.618704 + 0.785624i $$0.287658\pi$$
$$14$$ 0 0
$$15$$ 0 0
$$16$$ 0 0
$$17$$ 70.0000 0.998676 0.499338 0.866407i $$-0.333577\pi$$
0.499338 + 0.866407i $$0.333577\pi$$
$$18$$ 0 0
$$19$$ −4.00000 −0.0482980 −0.0241490 0.999708i $$-0.507688\pi$$
−0.0241490 + 0.999708i $$0.507688\pi$$
$$20$$ 0 0
$$21$$ −204.000 −2.11983
$$22$$ 0 0
$$23$$ 134.000 1.21482 0.607412 0.794387i $$-0.292208\pi$$
0.607412 + 0.794387i $$0.292208\pi$$
$$24$$ 0 0
$$25$$ 0 0
$$26$$ 0 0
$$27$$ 108.000 0.769800
$$28$$ 0 0
$$29$$ 242.000 1.54960 0.774798 0.632209i $$-0.217852\pi$$
0.774798 + 0.632209i $$0.217852\pi$$
$$30$$ 0 0
$$31$$ 100.000 0.579372 0.289686 0.957122i $$-0.406449\pi$$
0.289686 + 0.957122i $$0.406449\pi$$
$$32$$ 0 0
$$33$$ 96.0000 0.506408
$$34$$ 0 0
$$35$$ 0 0
$$36$$ 0 0
$$37$$ −438.000 −1.94613 −0.973064 0.230534i $$-0.925953\pi$$
−0.973064 + 0.230534i $$0.925953\pi$$
$$38$$ 0 0
$$39$$ −348.000 −1.42884
$$40$$ 0 0
$$41$$ −138.000 −0.525658 −0.262829 0.964842i $$-0.584656\pi$$
−0.262829 + 0.964842i $$0.584656\pi$$
$$42$$ 0 0
$$43$$ 178.000 0.631273 0.315637 0.948880i $$-0.397782\pi$$
0.315637 + 0.948880i $$0.397782\pi$$
$$44$$ 0 0
$$45$$ 0 0
$$46$$ 0 0
$$47$$ −22.0000 −0.0682772 −0.0341386 0.999417i $$-0.510869\pi$$
−0.0341386 + 0.999417i $$0.510869\pi$$
$$48$$ 0 0
$$49$$ 813.000 2.37026
$$50$$ 0 0
$$51$$ −420.000 −1.15317
$$52$$ 0 0
$$53$$ 162.000 0.419857 0.209928 0.977717i $$-0.432677\pi$$
0.209928 + 0.977717i $$0.432677\pi$$
$$54$$ 0 0
$$55$$ 0 0
$$56$$ 0 0
$$57$$ 24.0000 0.0557698
$$58$$ 0 0
$$59$$ 268.000 0.591367 0.295683 0.955286i $$-0.404453\pi$$
0.295683 + 0.955286i $$0.404453\pi$$
$$60$$ 0 0
$$61$$ −250.000 −0.524741 −0.262371 0.964967i $$-0.584504\pi$$
−0.262371 + 0.964967i $$0.584504\pi$$
$$62$$ 0 0
$$63$$ 306.000 0.611942
$$64$$ 0 0
$$65$$ 0 0
$$66$$ 0 0
$$67$$ 422.000 0.769485 0.384743 0.923024i $$-0.374290\pi$$
0.384743 + 0.923024i $$0.374290\pi$$
$$68$$ 0 0
$$69$$ −804.000 −1.40276
$$70$$ 0 0
$$71$$ −852.000 −1.42414 −0.712069 0.702109i $$-0.752242\pi$$
−0.712069 + 0.702109i $$0.752242\pi$$
$$72$$ 0 0
$$73$$ −306.000 −0.490611 −0.245305 0.969446i $$-0.578888\pi$$
−0.245305 + 0.969446i $$0.578888\pi$$
$$74$$ 0 0
$$75$$ 0 0
$$76$$ 0 0
$$77$$ −544.000 −0.805124
$$78$$ 0 0
$$79$$ −456.000 −0.649418 −0.324709 0.945814i $$-0.605266\pi$$
−0.324709 + 0.945814i $$0.605266\pi$$
$$80$$ 0 0
$$81$$ −891.000 −1.22222
$$82$$ 0 0
$$83$$ 434.000 0.573948 0.286974 0.957938i $$-0.407351\pi$$
0.286974 + 0.957938i $$0.407351\pi$$
$$84$$ 0 0
$$85$$ 0 0
$$86$$ 0 0
$$87$$ −1452.00 −1.78932
$$88$$ 0 0
$$89$$ −726.000 −0.864672 −0.432336 0.901712i $$-0.642311\pi$$
−0.432336 + 0.901712i $$0.642311\pi$$
$$90$$ 0 0
$$91$$ 1972.00 2.27167
$$92$$ 0 0
$$93$$ −600.000 −0.669001
$$94$$ 0 0
$$95$$ 0 0
$$96$$ 0 0
$$97$$ −1378.00 −1.44242 −0.721210 0.692717i $$-0.756414\pi$$
−0.721210 + 0.692717i $$0.756414\pi$$
$$98$$ 0 0
$$99$$ −144.000 −0.146187
$$100$$ 0 0
$$101$$ −126.000 −0.124133 −0.0620667 0.998072i $$-0.519769\pi$$
−0.0620667 + 0.998072i $$0.519769\pi$$
$$102$$ 0 0
$$103$$ 1262.00 1.20727 0.603634 0.797262i $$-0.293719\pi$$
0.603634 + 0.797262i $$0.293719\pi$$
$$104$$ 0 0
$$105$$ 0 0
$$106$$ 0 0
$$107$$ 510.000 0.460781 0.230390 0.973098i $$-0.426000\pi$$
0.230390 + 0.973098i $$0.426000\pi$$
$$108$$ 0 0
$$109$$ −26.0000 −0.0228472 −0.0114236 0.999935i $$-0.503636\pi$$
−0.0114236 + 0.999935i $$0.503636\pi$$
$$110$$ 0 0
$$111$$ 2628.00 2.24720
$$112$$ 0 0
$$113$$ −1242.00 −1.03396 −0.516980 0.855997i $$-0.672944\pi$$
−0.516980 + 0.855997i $$0.672944\pi$$
$$114$$ 0 0
$$115$$ 0 0
$$116$$ 0 0
$$117$$ 522.000 0.412469
$$118$$ 0 0
$$119$$ 2380.00 1.83340
$$120$$ 0 0
$$121$$ −1075.00 −0.807663
$$122$$ 0 0
$$123$$ 828.000 0.606978
$$124$$ 0 0
$$125$$ 0 0
$$126$$ 0 0
$$127$$ 978.000 0.683334 0.341667 0.939821i $$-0.389008\pi$$
0.341667 + 0.939821i $$0.389008\pi$$
$$128$$ 0 0
$$129$$ −1068.00 −0.728931
$$130$$ 0 0
$$131$$ 912.000 0.608258 0.304129 0.952631i $$-0.401635\pi$$
0.304129 + 0.952631i $$0.401635\pi$$
$$132$$ 0 0
$$133$$ −136.000 −0.0886669
$$134$$ 0 0
$$135$$ 0 0
$$136$$ 0 0
$$137$$ 926.000 0.577471 0.288735 0.957409i $$-0.406765\pi$$
0.288735 + 0.957409i $$0.406765\pi$$
$$138$$ 0 0
$$139$$ −516.000 −0.314867 −0.157434 0.987530i $$-0.550322\pi$$
−0.157434 + 0.987530i $$0.550322\pi$$
$$140$$ 0 0
$$141$$ 132.000 0.0788398
$$142$$ 0 0
$$143$$ −928.000 −0.542680
$$144$$ 0 0
$$145$$ 0 0
$$146$$ 0 0
$$147$$ −4878.00 −2.73694
$$148$$ 0 0
$$149$$ 958.000 0.526728 0.263364 0.964697i $$-0.415168\pi$$
0.263364 + 0.964697i $$0.415168\pi$$
$$150$$ 0 0
$$151$$ 332.000 0.178926 0.0894628 0.995990i $$-0.471485\pi$$
0.0894628 + 0.995990i $$0.471485\pi$$
$$152$$ 0 0
$$153$$ 630.000 0.332892
$$154$$ 0 0
$$155$$ 0 0
$$156$$ 0 0
$$157$$ −1022.00 −0.519519 −0.259759 0.965673i $$-0.583643\pi$$
−0.259759 + 0.965673i $$0.583643\pi$$
$$158$$ 0 0
$$159$$ −972.000 −0.484809
$$160$$ 0 0
$$161$$ 4556.00 2.23021
$$162$$ 0 0
$$163$$ −926.000 −0.444969 −0.222484 0.974936i $$-0.571417\pi$$
−0.222484 + 0.974936i $$0.571417\pi$$
$$164$$ 0 0
$$165$$ 0 0
$$166$$ 0 0
$$167$$ −654.000 −0.303042 −0.151521 0.988454i $$-0.548417\pi$$
−0.151521 + 0.988454i $$0.548417\pi$$
$$168$$ 0 0
$$169$$ 1167.00 0.531179
$$170$$ 0 0
$$171$$ −36.0000 −0.0160993
$$172$$ 0 0
$$173$$ −1294.00 −0.568676 −0.284338 0.958724i $$-0.591774\pi$$
−0.284338 + 0.958724i $$0.591774\pi$$
$$174$$ 0 0
$$175$$ 0 0
$$176$$ 0 0
$$177$$ −1608.00 −0.682851
$$178$$ 0 0
$$179$$ 2836.00 1.18420 0.592102 0.805863i $$-0.298298\pi$$
0.592102 + 0.805863i $$0.298298\pi$$
$$180$$ 0 0
$$181$$ −1742.00 −0.715369 −0.357685 0.933842i $$-0.616434\pi$$
−0.357685 + 0.933842i $$0.616434\pi$$
$$182$$ 0 0
$$183$$ 1500.00 0.605919
$$184$$ 0 0
$$185$$ 0 0
$$186$$ 0 0
$$187$$ −1120.00 −0.437981
$$188$$ 0 0
$$189$$ 3672.00 1.41322
$$190$$ 0 0
$$191$$ 4460.00 1.68960 0.844802 0.535079i $$-0.179718\pi$$
0.844802 + 0.535079i $$0.179718\pi$$
$$192$$ 0 0
$$193$$ 3782.00 1.41054 0.705270 0.708939i $$-0.250826\pi$$
0.705270 + 0.708939i $$0.250826\pi$$
$$194$$ 0 0
$$195$$ 0 0
$$196$$ 0 0
$$197$$ 4474.00 1.61807 0.809034 0.587762i $$-0.199991\pi$$
0.809034 + 0.587762i $$0.199991\pi$$
$$198$$ 0 0
$$199$$ 3608.00 1.28525 0.642624 0.766182i $$-0.277846\pi$$
0.642624 + 0.766182i $$0.277846\pi$$
$$200$$ 0 0
$$201$$ −2532.00 −0.888525
$$202$$ 0 0
$$203$$ 8228.00 2.84479
$$204$$ 0 0
$$205$$ 0 0
$$206$$ 0 0
$$207$$ 1206.00 0.404941
$$208$$ 0 0
$$209$$ 64.0000 0.0211817
$$210$$ 0 0
$$211$$ 256.000 0.0835250 0.0417625 0.999128i $$-0.486703\pi$$
0.0417625 + 0.999128i $$0.486703\pi$$
$$212$$ 0 0
$$213$$ 5112.00 1.64445
$$214$$ 0 0
$$215$$ 0 0
$$216$$ 0 0
$$217$$ 3400.00 1.06363
$$218$$ 0 0
$$219$$ 1836.00 0.566509
$$220$$ 0 0
$$221$$ 4060.00 1.23577
$$222$$ 0 0
$$223$$ 5158.00 1.54890 0.774451 0.632634i $$-0.218026\pi$$
0.774451 + 0.632634i $$0.218026\pi$$
$$224$$ 0 0
$$225$$ 0 0
$$226$$ 0 0
$$227$$ −2226.00 −0.650858 −0.325429 0.945566i $$-0.605509\pi$$
−0.325429 + 0.945566i $$0.605509\pi$$
$$228$$ 0 0
$$229$$ −2086.00 −0.601951 −0.300975 0.953632i $$-0.597312\pi$$
−0.300975 + 0.953632i $$0.597312\pi$$
$$230$$ 0 0
$$231$$ 3264.00 0.929677
$$232$$ 0 0
$$233$$ 5718.00 1.60772 0.803860 0.594819i $$-0.202776\pi$$
0.803860 + 0.594819i $$0.202776\pi$$
$$234$$ 0 0
$$235$$ 0 0
$$236$$ 0 0
$$237$$ 2736.00 0.749883
$$238$$ 0 0
$$239$$ −3624.00 −0.980825 −0.490412 0.871491i $$-0.663154\pi$$
−0.490412 + 0.871491i $$0.663154\pi$$
$$240$$ 0 0
$$241$$ −82.0000 −0.0219174 −0.0109587 0.999940i $$-0.503488\pi$$
−0.0109587 + 0.999940i $$0.503488\pi$$
$$242$$ 0 0
$$243$$ 2430.00 0.641500
$$244$$ 0 0
$$245$$ 0 0
$$246$$ 0 0
$$247$$ −232.000 −0.0597644
$$248$$ 0 0
$$249$$ −2604.00 −0.662738
$$250$$ 0 0
$$251$$ 5040.00 1.26742 0.633709 0.773571i $$-0.281532\pi$$
0.633709 + 0.773571i $$0.281532\pi$$
$$252$$ 0 0
$$253$$ −2144.00 −0.532775
$$254$$ 0 0
$$255$$ 0 0
$$256$$ 0 0
$$257$$ 2310.00 0.560676 0.280338 0.959901i $$-0.409553\pi$$
0.280338 + 0.959901i $$0.409553\pi$$
$$258$$ 0 0
$$259$$ −14892.0 −3.57276
$$260$$ 0 0
$$261$$ 2178.00 0.516532
$$262$$ 0 0
$$263$$ 4110.00 0.963625 0.481813 0.876274i $$-0.339979\pi$$
0.481813 + 0.876274i $$0.339979\pi$$
$$264$$ 0 0
$$265$$ 0 0
$$266$$ 0 0
$$267$$ 4356.00 0.998438
$$268$$ 0 0
$$269$$ −746.000 −0.169087 −0.0845435 0.996420i $$-0.526943\pi$$
−0.0845435 + 0.996420i $$0.526943\pi$$
$$270$$ 0 0
$$271$$ −4596.00 −1.03021 −0.515105 0.857127i $$-0.672247\pi$$
−0.515105 + 0.857127i $$0.672247\pi$$
$$272$$ 0 0
$$273$$ −11832.0 −2.62310
$$274$$ 0 0
$$275$$ 0 0
$$276$$ 0 0
$$277$$ −2206.00 −0.478504 −0.239252 0.970957i $$-0.576902\pi$$
−0.239252 + 0.970957i $$0.576902\pi$$
$$278$$ 0 0
$$279$$ 900.000 0.193124
$$280$$ 0 0
$$281$$ 8278.00 1.75738 0.878691 0.477392i $$-0.158418\pi$$
0.878691 + 0.477392i $$0.158418\pi$$
$$282$$ 0 0
$$283$$ 1178.00 0.247438 0.123719 0.992317i $$-0.460518\pi$$
0.123719 + 0.992317i $$0.460518\pi$$
$$284$$ 0 0
$$285$$ 0 0
$$286$$ 0 0
$$287$$ −4692.00 −0.965017
$$288$$ 0 0
$$289$$ −13.0000 −0.00264604
$$290$$ 0 0
$$291$$ 8268.00 1.66556
$$292$$ 0 0
$$293$$ 106.000 0.0211351 0.0105676 0.999944i $$-0.496636\pi$$
0.0105676 + 0.999944i $$0.496636\pi$$
$$294$$ 0 0
$$295$$ 0 0
$$296$$ 0 0
$$297$$ −1728.00 −0.337605
$$298$$ 0 0
$$299$$ 7772.00 1.50323
$$300$$ 0 0
$$301$$ 6052.00 1.15891
$$302$$ 0 0
$$303$$ 756.000 0.143337
$$304$$ 0 0
$$305$$ 0 0
$$306$$ 0 0
$$307$$ 8134.00 1.51216 0.756078 0.654482i $$-0.227113\pi$$
0.756078 + 0.654482i $$0.227113\pi$$
$$308$$ 0 0
$$309$$ −7572.00 −1.39403
$$310$$ 0 0
$$311$$ −4396.00 −0.801525 −0.400763 0.916182i $$-0.631255\pi$$
−0.400763 + 0.916182i $$0.631255\pi$$
$$312$$ 0 0
$$313$$ −4826.00 −0.871507 −0.435753 0.900066i $$-0.643518\pi$$
−0.435753 + 0.900066i $$0.643518\pi$$
$$314$$ 0 0
$$315$$ 0 0
$$316$$ 0 0
$$317$$ 7026.00 1.24486 0.622428 0.782677i $$-0.286146\pi$$
0.622428 + 0.782677i $$0.286146\pi$$
$$318$$ 0 0
$$319$$ −3872.00 −0.679594
$$320$$ 0 0
$$321$$ −3060.00 −0.532064
$$322$$ 0 0
$$323$$ −280.000 −0.0482341
$$324$$ 0 0
$$325$$ 0 0
$$326$$ 0 0
$$327$$ 156.000 0.0263817
$$328$$ 0 0
$$329$$ −748.000 −0.125345
$$330$$ 0 0
$$331$$ −8808.00 −1.46263 −0.731316 0.682038i $$-0.761094\pi$$
−0.731316 + 0.682038i $$0.761094\pi$$
$$332$$ 0 0
$$333$$ −3942.00 −0.648710
$$334$$ 0 0
$$335$$ 0 0
$$336$$ 0 0
$$337$$ −5602.00 −0.905520 −0.452760 0.891632i $$-0.649561\pi$$
−0.452760 + 0.891632i $$0.649561\pi$$
$$338$$ 0 0
$$339$$ 7452.00 1.19391
$$340$$ 0 0
$$341$$ −1600.00 −0.254090
$$342$$ 0 0
$$343$$ 15980.0 2.51557
$$344$$ 0 0
$$345$$ 0 0
$$346$$ 0 0
$$347$$ −6634.00 −1.02632 −0.513158 0.858294i $$-0.671525\pi$$
−0.513158 + 0.858294i $$0.671525\pi$$
$$348$$ 0 0
$$349$$ −3198.00 −0.490501 −0.245251 0.969460i $$-0.578870\pi$$
−0.245251 + 0.969460i $$0.578870\pi$$
$$350$$ 0 0
$$351$$ 6264.00 0.952557
$$352$$ 0 0
$$353$$ 5230.00 0.788569 0.394284 0.918988i $$-0.370992\pi$$
0.394284 + 0.918988i $$0.370992\pi$$
$$354$$ 0 0
$$355$$ 0 0
$$356$$ 0 0
$$357$$ −14280.0 −2.11702
$$358$$ 0 0
$$359$$ −312.000 −0.0458683 −0.0229342 0.999737i $$-0.507301\pi$$
−0.0229342 + 0.999737i $$0.507301\pi$$
$$360$$ 0 0
$$361$$ −6843.00 −0.997667
$$362$$ 0 0
$$363$$ 6450.00 0.932609
$$364$$ 0 0
$$365$$ 0 0
$$366$$ 0 0
$$367$$ −10790.0 −1.53470 −0.767348 0.641231i $$-0.778424\pi$$
−0.767348 + 0.641231i $$0.778424\pi$$
$$368$$ 0 0
$$369$$ −1242.00 −0.175219
$$370$$ 0 0
$$371$$ 5508.00 0.770785
$$372$$ 0 0
$$373$$ −4190.00 −0.581635 −0.290818 0.956778i $$-0.593927\pi$$
−0.290818 + 0.956778i $$0.593927\pi$$
$$374$$ 0 0
$$375$$ 0 0
$$376$$ 0 0
$$377$$ 14036.0 1.91748
$$378$$ 0 0
$$379$$ 6980.00 0.946012 0.473006 0.881059i $$-0.343169\pi$$
0.473006 + 0.881059i $$0.343169\pi$$
$$380$$ 0 0
$$381$$ −5868.00 −0.789047
$$382$$ 0 0
$$383$$ −13962.0 −1.86273 −0.931364 0.364089i $$-0.881380\pi$$
−0.931364 + 0.364089i $$0.881380\pi$$
$$384$$ 0 0
$$385$$ 0 0
$$386$$ 0 0
$$387$$ 1602.00 0.210424
$$388$$ 0 0
$$389$$ −3810.00 −0.496593 −0.248296 0.968684i $$-0.579871\pi$$
−0.248296 + 0.968684i $$0.579871\pi$$
$$390$$ 0 0
$$391$$ 9380.00 1.21321
$$392$$ 0 0
$$393$$ −5472.00 −0.702356
$$394$$ 0 0
$$395$$ 0 0
$$396$$ 0 0
$$397$$ −9158.00 −1.15775 −0.578875 0.815416i $$-0.696508\pi$$
−0.578875 + 0.815416i $$0.696508\pi$$
$$398$$ 0 0
$$399$$ 816.000 0.102384
$$400$$ 0 0
$$401$$ 4866.00 0.605976 0.302988 0.952994i $$-0.402016\pi$$
0.302988 + 0.952994i $$0.402016\pi$$
$$402$$ 0 0
$$403$$ 5800.00 0.716920
$$404$$ 0 0
$$405$$ 0 0
$$406$$ 0 0
$$407$$ 7008.00 0.853498
$$408$$ 0 0
$$409$$ 13486.0 1.63042 0.815208 0.579169i $$-0.196623\pi$$
0.815208 + 0.579169i $$0.196623\pi$$
$$410$$ 0 0
$$411$$ −5556.00 −0.666806
$$412$$ 0 0
$$413$$ 9112.00 1.08565
$$414$$ 0 0
$$415$$ 0 0
$$416$$ 0 0
$$417$$ 3096.00 0.363577
$$418$$ 0 0
$$419$$ −5628.00 −0.656195 −0.328098 0.944644i $$-0.606407\pi$$
−0.328098 + 0.944644i $$0.606407\pi$$
$$420$$ 0 0
$$421$$ −7938.00 −0.918942 −0.459471 0.888193i $$-0.651961\pi$$
−0.459471 + 0.888193i $$0.651961\pi$$
$$422$$ 0 0
$$423$$ −198.000 −0.0227591
$$424$$ 0 0
$$425$$ 0 0
$$426$$ 0 0
$$427$$ −8500.00 −0.963334
$$428$$ 0 0
$$429$$ 5568.00 0.626633
$$430$$ 0 0
$$431$$ 1916.00 0.214131 0.107066 0.994252i $$-0.465855\pi$$
0.107066 + 0.994252i $$0.465855\pi$$
$$432$$ 0 0
$$433$$ 16510.0 1.83238 0.916189 0.400746i $$-0.131249\pi$$
0.916189 + 0.400746i $$0.131249\pi$$
$$434$$ 0 0
$$435$$ 0 0
$$436$$ 0 0
$$437$$ −536.000 −0.0586736
$$438$$ 0 0
$$439$$ −1256.00 −0.136550 −0.0682752 0.997667i $$-0.521750\pi$$
−0.0682752 + 0.997667i $$0.521750\pi$$
$$440$$ 0 0
$$441$$ 7317.00 0.790087
$$442$$ 0 0
$$443$$ −12222.0 −1.31080 −0.655400 0.755282i $$-0.727500\pi$$
−0.655400 + 0.755282i $$0.727500\pi$$
$$444$$ 0 0
$$445$$ 0 0
$$446$$ 0 0
$$447$$ −5748.00 −0.608213
$$448$$ 0 0
$$449$$ −5946.00 −0.624965 −0.312482 0.949924i $$-0.601160\pi$$
−0.312482 + 0.949924i $$0.601160\pi$$
$$450$$ 0 0
$$451$$ 2208.00 0.230534
$$452$$ 0 0
$$453$$ −1992.00 −0.206606
$$454$$ 0 0
$$455$$ 0 0
$$456$$ 0 0
$$457$$ −1258.00 −0.128768 −0.0643838 0.997925i $$-0.520508\pi$$
−0.0643838 + 0.997925i $$0.520508\pi$$
$$458$$ 0 0
$$459$$ 7560.00 0.768781
$$460$$ 0 0
$$461$$ −16422.0 −1.65911 −0.829554 0.558426i $$-0.811405\pi$$
−0.829554 + 0.558426i $$0.811405\pi$$
$$462$$ 0 0
$$463$$ −2658.00 −0.266799 −0.133399 0.991062i $$-0.542589\pi$$
−0.133399 + 0.991062i $$0.542589\pi$$
$$464$$ 0 0
$$465$$ 0 0
$$466$$ 0 0
$$467$$ 3686.00 0.365241 0.182621 0.983183i $$-0.441542\pi$$
0.182621 + 0.983183i $$0.441542\pi$$
$$468$$ 0 0
$$469$$ 14348.0 1.41264
$$470$$ 0 0
$$471$$ 6132.00 0.599889
$$472$$ 0 0
$$473$$ −2848.00 −0.276852
$$474$$ 0 0
$$475$$ 0 0
$$476$$ 0 0
$$477$$ 1458.00 0.139952
$$478$$ 0 0
$$479$$ 88.0000 0.00839420 0.00419710 0.999991i $$-0.498664\pi$$
0.00419710 + 0.999991i $$0.498664\pi$$
$$480$$ 0 0
$$481$$ −25404.0 −2.40816
$$482$$ 0 0
$$483$$ −27336.0 −2.57522
$$484$$ 0 0
$$485$$ 0 0
$$486$$ 0 0
$$487$$ 14714.0 1.36911 0.684553 0.728963i $$-0.259997\pi$$
0.684553 + 0.728963i $$0.259997\pi$$
$$488$$ 0 0
$$489$$ 5556.00 0.513806
$$490$$ 0 0
$$491$$ 7344.00 0.675010 0.337505 0.941324i $$-0.390417\pi$$
0.337505 + 0.941324i $$0.390417\pi$$
$$492$$ 0 0
$$493$$ 16940.0 1.54754
$$494$$ 0 0
$$495$$ 0 0
$$496$$ 0 0
$$497$$ −28968.0 −2.61447
$$498$$ 0 0
$$499$$ −1604.00 −0.143898 −0.0719488 0.997408i $$-0.522922\pi$$
−0.0719488 + 0.997408i $$0.522922\pi$$
$$500$$ 0 0
$$501$$ 3924.00 0.349923
$$502$$ 0 0
$$503$$ −14802.0 −1.31210 −0.656052 0.754715i $$-0.727775\pi$$
−0.656052 + 0.754715i $$0.727775\pi$$
$$504$$ 0 0
$$505$$ 0 0
$$506$$ 0 0
$$507$$ −7002.00 −0.613353
$$508$$ 0 0
$$509$$ 22514.0 1.96054 0.980271 0.197660i $$-0.0633342\pi$$
0.980271 + 0.197660i $$0.0633342\pi$$
$$510$$ 0 0
$$511$$ −10404.0 −0.900677
$$512$$ 0 0
$$513$$ −432.000 −0.0371799
$$514$$ 0 0
$$515$$ 0 0
$$516$$ 0 0
$$517$$ 352.000 0.0299438
$$518$$ 0 0
$$519$$ 7764.00 0.656651
$$520$$ 0 0
$$521$$ −6710.00 −0.564243 −0.282121 0.959379i $$-0.591038\pi$$
−0.282121 + 0.959379i $$0.591038\pi$$
$$522$$ 0 0
$$523$$ 7930.00 0.663011 0.331505 0.943453i $$-0.392443\pi$$
0.331505 + 0.943453i $$0.392443\pi$$
$$524$$ 0 0
$$525$$ 0 0
$$526$$ 0 0
$$527$$ 7000.00 0.578605
$$528$$ 0 0
$$529$$ 5789.00 0.475795
$$530$$ 0 0
$$531$$ 2412.00 0.197122
$$532$$ 0 0
$$533$$ −8004.00 −0.650454
$$534$$ 0 0
$$535$$ 0 0
$$536$$ 0 0
$$537$$ −17016.0 −1.36740
$$538$$ 0 0
$$539$$ −13008.0 −1.03951
$$540$$ 0 0
$$541$$ −4918.00 −0.390834 −0.195417 0.980720i $$-0.562606\pi$$
−0.195417 + 0.980720i $$0.562606\pi$$
$$542$$ 0 0
$$543$$ 10452.0 0.826037
$$544$$ 0 0
$$545$$ 0 0
$$546$$ 0 0
$$547$$ −3922.00 −0.306568 −0.153284 0.988182i $$-0.548985\pi$$
−0.153284 + 0.988182i $$0.548985\pi$$
$$548$$ 0 0
$$549$$ −2250.00 −0.174914
$$550$$ 0 0
$$551$$ −968.000 −0.0748424
$$552$$ 0 0
$$553$$ −15504.0 −1.19222
$$554$$ 0 0
$$555$$ 0 0
$$556$$ 0 0
$$557$$ 17786.0 1.35299 0.676496 0.736446i $$-0.263497\pi$$
0.676496 + 0.736446i $$0.263497\pi$$
$$558$$ 0 0
$$559$$ 10324.0 0.781143
$$560$$ 0 0
$$561$$ 6720.00 0.505737
$$562$$ 0 0
$$563$$ 20266.0 1.51707 0.758535 0.651633i $$-0.225916\pi$$
0.758535 + 0.651633i $$0.225916\pi$$
$$564$$ 0 0
$$565$$ 0 0
$$566$$ 0 0
$$567$$ −30294.0 −2.24379
$$568$$ 0 0
$$569$$ 13358.0 0.984177 0.492088 0.870545i $$-0.336234\pi$$
0.492088 + 0.870545i $$0.336234\pi$$
$$570$$ 0 0
$$571$$ −16360.0 −1.19903 −0.599514 0.800364i $$-0.704639\pi$$
−0.599514 + 0.800364i $$0.704639\pi$$
$$572$$ 0 0
$$573$$ −26760.0 −1.95099
$$574$$ 0 0
$$575$$ 0 0
$$576$$ 0 0
$$577$$ 15574.0 1.12366 0.561832 0.827251i $$-0.310097\pi$$
0.561832 + 0.827251i $$0.310097\pi$$
$$578$$ 0 0
$$579$$ −22692.0 −1.62875
$$580$$ 0 0
$$581$$ 14756.0 1.05367
$$582$$ 0 0
$$583$$ −2592.00 −0.184133
$$584$$ 0 0
$$585$$ 0 0
$$586$$ 0 0
$$587$$ 6654.00 0.467870 0.233935 0.972252i $$-0.424840\pi$$
0.233935 + 0.972252i $$0.424840\pi$$
$$588$$ 0 0
$$589$$ −400.000 −0.0279825
$$590$$ 0 0
$$591$$ −26844.0 −1.86838
$$592$$ 0 0
$$593$$ 17742.0 1.22863 0.614314 0.789062i $$-0.289433\pi$$
0.614314 + 0.789062i $$0.289433\pi$$
$$594$$ 0 0
$$595$$ 0 0
$$596$$ 0 0
$$597$$ −21648.0 −1.48408
$$598$$ 0 0
$$599$$ 15840.0 1.08048 0.540238 0.841512i $$-0.318334\pi$$
0.540238 + 0.841512i $$0.318334\pi$$
$$600$$ 0 0
$$601$$ −3002.00 −0.203751 −0.101875 0.994797i $$-0.532484\pi$$
−0.101875 + 0.994797i $$0.532484\pi$$
$$602$$ 0 0
$$603$$ 3798.00 0.256495
$$604$$ 0 0
$$605$$ 0 0
$$606$$ 0 0
$$607$$ 23610.0 1.57875 0.789374 0.613912i $$-0.210405\pi$$
0.789374 + 0.613912i $$0.210405\pi$$
$$608$$ 0 0
$$609$$ −49368.0 −3.28488
$$610$$ 0 0
$$611$$ −1276.00 −0.0844868
$$612$$ 0 0
$$613$$ 23850.0 1.57144 0.785720 0.618583i $$-0.212293\pi$$
0.785720 + 0.618583i $$0.212293\pi$$
$$614$$ 0 0
$$615$$ 0 0
$$616$$ 0 0
$$617$$ 5334.00 0.348037 0.174018 0.984742i $$-0.444325\pi$$
0.174018 + 0.984742i $$0.444325\pi$$
$$618$$ 0 0
$$619$$ 2164.00 0.140515 0.0702573 0.997529i $$-0.477618\pi$$
0.0702573 + 0.997529i $$0.477618\pi$$
$$620$$ 0 0
$$621$$ 14472.0 0.935171
$$622$$ 0 0
$$623$$ −24684.0 −1.58739
$$624$$ 0 0
$$625$$ 0 0
$$626$$ 0 0
$$627$$ −384.000 −0.0244585
$$628$$ 0 0
$$629$$ −30660.0 −1.94355
$$630$$ 0 0
$$631$$ −25220.0 −1.59111 −0.795557 0.605879i $$-0.792821\pi$$
−0.795557 + 0.605879i $$0.792821\pi$$
$$632$$ 0 0
$$633$$ −1536.00 −0.0964463
$$634$$ 0 0
$$635$$ 0 0
$$636$$ 0 0
$$637$$ 47154.0 2.93298
$$638$$ 0 0
$$639$$ −7668.00 −0.474713
$$640$$ 0 0
$$641$$ −12306.0 −0.758280 −0.379140 0.925339i $$-0.623780\pi$$
−0.379140 + 0.925339i $$0.623780\pi$$
$$642$$ 0 0
$$643$$ −27414.0 −1.68134 −0.840671 0.541547i $$-0.817839\pi$$
−0.840671 + 0.541547i $$0.817839\pi$$
$$644$$ 0 0
$$645$$ 0 0
$$646$$ 0 0
$$647$$ 21834.0 1.32671 0.663356 0.748304i $$-0.269131\pi$$
0.663356 + 0.748304i $$0.269131\pi$$
$$648$$ 0 0
$$649$$ −4288.00 −0.259351
$$650$$ 0 0
$$651$$ −20400.0 −1.22817
$$652$$ 0 0
$$653$$ −23998.0 −1.43815 −0.719077 0.694931i $$-0.755435\pi$$
−0.719077 + 0.694931i $$0.755435\pi$$
$$654$$ 0 0
$$655$$ 0 0
$$656$$ 0 0
$$657$$ −2754.00 −0.163537
$$658$$ 0 0
$$659$$ 32004.0 1.89180 0.945902 0.324452i $$-0.105180\pi$$
0.945902 + 0.324452i $$0.105180\pi$$
$$660$$ 0 0
$$661$$ 8526.00 0.501699 0.250849 0.968026i $$-0.419290\pi$$
0.250849 + 0.968026i $$0.419290\pi$$
$$662$$ 0 0
$$663$$ −24360.0 −1.42694
$$664$$ 0 0
$$665$$ 0 0
$$666$$ 0 0
$$667$$ 32428.0 1.88248
$$668$$ 0 0
$$669$$ −30948.0 −1.78852
$$670$$ 0 0
$$671$$ 4000.00 0.230132
$$672$$ 0 0
$$673$$ −8178.00 −0.468408 −0.234204 0.972187i $$-0.575248\pi$$
−0.234204 + 0.972187i $$0.575248\pi$$
$$674$$ 0 0
$$675$$ 0 0
$$676$$ 0 0
$$677$$ −16646.0 −0.944989 −0.472495 0.881334i $$-0.656646\pi$$
−0.472495 + 0.881334i $$0.656646\pi$$
$$678$$ 0 0
$$679$$ −46852.0 −2.64803
$$680$$ 0 0
$$681$$ 13356.0 0.751546
$$682$$ 0 0
$$683$$ −22446.0 −1.25750 −0.628750 0.777608i $$-0.716433\pi$$
−0.628750 + 0.777608i $$0.716433\pi$$
$$684$$ 0 0
$$685$$ 0 0
$$686$$ 0 0
$$687$$ 12516.0 0.695073
$$688$$ 0 0
$$689$$ 9396.00 0.519534
$$690$$ 0 0
$$691$$ −35336.0 −1.94536 −0.972681 0.232147i $$-0.925425\pi$$
−0.972681 + 0.232147i $$0.925425\pi$$
$$692$$ 0 0
$$693$$ −4896.00 −0.268375
$$694$$ 0 0
$$695$$ 0 0
$$696$$ 0 0
$$697$$ −9660.00 −0.524962
$$698$$ 0 0
$$699$$ −34308.0 −1.85643
$$700$$ 0 0
$$701$$ −3482.00 −0.187608 −0.0938041 0.995591i $$-0.529903\pi$$
−0.0938041 + 0.995591i $$0.529903\pi$$
$$702$$ 0 0
$$703$$ 1752.00 0.0939942
$$704$$ 0 0
$$705$$ 0 0
$$706$$ 0 0
$$707$$ −4284.00 −0.227887
$$708$$ 0 0
$$709$$ 19402.0 1.02773 0.513863 0.857872i $$-0.328214\pi$$
0.513863 + 0.857872i $$0.328214\pi$$
$$710$$ 0 0
$$711$$ −4104.00 −0.216473
$$712$$ 0 0
$$713$$ 13400.0 0.703834
$$714$$ 0 0
$$715$$ 0 0
$$716$$ 0 0
$$717$$ 21744.0 1.13256
$$718$$ 0 0
$$719$$ −9896.00 −0.513294 −0.256647 0.966505i $$-0.582618\pi$$
−0.256647 + 0.966505i $$0.582618\pi$$
$$720$$ 0 0
$$721$$ 42908.0 2.21633
$$722$$ 0 0
$$723$$ 492.000 0.0253080
$$724$$ 0 0
$$725$$ 0 0
$$726$$ 0 0
$$727$$ −494.000 −0.0252014 −0.0126007 0.999921i $$-0.504011\pi$$
−0.0126007 + 0.999921i $$0.504011\pi$$
$$728$$ 0 0
$$729$$ 9477.00 0.481481
$$730$$ 0 0
$$731$$ 12460.0 0.630437
$$732$$ 0 0
$$733$$ 9282.00 0.467720 0.233860 0.972270i $$-0.424864\pi$$
0.233860 + 0.972270i $$0.424864\pi$$
$$734$$ 0 0
$$735$$ 0 0
$$736$$ 0 0
$$737$$ −6752.00 −0.337467
$$738$$ 0 0
$$739$$ 3252.00 0.161877 0.0809383 0.996719i $$-0.474208\pi$$
0.0809383 + 0.996719i $$0.474208\pi$$
$$740$$ 0 0
$$741$$ 1392.00 0.0690100
$$742$$ 0 0
$$743$$ 4710.00 0.232561 0.116281 0.993216i $$-0.462903\pi$$
0.116281 + 0.993216i $$0.462903\pi$$
$$744$$ 0 0
$$745$$ 0 0
$$746$$ 0 0
$$747$$ 3906.00 0.191316
$$748$$ 0 0
$$749$$ 17340.0 0.845914
$$750$$ 0 0
$$751$$ 25764.0 1.25185 0.625927 0.779882i $$-0.284721\pi$$
0.625927 + 0.779882i $$0.284721\pi$$
$$752$$ 0 0
$$753$$ −30240.0 −1.46349
$$754$$ 0 0
$$755$$ 0 0
$$756$$ 0 0
$$757$$ −30094.0 −1.44489 −0.722447 0.691426i $$-0.756983\pi$$
−0.722447 + 0.691426i $$0.756983\pi$$
$$758$$ 0 0
$$759$$ 12864.0 0.615196
$$760$$ 0 0
$$761$$ 22362.0 1.06521 0.532603 0.846365i $$-0.321214\pi$$
0.532603 + 0.846365i $$0.321214\pi$$
$$762$$ 0 0
$$763$$ −884.000 −0.0419436
$$764$$ 0 0
$$765$$ 0 0
$$766$$ 0 0
$$767$$ 15544.0 0.731762
$$768$$ 0 0
$$769$$ −30398.0 −1.42546 −0.712731 0.701438i $$-0.752542\pi$$
−0.712731 + 0.701438i $$0.752542\pi$$
$$770$$ 0 0
$$771$$ −13860.0 −0.647413
$$772$$ 0 0
$$773$$ 1290.00 0.0600234 0.0300117 0.999550i $$-0.490446\pi$$
0.0300117 + 0.999550i $$0.490446\pi$$
$$774$$ 0 0
$$775$$ 0 0
$$776$$ 0 0
$$777$$ 89352.0 4.12546
$$778$$ 0 0
$$779$$ 552.000 0.0253883
$$780$$ 0 0
$$781$$ 13632.0 0.624573
$$782$$ 0 0
$$783$$ 26136.0 1.19288
$$784$$ 0 0
$$785$$ 0 0
$$786$$ 0 0
$$787$$ 14.0000 0.000634112 0 0.000317056 1.00000i $$-0.499899\pi$$
0.000317056 1.00000i $$0.499899\pi$$
$$788$$ 0 0
$$789$$ −24660.0 −1.11270
$$790$$ 0 0
$$791$$ −42228.0 −1.89817
$$792$$ 0 0
$$793$$ −14500.0 −0.649319
$$794$$ 0 0
$$795$$ 0 0
$$796$$ 0 0
$$797$$ −38814.0 −1.72505 −0.862523 0.506017i $$-0.831117\pi$$
−0.862523 + 0.506017i $$0.831117\pi$$
$$798$$ 0 0
$$799$$ −1540.00 −0.0681868
$$800$$ 0 0
$$801$$ −6534.00 −0.288224
$$802$$ 0 0
$$803$$ 4896.00 0.215163
$$804$$ 0 0
$$805$$ 0 0
$$806$$ 0 0
$$807$$ 4476.00 0.195245
$$808$$ 0 0
$$809$$ 27402.0 1.19086 0.595428 0.803408i $$-0.296982\pi$$
0.595428 + 0.803408i $$0.296982\pi$$
$$810$$ 0 0
$$811$$ 28576.0 1.23729 0.618643 0.785672i $$-0.287683\pi$$
0.618643 + 0.785672i $$0.287683\pi$$
$$812$$ 0 0
$$813$$ 27576.0 1.18958
$$814$$ 0 0
$$815$$ 0 0
$$816$$ 0 0
$$817$$ −712.000 −0.0304893
$$818$$ 0 0
$$819$$ 17748.0 0.757223
$$820$$ 0 0
$$821$$ −31762.0 −1.35018 −0.675092 0.737733i $$-0.735896\pi$$
−0.675092 + 0.737733i $$0.735896\pi$$
$$822$$ 0 0
$$823$$ −20506.0 −0.868523 −0.434261 0.900787i $$-0.642991\pi$$
−0.434261 + 0.900787i $$0.642991\pi$$
$$824$$ 0 0
$$825$$ 0 0
$$826$$ 0 0
$$827$$ 13014.0 0.547208 0.273604 0.961842i $$-0.411784\pi$$
0.273604 + 0.961842i $$0.411784\pi$$
$$828$$ 0 0
$$829$$ 22790.0 0.954800 0.477400 0.878686i $$-0.341579\pi$$
0.477400 + 0.878686i $$0.341579\pi$$
$$830$$ 0 0
$$831$$ 13236.0 0.552529
$$832$$ 0 0
$$833$$ 56910.0 2.36712
$$834$$ 0 0
$$835$$ 0 0
$$836$$ 0 0
$$837$$ 10800.0 0.446001
$$838$$ 0 0
$$839$$ 23696.0 0.975062 0.487531 0.873106i $$-0.337898\pi$$
0.487531 + 0.873106i $$0.337898\pi$$
$$840$$ 0 0
$$841$$ 34175.0 1.40125
$$842$$ 0 0
$$843$$ −49668.0 −2.02925
$$844$$ 0 0
$$845$$ 0 0
$$846$$ 0 0
$$847$$ −36550.0 −1.48273
$$848$$ 0 0
$$849$$ −7068.00 −0.285716
$$850$$ 0 0
$$851$$ −58692.0 −2.36420
$$852$$ 0 0
$$853$$ 5306.00 0.212982 0.106491 0.994314i $$-0.466038\pi$$
0.106491 + 0.994314i $$0.466038\pi$$
$$854$$ 0 0
$$855$$ 0 0
$$856$$ 0 0
$$857$$ 21054.0 0.839196 0.419598 0.907710i $$-0.362171\pi$$
0.419598 + 0.907710i $$0.362171\pi$$
$$858$$ 0 0
$$859$$ −7364.00 −0.292499 −0.146249 0.989248i $$-0.546720\pi$$
−0.146249 + 0.989248i $$0.546720\pi$$
$$860$$ 0 0
$$861$$ 28152.0 1.11431
$$862$$ 0 0
$$863$$ −17226.0 −0.679467 −0.339733 0.940522i $$-0.610337\pi$$
−0.339733 + 0.940522i $$0.610337\pi$$
$$864$$ 0 0
$$865$$ 0 0
$$866$$ 0 0
$$867$$ 78.0000 0.00305539
$$868$$ 0 0
$$869$$ 7296.00 0.284810
$$870$$ 0 0
$$871$$ 24476.0 0.952167
$$872$$ 0 0
$$873$$ −12402.0 −0.480807
$$874$$ 0 0
$$875$$ 0 0
$$876$$ 0 0
$$877$$ 21202.0 0.816352 0.408176 0.912903i $$-0.366165\pi$$
0.408176 + 0.912903i $$0.366165\pi$$
$$878$$ 0 0
$$879$$ −636.000 −0.0244047
$$880$$ 0 0
$$881$$ −29490.0 −1.12774 −0.563872 0.825862i $$-0.690689\pi$$
−0.563872 + 0.825862i $$0.690689\pi$$
$$882$$ 0 0
$$883$$ 2570.00 0.0979472 0.0489736 0.998800i $$-0.484405\pi$$
0.0489736 + 0.998800i $$0.484405\pi$$
$$884$$ 0 0
$$885$$ 0 0
$$886$$ 0 0
$$887$$ −36334.0 −1.37540 −0.687698 0.725997i $$-0.741379\pi$$
−0.687698 + 0.725997i $$0.741379\pi$$
$$888$$ 0 0
$$889$$ 33252.0 1.25448
$$890$$ 0 0
$$891$$ 14256.0 0.536020
$$892$$ 0 0
$$893$$ 88.0000 0.00329766
$$894$$ 0 0
$$895$$ 0 0
$$896$$ 0 0
$$897$$ −46632.0 −1.73578
$$898$$ 0 0
$$899$$ 24200.0 0.897792
$$900$$ 0 0
$$901$$ 11340.0 0.419301
$$902$$ 0 0
$$903$$ −36312.0 −1.33819
$$904$$ 0 0
$$905$$ 0 0
$$906$$ 0 0
$$907$$ −12474.0 −0.456662 −0.228331 0.973584i $$-0.573327\pi$$
−0.228331 + 0.973584i $$0.573327\pi$$
$$908$$ 0 0
$$909$$ −1134.00 −0.0413778
$$910$$ 0 0
$$911$$ −41132.0 −1.49590 −0.747949 0.663756i $$-0.768961\pi$$
−0.747949 + 0.663756i $$0.768961\pi$$
$$912$$ 0 0
$$913$$ −6944.00 −0.251712
$$914$$ 0 0
$$915$$ 0 0
$$916$$ 0 0
$$917$$ 31008.0 1.11666
$$918$$ 0 0
$$919$$ −38416.0 −1.37892 −0.689460 0.724324i $$-0.742152\pi$$
−0.689460 + 0.724324i $$0.742152\pi$$
$$920$$ 0 0
$$921$$ −48804.0 −1.74609
$$922$$ 0 0
$$923$$ −49416.0 −1.76224
$$924$$ 0 0
$$925$$ 0 0
$$926$$ 0 0
$$927$$ 11358.0 0.402423
$$928$$ 0 0
$$929$$ 41302.0 1.45864 0.729319 0.684174i $$-0.239837\pi$$
0.729319 + 0.684174i $$0.239837\pi$$
$$930$$ 0 0
$$931$$ −3252.00 −0.114479
$$932$$ 0 0
$$933$$ 26376.0 0.925521
$$934$$ 0 0
$$935$$ 0 0
$$936$$ 0 0
$$937$$ 26150.0 0.911722 0.455861 0.890051i $$-0.349331\pi$$
0.455861 + 0.890051i $$0.349331\pi$$
$$938$$ 0 0
$$939$$ 28956.0 1.00633
$$940$$ 0 0
$$941$$ −35254.0 −1.22130 −0.610652 0.791899i $$-0.709093\pi$$
−0.610652 + 0.791899i $$0.709093\pi$$
$$942$$ 0 0
$$943$$ −18492.0 −0.638582
$$944$$ 0 0
$$945$$ 0 0
$$946$$ 0 0
$$947$$ 18550.0 0.636530 0.318265 0.948002i $$-0.396900\pi$$
0.318265 + 0.948002i $$0.396900\pi$$
$$948$$ 0 0
$$949$$ −17748.0 −0.607086
$$950$$ 0 0
$$951$$ −42156.0 −1.43744
$$952$$ 0 0
$$953$$ −17322.0 −0.588788 −0.294394 0.955684i $$-0.595118\pi$$
−0.294394 + 0.955684i $$0.595118\pi$$
$$954$$ 0 0
$$955$$ 0 0
$$956$$ 0 0
$$957$$ 23232.0 0.784727
$$958$$ 0 0
$$959$$ 31484.0 1.06014
$$960$$ 0 0
$$961$$ −19791.0 −0.664328
$$962$$ 0 0
$$963$$ 4590.00 0.153594
$$964$$ 0 0
$$965$$ 0 0
$$966$$ 0 0
$$967$$ −35190.0 −1.17025 −0.585126 0.810942i $$-0.698955\pi$$
−0.585126 + 0.810942i $$0.698955\pi$$
$$968$$ 0 0
$$969$$ 1680.00 0.0556960
$$970$$ 0 0
$$971$$ 40696.0 1.34500 0.672501 0.740096i $$-0.265220\pi$$
0.672501 + 0.740096i $$0.265220\pi$$
$$972$$ 0 0
$$973$$ −17544.0 −0.578042
$$974$$ 0 0
$$975$$ 0 0
$$976$$ 0 0
$$977$$ −44306.0 −1.45084 −0.725422 0.688304i $$-0.758355\pi$$
−0.725422 + 0.688304i $$0.758355\pi$$
$$978$$ 0 0
$$979$$ 11616.0 0.379212
$$980$$ 0 0
$$981$$ −234.000 −0.00761574
$$982$$ 0 0
$$983$$ 18798.0 0.609932 0.304966 0.952363i $$-0.401355\pi$$
0.304966 + 0.952363i $$0.401355\pi$$
$$984$$ 0 0
$$985$$ 0 0
$$986$$ 0 0
$$987$$ 4488.00 0.144736
$$988$$ 0 0
$$989$$ 23852.0 0.766885
$$990$$ 0 0
$$991$$ 2468.00 0.0791106 0.0395553 0.999217i $$-0.487406\pi$$
0.0395553 + 0.999217i $$0.487406\pi$$
$$992$$ 0 0
$$993$$ 52848.0 1.68890
$$994$$ 0 0
$$995$$ 0 0
$$996$$ 0 0
$$997$$ −61086.0 −1.94043 −0.970217 0.242237i $$-0.922119\pi$$
−0.970217 + 0.242237i $$0.922119\pi$$
$$998$$ 0 0
$$999$$ −47304.0 −1.49813
Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000

## Twists

By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1600.4.a.j.1.1 1
4.3 odd 2 1600.4.a.br.1.1 1
5.4 even 2 320.4.a.l.1.1 1
8.3 odd 2 400.4.a.e.1.1 1
8.5 even 2 200.4.a.i.1.1 1
20.19 odd 2 320.4.a.c.1.1 1
24.5 odd 2 1800.4.a.bi.1.1 1
40.3 even 4 400.4.c.f.49.1 2
40.13 odd 4 200.4.c.c.49.2 2
40.19 odd 2 80.4.a.e.1.1 1
40.27 even 4 400.4.c.f.49.2 2
40.29 even 2 40.4.a.a.1.1 1
40.37 odd 4 200.4.c.c.49.1 2
80.19 odd 4 1280.4.d.a.641.1 2
80.29 even 4 1280.4.d.p.641.2 2
80.59 odd 4 1280.4.d.a.641.2 2
80.69 even 4 1280.4.d.p.641.1 2
120.29 odd 2 360.4.a.h.1.1 1
120.53 even 4 1800.4.f.j.649.1 2
120.59 even 2 720.4.a.bd.1.1 1
120.77 even 4 1800.4.f.j.649.2 2
280.69 odd 2 1960.4.a.h.1.1 1

By twisted newform
Twist Min Dim Char Parity Ord Type
40.4.a.a.1.1 1 40.29 even 2
80.4.a.e.1.1 1 40.19 odd 2
200.4.a.i.1.1 1 8.5 even 2
200.4.c.c.49.1 2 40.37 odd 4
200.4.c.c.49.2 2 40.13 odd 4
320.4.a.c.1.1 1 20.19 odd 2
320.4.a.l.1.1 1 5.4 even 2
360.4.a.h.1.1 1 120.29 odd 2
400.4.a.e.1.1 1 8.3 odd 2
400.4.c.f.49.1 2 40.3 even 4
400.4.c.f.49.2 2 40.27 even 4
720.4.a.bd.1.1 1 120.59 even 2
1280.4.d.a.641.1 2 80.19 odd 4
1280.4.d.a.641.2 2 80.59 odd 4
1280.4.d.p.641.1 2 80.69 even 4
1280.4.d.p.641.2 2 80.29 even 4
1600.4.a.j.1.1 1 1.1 even 1 trivial
1600.4.a.br.1.1 1 4.3 odd 2
1800.4.a.bi.1.1 1 24.5 odd 2
1800.4.f.j.649.1 2 120.53 even 4
1800.4.f.j.649.2 2 120.77 even 4
1960.4.a.h.1.1 1 280.69 odd 2