Properties

Label 1600.4.a.cl.1.1
Level $1600$
Weight $4$
Character 1600.1
Self dual yes
Analytic conductor $94.403$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1600,4,Mod(1,1600)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1600, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1600.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1600 = 2^{6} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1600.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(94.4030560092\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{6}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 6 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 40)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-2.44949\) of defining polynomial
Character \(\chi\) \(=\) 1600.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.89898 q^{3} -16.6969 q^{7} -18.5959 q^{9} +19.1918 q^{11} +61.7980 q^{13} +30.3837 q^{17} -59.1918 q^{19} +48.4041 q^{21} -205.687 q^{23} +132.182 q^{27} -8.38367 q^{29} +331.151 q^{31} -55.6367 q^{33} +266.565 q^{37} -179.151 q^{39} -320.788 q^{41} +83.1214 q^{43} +276.434 q^{47} -64.2122 q^{49} -88.0816 q^{51} +390.888 q^{53} +171.596 q^{57} -779.110 q^{59} +483.171 q^{61} +310.495 q^{63} +123.707 q^{67} +596.282 q^{69} +187.233 q^{71} +778.706 q^{73} -320.445 q^{77} -446.384 q^{79} +118.898 q^{81} -1054.05 q^{83} +24.3041 q^{87} -94.8490 q^{89} -1031.84 q^{91} -960.000 q^{93} -252.041 q^{97} -356.890 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 4 q^{3} - 4 q^{7} + 2 q^{9} - 40 q^{11} + 104 q^{13} - 96 q^{17} - 40 q^{19} + 136 q^{21} - 284 q^{23} + 88 q^{27} + 140 q^{29} + 192 q^{31} - 464 q^{33} + 200 q^{37} + 112 q^{39} - 524 q^{41} + 372 q^{43}+ \cdots - 1576 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.89898 −0.557909 −0.278954 0.960304i \(-0.589988\pi\)
−0.278954 + 0.960304i \(0.589988\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −16.6969 −0.901550 −0.450775 0.892638i \(-0.648852\pi\)
−0.450775 + 0.892638i \(0.648852\pi\)
\(8\) 0 0
\(9\) −18.5959 −0.688738
\(10\) 0 0
\(11\) 19.1918 0.526051 0.263025 0.964789i \(-0.415280\pi\)
0.263025 + 0.964789i \(0.415280\pi\)
\(12\) 0 0
\(13\) 61.7980 1.31844 0.659218 0.751952i \(-0.270887\pi\)
0.659218 + 0.751952i \(0.270887\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 30.3837 0.433478 0.216739 0.976230i \(-0.430458\pi\)
0.216739 + 0.976230i \(0.430458\pi\)
\(18\) 0 0
\(19\) −59.1918 −0.714713 −0.357356 0.933968i \(-0.616322\pi\)
−0.357356 + 0.933968i \(0.616322\pi\)
\(20\) 0 0
\(21\) 48.4041 0.502983
\(22\) 0 0
\(23\) −205.687 −1.86472 −0.932362 0.361526i \(-0.882256\pi\)
−0.932362 + 0.361526i \(0.882256\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 132.182 0.942162
\(28\) 0 0
\(29\) −8.38367 −0.0536831 −0.0268415 0.999640i \(-0.508545\pi\)
−0.0268415 + 0.999640i \(0.508545\pi\)
\(30\) 0 0
\(31\) 331.151 1.91860 0.959298 0.282396i \(-0.0911291\pi\)
0.959298 + 0.282396i \(0.0911291\pi\)
\(32\) 0 0
\(33\) −55.6367 −0.293488
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 266.565 1.18441 0.592204 0.805788i \(-0.298258\pi\)
0.592204 + 0.805788i \(0.298258\pi\)
\(38\) 0 0
\(39\) −179.151 −0.735567
\(40\) 0 0
\(41\) −320.788 −1.22192 −0.610959 0.791662i \(-0.709216\pi\)
−0.610959 + 0.791662i \(0.709216\pi\)
\(42\) 0 0
\(43\) 83.1214 0.294788 0.147394 0.989078i \(-0.452911\pi\)
0.147394 + 0.989078i \(0.452911\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 276.434 0.857915 0.428957 0.903325i \(-0.358881\pi\)
0.428957 + 0.903325i \(0.358881\pi\)
\(48\) 0 0
\(49\) −64.2122 −0.187208
\(50\) 0 0
\(51\) −88.0816 −0.241841
\(52\) 0 0
\(53\) 390.888 1.01307 0.506534 0.862220i \(-0.330927\pi\)
0.506534 + 0.862220i \(0.330927\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 171.596 0.398744
\(58\) 0 0
\(59\) −779.110 −1.71918 −0.859589 0.510986i \(-0.829280\pi\)
−0.859589 + 0.510986i \(0.829280\pi\)
\(60\) 0 0
\(61\) 483.171 1.01416 0.507080 0.861899i \(-0.330725\pi\)
0.507080 + 0.861899i \(0.330725\pi\)
\(62\) 0 0
\(63\) 310.495 0.620931
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 123.707 0.225571 0.112785 0.993619i \(-0.464023\pi\)
0.112785 + 0.993619i \(0.464023\pi\)
\(68\) 0 0
\(69\) 596.282 1.04035
\(70\) 0 0
\(71\) 187.233 0.312964 0.156482 0.987681i \(-0.449985\pi\)
0.156482 + 0.987681i \(0.449985\pi\)
\(72\) 0 0
\(73\) 778.706 1.24850 0.624251 0.781224i \(-0.285404\pi\)
0.624251 + 0.781224i \(0.285404\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −320.445 −0.474261
\(78\) 0 0
\(79\) −446.384 −0.635723 −0.317861 0.948137i \(-0.602965\pi\)
−0.317861 + 0.948137i \(0.602965\pi\)
\(80\) 0 0
\(81\) 118.898 0.163097
\(82\) 0 0
\(83\) −1054.05 −1.39394 −0.696970 0.717100i \(-0.745469\pi\)
−0.696970 + 0.717100i \(0.745469\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 24.3041 0.0299503
\(88\) 0 0
\(89\) −94.8490 −0.112966 −0.0564830 0.998404i \(-0.517989\pi\)
−0.0564830 + 0.998404i \(0.517989\pi\)
\(90\) 0 0
\(91\) −1031.84 −1.18864
\(92\) 0 0
\(93\) −960.000 −1.07040
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −252.041 −0.263823 −0.131912 0.991261i \(-0.542112\pi\)
−0.131912 + 0.991261i \(0.542112\pi\)
\(98\) 0 0
\(99\) −356.890 −0.362311
\(100\) 0 0
\(101\) −37.9184 −0.0373566 −0.0186783 0.999826i \(-0.505946\pi\)
−0.0186783 + 0.999826i \(0.505946\pi\)
\(102\) 0 0
\(103\) −94.4133 −0.0903186 −0.0451593 0.998980i \(-0.514380\pi\)
−0.0451593 + 0.998980i \(0.514380\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −901.464 −0.814466 −0.407233 0.913324i \(-0.633506\pi\)
−0.407233 + 0.913324i \(0.633506\pi\)
\(108\) 0 0
\(109\) −1415.69 −1.24403 −0.622013 0.783007i \(-0.713685\pi\)
−0.622013 + 0.783007i \(0.713685\pi\)
\(110\) 0 0
\(111\) −772.767 −0.660791
\(112\) 0 0
\(113\) 293.576 0.244401 0.122200 0.992505i \(-0.461005\pi\)
0.122200 + 0.992505i \(0.461005\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −1149.19 −0.908057
\(118\) 0 0
\(119\) −507.314 −0.390802
\(120\) 0 0
\(121\) −962.673 −0.723271
\(122\) 0 0
\(123\) 929.957 0.681719
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −774.717 −0.541300 −0.270650 0.962678i \(-0.587239\pi\)
−0.270650 + 0.962678i \(0.587239\pi\)
\(128\) 0 0
\(129\) −240.967 −0.164465
\(130\) 0 0
\(131\) −334.343 −0.222990 −0.111495 0.993765i \(-0.535564\pi\)
−0.111495 + 0.993765i \(0.535564\pi\)
\(132\) 0 0
\(133\) 988.322 0.644349
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −323.514 −0.201750 −0.100875 0.994899i \(-0.532164\pi\)
−0.100875 + 0.994899i \(0.532164\pi\)
\(138\) 0 0
\(139\) 396.482 0.241936 0.120968 0.992656i \(-0.461400\pi\)
0.120968 + 0.992656i \(0.461400\pi\)
\(140\) 0 0
\(141\) −801.376 −0.478638
\(142\) 0 0
\(143\) 1186.02 0.693564
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 186.150 0.104445
\(148\) 0 0
\(149\) 1682.89 0.925284 0.462642 0.886545i \(-0.346901\pi\)
0.462642 + 0.886545i \(0.346901\pi\)
\(150\) 0 0
\(151\) −2924.52 −1.57612 −0.788060 0.615598i \(-0.788915\pi\)
−0.788060 + 0.615598i \(0.788915\pi\)
\(152\) 0 0
\(153\) −565.012 −0.298553
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 2768.42 1.40729 0.703644 0.710553i \(-0.251555\pi\)
0.703644 + 0.710553i \(0.251555\pi\)
\(158\) 0 0
\(159\) −1133.18 −0.565199
\(160\) 0 0
\(161\) 3434.34 1.68114
\(162\) 0 0
\(163\) 2816.33 1.35333 0.676663 0.736292i \(-0.263425\pi\)
0.676663 + 0.736292i \(0.263425\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −1836.41 −0.850933 −0.425466 0.904974i \(-0.639890\pi\)
−0.425466 + 0.904974i \(0.639890\pi\)
\(168\) 0 0
\(169\) 1621.99 0.738274
\(170\) 0 0
\(171\) 1100.73 0.492249
\(172\) 0 0
\(173\) 1224.22 0.538011 0.269006 0.963139i \(-0.413305\pi\)
0.269006 + 0.963139i \(0.413305\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 2258.62 0.959145
\(178\) 0 0
\(179\) −2729.58 −1.13977 −0.569883 0.821726i \(-0.693011\pi\)
−0.569883 + 0.821726i \(0.693011\pi\)
\(180\) 0 0
\(181\) −2642.36 −1.08511 −0.542555 0.840020i \(-0.682543\pi\)
−0.542555 + 0.840020i \(0.682543\pi\)
\(182\) 0 0
\(183\) −1400.70 −0.565809
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 583.118 0.228031
\(188\) 0 0
\(189\) −2207.03 −0.849406
\(190\) 0 0
\(191\) −2339.23 −0.886183 −0.443091 0.896476i \(-0.646118\pi\)
−0.443091 + 0.896476i \(0.646118\pi\)
\(192\) 0 0
\(193\) −4601.61 −1.71622 −0.858111 0.513464i \(-0.828362\pi\)
−0.858111 + 0.513464i \(0.828362\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −823.941 −0.297987 −0.148993 0.988838i \(-0.547603\pi\)
−0.148993 + 0.988838i \(0.547603\pi\)
\(198\) 0 0
\(199\) −3329.70 −1.18611 −0.593055 0.805162i \(-0.702078\pi\)
−0.593055 + 0.805162i \(0.702078\pi\)
\(200\) 0 0
\(201\) −358.624 −0.125848
\(202\) 0 0
\(203\) 139.982 0.0483980
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 3824.93 1.28431
\(208\) 0 0
\(209\) −1136.00 −0.375975
\(210\) 0 0
\(211\) −1018.78 −0.332398 −0.166199 0.986092i \(-0.553149\pi\)
−0.166199 + 0.986092i \(0.553149\pi\)
\(212\) 0 0
\(213\) −542.784 −0.174605
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −5529.21 −1.72971
\(218\) 0 0
\(219\) −2257.45 −0.696550
\(220\) 0 0
\(221\) 1877.65 0.571513
\(222\) 0 0
\(223\) 99.1581 0.0297763 0.0148882 0.999889i \(-0.495261\pi\)
0.0148882 + 0.999889i \(0.495261\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −1197.59 −0.350163 −0.175081 0.984554i \(-0.556019\pi\)
−0.175081 + 0.984554i \(0.556019\pi\)
\(228\) 0 0
\(229\) 453.592 0.130892 0.0654458 0.997856i \(-0.479153\pi\)
0.0654458 + 0.997856i \(0.479153\pi\)
\(230\) 0 0
\(231\) 928.963 0.264594
\(232\) 0 0
\(233\) 3788.49 1.06520 0.532601 0.846367i \(-0.321215\pi\)
0.532601 + 0.846367i \(0.321215\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 1294.06 0.354675
\(238\) 0 0
\(239\) −6000.47 −1.62401 −0.812005 0.583651i \(-0.801624\pi\)
−0.812005 + 0.583651i \(0.801624\pi\)
\(240\) 0 0
\(241\) 1842.53 0.492480 0.246240 0.969209i \(-0.420805\pi\)
0.246240 + 0.969209i \(0.420805\pi\)
\(242\) 0 0
\(243\) −3913.59 −1.03316
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −3657.93 −0.942303
\(248\) 0 0
\(249\) 3055.67 0.777691
\(250\) 0 0
\(251\) −1149.46 −0.289057 −0.144529 0.989501i \(-0.546167\pi\)
−0.144529 + 0.989501i \(0.546167\pi\)
\(252\) 0 0
\(253\) −3947.51 −0.980939
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 5407.67 1.31253 0.656267 0.754528i \(-0.272134\pi\)
0.656267 + 0.754528i \(0.272134\pi\)
\(258\) 0 0
\(259\) −4450.82 −1.06780
\(260\) 0 0
\(261\) 155.902 0.0369735
\(262\) 0 0
\(263\) −2067.34 −0.484705 −0.242352 0.970188i \(-0.577919\pi\)
−0.242352 + 0.970188i \(0.577919\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 274.965 0.0630247
\(268\) 0 0
\(269\) 592.388 0.134270 0.0671348 0.997744i \(-0.478614\pi\)
0.0671348 + 0.997744i \(0.478614\pi\)
\(270\) 0 0
\(271\) −2583.27 −0.579049 −0.289524 0.957171i \(-0.593497\pi\)
−0.289524 + 0.957171i \(0.593497\pi\)
\(272\) 0 0
\(273\) 2991.27 0.663151
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −4488.09 −0.973513 −0.486756 0.873538i \(-0.661820\pi\)
−0.486756 + 0.873538i \(0.661820\pi\)
\(278\) 0 0
\(279\) −6158.06 −1.32141
\(280\) 0 0
\(281\) −6280.54 −1.33333 −0.666665 0.745357i \(-0.732279\pi\)
−0.666665 + 0.745357i \(0.732279\pi\)
\(282\) 0 0
\(283\) −5233.40 −1.09927 −0.549635 0.835405i \(-0.685233\pi\)
−0.549635 + 0.835405i \(0.685233\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 5356.17 1.10162
\(288\) 0 0
\(289\) −3989.83 −0.812097
\(290\) 0 0
\(291\) 730.661 0.147189
\(292\) 0 0
\(293\) −2438.21 −0.486149 −0.243074 0.970008i \(-0.578156\pi\)
−0.243074 + 0.970008i \(0.578156\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 2536.81 0.495625
\(298\) 0 0
\(299\) −12711.0 −2.45852
\(300\) 0 0
\(301\) −1387.87 −0.265766
\(302\) 0 0
\(303\) 109.925 0.0208416
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 7910.44 1.47060 0.735298 0.677744i \(-0.237042\pi\)
0.735298 + 0.677744i \(0.237042\pi\)
\(308\) 0 0
\(309\) 273.702 0.0503895
\(310\) 0 0
\(311\) 5419.71 0.988178 0.494089 0.869411i \(-0.335502\pi\)
0.494089 + 0.869411i \(0.335502\pi\)
\(312\) 0 0
\(313\) −5570.86 −1.00602 −0.503009 0.864281i \(-0.667774\pi\)
−0.503009 + 0.864281i \(0.667774\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −3724.09 −0.659829 −0.329915 0.944011i \(-0.607020\pi\)
−0.329915 + 0.944011i \(0.607020\pi\)
\(318\) 0 0
\(319\) −160.898 −0.0282400
\(320\) 0 0
\(321\) 2613.33 0.454398
\(322\) 0 0
\(323\) −1798.47 −0.309812
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 4104.07 0.694053
\(328\) 0 0
\(329\) −4615.60 −0.773453
\(330\) 0 0
\(331\) −3223.96 −0.535362 −0.267681 0.963508i \(-0.586257\pi\)
−0.267681 + 0.963508i \(0.586257\pi\)
\(332\) 0 0
\(333\) −4957.03 −0.815746
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −9524.43 −1.53955 −0.769776 0.638314i \(-0.779632\pi\)
−0.769776 + 0.638314i \(0.779632\pi\)
\(338\) 0 0
\(339\) −851.069 −0.136353
\(340\) 0 0
\(341\) 6355.40 1.00928
\(342\) 0 0
\(343\) 6799.20 1.07033
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −6042.30 −0.934777 −0.467388 0.884052i \(-0.654805\pi\)
−0.467388 + 0.884052i \(0.654805\pi\)
\(348\) 0 0
\(349\) 1626.20 0.249422 0.124711 0.992193i \(-0.460200\pi\)
0.124711 + 0.992193i \(0.460200\pi\)
\(350\) 0 0
\(351\) 8168.55 1.24218
\(352\) 0 0
\(353\) −886.955 −0.133733 −0.0668667 0.997762i \(-0.521300\pi\)
−0.0668667 + 0.997762i \(0.521300\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 1470.69 0.218032
\(358\) 0 0
\(359\) 1722.27 0.253198 0.126599 0.991954i \(-0.459594\pi\)
0.126599 + 0.991954i \(0.459594\pi\)
\(360\) 0 0
\(361\) −3355.33 −0.489186
\(362\) 0 0
\(363\) 2790.77 0.403519
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −9271.77 −1.31875 −0.659377 0.751813i \(-0.729180\pi\)
−0.659377 + 0.751813i \(0.729180\pi\)
\(368\) 0 0
\(369\) 5965.34 0.841581
\(370\) 0 0
\(371\) −6526.63 −0.913331
\(372\) 0 0
\(373\) 5697.15 0.790850 0.395425 0.918498i \(-0.370597\pi\)
0.395425 + 0.918498i \(0.370597\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −518.094 −0.0707777
\(378\) 0 0
\(379\) 8526.24 1.15558 0.577789 0.816186i \(-0.303916\pi\)
0.577789 + 0.816186i \(0.303916\pi\)
\(380\) 0 0
\(381\) 2245.89 0.301996
\(382\) 0 0
\(383\) −4069.23 −0.542893 −0.271447 0.962453i \(-0.587502\pi\)
−0.271447 + 0.962453i \(0.587502\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −1545.72 −0.203032
\(388\) 0 0
\(389\) 2394.17 0.312054 0.156027 0.987753i \(-0.450131\pi\)
0.156027 + 0.987753i \(0.450131\pi\)
\(390\) 0 0
\(391\) −6249.52 −0.808316
\(392\) 0 0
\(393\) 969.253 0.124408
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 3497.79 0.442190 0.221095 0.975252i \(-0.429037\pi\)
0.221095 + 0.975252i \(0.429037\pi\)
\(398\) 0 0
\(399\) −2865.13 −0.359488
\(400\) 0 0
\(401\) −8608.89 −1.07209 −0.536044 0.844190i \(-0.680082\pi\)
−0.536044 + 0.844190i \(0.680082\pi\)
\(402\) 0 0
\(403\) 20464.5 2.52955
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 5115.88 0.623058
\(408\) 0 0
\(409\) 1385.67 0.167523 0.0837615 0.996486i \(-0.473307\pi\)
0.0837615 + 0.996486i \(0.473307\pi\)
\(410\) 0 0
\(411\) 937.861 0.112558
\(412\) 0 0
\(413\) 13008.8 1.54992
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −1149.39 −0.134978
\(418\) 0 0
\(419\) −3738.23 −0.435858 −0.217929 0.975965i \(-0.569930\pi\)
−0.217929 + 0.975965i \(0.569930\pi\)
\(420\) 0 0
\(421\) 8993.95 1.04118 0.520592 0.853806i \(-0.325711\pi\)
0.520592 + 0.853806i \(0.325711\pi\)
\(422\) 0 0
\(423\) −5140.54 −0.590878
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −8067.48 −0.914316
\(428\) 0 0
\(429\) −3438.24 −0.386946
\(430\) 0 0
\(431\) 462.547 0.0516940 0.0258470 0.999666i \(-0.491772\pi\)
0.0258470 + 0.999666i \(0.491772\pi\)
\(432\) 0 0
\(433\) 5231.82 0.580659 0.290329 0.956927i \(-0.406235\pi\)
0.290329 + 0.956927i \(0.406235\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 12175.0 1.33274
\(438\) 0 0
\(439\) 8995.77 0.978006 0.489003 0.872282i \(-0.337361\pi\)
0.489003 + 0.872282i \(0.337361\pi\)
\(440\) 0 0
\(441\) 1194.09 0.128937
\(442\) 0 0
\(443\) −5549.52 −0.595182 −0.297591 0.954694i \(-0.596183\pi\)
−0.297591 + 0.954694i \(0.596183\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −4878.65 −0.516224
\(448\) 0 0
\(449\) −5951.29 −0.625521 −0.312760 0.949832i \(-0.601254\pi\)
−0.312760 + 0.949832i \(0.601254\pi\)
\(450\) 0 0
\(451\) −6156.51 −0.642791
\(452\) 0 0
\(453\) 8478.13 0.879332
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 13912.7 1.42409 0.712047 0.702132i \(-0.247768\pi\)
0.712047 + 0.702132i \(0.247768\pi\)
\(458\) 0 0
\(459\) 4016.16 0.408406
\(460\) 0 0
\(461\) −17467.6 −1.76475 −0.882374 0.470549i \(-0.844056\pi\)
−0.882374 + 0.470549i \(0.844056\pi\)
\(462\) 0 0
\(463\) −1575.36 −0.158127 −0.0790637 0.996870i \(-0.525193\pi\)
−0.0790637 + 0.996870i \(0.525193\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 15618.3 1.54760 0.773800 0.633430i \(-0.218354\pi\)
0.773800 + 0.633430i \(0.218354\pi\)
\(468\) 0 0
\(469\) −2065.53 −0.203363
\(470\) 0 0
\(471\) −8025.60 −0.785138
\(472\) 0 0
\(473\) 1595.25 0.155074
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −7268.92 −0.697738
\(478\) 0 0
\(479\) 9527.90 0.908854 0.454427 0.890784i \(-0.349844\pi\)
0.454427 + 0.890784i \(0.349844\pi\)
\(480\) 0 0
\(481\) 16473.2 1.56157
\(482\) 0 0
\(483\) −9956.08 −0.937924
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −15729.6 −1.46361 −0.731805 0.681514i \(-0.761322\pi\)
−0.731805 + 0.681514i \(0.761322\pi\)
\(488\) 0 0
\(489\) −8164.49 −0.755033
\(490\) 0 0
\(491\) −2566.49 −0.235894 −0.117947 0.993020i \(-0.537631\pi\)
−0.117947 + 0.993020i \(0.537631\pi\)
\(492\) 0 0
\(493\) −254.727 −0.0232704
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −3126.21 −0.282152
\(498\) 0 0
\(499\) 13560.4 1.21652 0.608261 0.793737i \(-0.291867\pi\)
0.608261 + 0.793737i \(0.291867\pi\)
\(500\) 0 0
\(501\) 5323.72 0.474743
\(502\) 0 0
\(503\) 5222.51 0.462943 0.231471 0.972842i \(-0.425646\pi\)
0.231471 + 0.972842i \(0.425646\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −4702.11 −0.411890
\(508\) 0 0
\(509\) 11875.9 1.03416 0.517082 0.855936i \(-0.327018\pi\)
0.517082 + 0.855936i \(0.327018\pi\)
\(510\) 0 0
\(511\) −13002.0 −1.12559
\(512\) 0 0
\(513\) −7824.07 −0.673375
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 5305.27 0.451307
\(518\) 0 0
\(519\) −3549.00 −0.300161
\(520\) 0 0
\(521\) 2456.04 0.206528 0.103264 0.994654i \(-0.467071\pi\)
0.103264 + 0.994654i \(0.467071\pi\)
\(522\) 0 0
\(523\) 634.460 0.0530459 0.0265229 0.999648i \(-0.491556\pi\)
0.0265229 + 0.999648i \(0.491556\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 10061.6 0.831669
\(528\) 0 0
\(529\) 30140.0 2.47720
\(530\) 0 0
\(531\) 14488.3 1.18406
\(532\) 0 0
\(533\) −19824.0 −1.61102
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 7912.98 0.635885
\(538\) 0 0
\(539\) −1232.35 −0.0984807
\(540\) 0 0
\(541\) −18078.4 −1.43669 −0.718347 0.695685i \(-0.755101\pi\)
−0.718347 + 0.695685i \(0.755101\pi\)
\(542\) 0 0
\(543\) 7660.14 0.605393
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −24815.3 −1.93972 −0.969860 0.243661i \(-0.921651\pi\)
−0.969860 + 0.243661i \(0.921651\pi\)
\(548\) 0 0
\(549\) −8985.02 −0.698490
\(550\) 0 0
\(551\) 496.245 0.0383680
\(552\) 0 0
\(553\) 7453.24 0.573136
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −10073.7 −0.766310 −0.383155 0.923684i \(-0.625162\pi\)
−0.383155 + 0.923684i \(0.625162\pi\)
\(558\) 0 0
\(559\) 5136.73 0.388660
\(560\) 0 0
\(561\) −1690.45 −0.127221
\(562\) 0 0
\(563\) 7505.06 0.561813 0.280906 0.959735i \(-0.409365\pi\)
0.280906 + 0.959735i \(0.409365\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −1985.23 −0.147040
\(568\) 0 0
\(569\) −15251.4 −1.12368 −0.561838 0.827247i \(-0.689906\pi\)
−0.561838 + 0.827247i \(0.689906\pi\)
\(570\) 0 0
\(571\) 2683.78 0.196695 0.0983474 0.995152i \(-0.468644\pi\)
0.0983474 + 0.995152i \(0.468644\pi\)
\(572\) 0 0
\(573\) 6781.39 0.494409
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 7369.88 0.531737 0.265868 0.964009i \(-0.414341\pi\)
0.265868 + 0.964009i \(0.414341\pi\)
\(578\) 0 0
\(579\) 13340.0 0.957496
\(580\) 0 0
\(581\) 17599.4 1.25671
\(582\) 0 0
\(583\) 7501.85 0.532925
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 20865.4 1.46713 0.733567 0.679618i \(-0.237854\pi\)
0.733567 + 0.679618i \(0.237854\pi\)
\(588\) 0 0
\(589\) −19601.4 −1.37124
\(590\) 0 0
\(591\) 2388.59 0.166249
\(592\) 0 0
\(593\) 25894.0 1.79316 0.896578 0.442886i \(-0.146046\pi\)
0.896578 + 0.442886i \(0.146046\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 9652.73 0.661742
\(598\) 0 0
\(599\) 5632.42 0.384198 0.192099 0.981376i \(-0.438471\pi\)
0.192099 + 0.981376i \(0.438471\pi\)
\(600\) 0 0
\(601\) −13079.7 −0.887742 −0.443871 0.896091i \(-0.646395\pi\)
−0.443871 + 0.896091i \(0.646395\pi\)
\(602\) 0 0
\(603\) −2300.45 −0.155359
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 18890.2 1.26314 0.631572 0.775317i \(-0.282410\pi\)
0.631572 + 0.775317i \(0.282410\pi\)
\(608\) 0 0
\(609\) −405.804 −0.0270017
\(610\) 0 0
\(611\) 17083.0 1.13111
\(612\) 0 0
\(613\) −13631.5 −0.898155 −0.449078 0.893493i \(-0.648247\pi\)
−0.449078 + 0.893493i \(0.648247\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −14982.2 −0.977568 −0.488784 0.872405i \(-0.662559\pi\)
−0.488784 + 0.872405i \(0.662559\pi\)
\(618\) 0 0
\(619\) 25049.9 1.62656 0.813279 0.581873i \(-0.197680\pi\)
0.813279 + 0.581873i \(0.197680\pi\)
\(620\) 0 0
\(621\) −27188.0 −1.75687
\(622\) 0 0
\(623\) 1583.69 0.101844
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 3293.24 0.209760
\(628\) 0 0
\(629\) 8099.23 0.513414
\(630\) 0 0
\(631\) 18711.0 1.18046 0.590232 0.807233i \(-0.299036\pi\)
0.590232 + 0.807233i \(0.299036\pi\)
\(632\) 0 0
\(633\) 2953.43 0.185448
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −3968.19 −0.246821
\(638\) 0 0
\(639\) −3481.76 −0.215550
\(640\) 0 0
\(641\) 25792.2 1.58929 0.794643 0.607077i \(-0.207658\pi\)
0.794643 + 0.607077i \(0.207658\pi\)
\(642\) 0 0
\(643\) −20256.7 −1.24237 −0.621186 0.783663i \(-0.713349\pi\)
−0.621186 + 0.783663i \(0.713349\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 6655.43 0.404408 0.202204 0.979343i \(-0.435190\pi\)
0.202204 + 0.979343i \(0.435190\pi\)
\(648\) 0 0
\(649\) −14952.6 −0.904375
\(650\) 0 0
\(651\) 16029.1 0.965021
\(652\) 0 0
\(653\) 8490.91 0.508844 0.254422 0.967093i \(-0.418115\pi\)
0.254422 + 0.967093i \(0.418115\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −14480.8 −0.859890
\(658\) 0 0
\(659\) −15543.8 −0.918816 −0.459408 0.888225i \(-0.651938\pi\)
−0.459408 + 0.888225i \(0.651938\pi\)
\(660\) 0 0
\(661\) 13519.8 0.795553 0.397777 0.917482i \(-0.369782\pi\)
0.397777 + 0.917482i \(0.369782\pi\)
\(662\) 0 0
\(663\) −5443.27 −0.318852
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 1724.41 0.100104
\(668\) 0 0
\(669\) −287.457 −0.0166125
\(670\) 0 0
\(671\) 9272.95 0.533499
\(672\) 0 0
\(673\) −11565.3 −0.662421 −0.331211 0.943557i \(-0.607457\pi\)
−0.331211 + 0.943557i \(0.607457\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −28227.5 −1.60247 −0.801235 0.598350i \(-0.795823\pi\)
−0.801235 + 0.598350i \(0.795823\pi\)
\(678\) 0 0
\(679\) 4208.31 0.237850
\(680\) 0 0
\(681\) 3471.79 0.195359
\(682\) 0 0
\(683\) −6425.99 −0.360005 −0.180003 0.983666i \(-0.557611\pi\)
−0.180003 + 0.983666i \(0.557611\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −1314.95 −0.0730256
\(688\) 0 0
\(689\) 24156.1 1.33566
\(690\) 0 0
\(691\) 19066.9 1.04969 0.524846 0.851197i \(-0.324123\pi\)
0.524846 + 0.851197i \(0.324123\pi\)
\(692\) 0 0
\(693\) 5958.97 0.326641
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −9746.71 −0.529674
\(698\) 0 0
\(699\) −10982.7 −0.594285
\(700\) 0 0
\(701\) −4796.00 −0.258406 −0.129203 0.991618i \(-0.541242\pi\)
−0.129203 + 0.991618i \(0.541242\pi\)
\(702\) 0 0
\(703\) −15778.5 −0.846511
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 633.121 0.0336789
\(708\) 0 0
\(709\) 9805.33 0.519389 0.259695 0.965691i \(-0.416378\pi\)
0.259695 + 0.965691i \(0.416378\pi\)
\(710\) 0 0
\(711\) 8300.91 0.437846
\(712\) 0 0
\(713\) −68113.4 −3.57765
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 17395.2 0.906049
\(718\) 0 0
\(719\) 27539.7 1.42845 0.714227 0.699915i \(-0.246779\pi\)
0.714227 + 0.699915i \(0.246779\pi\)
\(720\) 0 0
\(721\) 1576.41 0.0814267
\(722\) 0 0
\(723\) −5341.45 −0.274759
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 16543.8 0.843985 0.421993 0.906599i \(-0.361331\pi\)
0.421993 + 0.906599i \(0.361331\pi\)
\(728\) 0 0
\(729\) 8135.16 0.413309
\(730\) 0 0
\(731\) 2525.53 0.127784
\(732\) 0 0
\(733\) −16718.6 −0.842450 −0.421225 0.906956i \(-0.638400\pi\)
−0.421225 + 0.906956i \(0.638400\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 2374.17 0.118662
\(738\) 0 0
\(739\) 24022.6 1.19579 0.597893 0.801576i \(-0.296005\pi\)
0.597893 + 0.801576i \(0.296005\pi\)
\(740\) 0 0
\(741\) 10604.3 0.525719
\(742\) 0 0
\(743\) −26201.8 −1.29374 −0.646871 0.762600i \(-0.723923\pi\)
−0.646871 + 0.762600i \(0.723923\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 19601.0 0.960059
\(748\) 0 0
\(749\) 15051.7 0.734282
\(750\) 0 0
\(751\) 24451.7 1.18809 0.594045 0.804432i \(-0.297530\pi\)
0.594045 + 0.804432i \(0.297530\pi\)
\(752\) 0 0
\(753\) 3332.26 0.161268
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −21403.8 −1.02765 −0.513827 0.857894i \(-0.671773\pi\)
−0.513827 + 0.857894i \(0.671773\pi\)
\(758\) 0 0
\(759\) 11443.7 0.547275
\(760\) 0 0
\(761\) −28935.9 −1.37835 −0.689176 0.724594i \(-0.742027\pi\)
−0.689176 + 0.724594i \(0.742027\pi\)
\(762\) 0 0
\(763\) 23637.8 1.12155
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −48147.4 −2.26663
\(768\) 0 0
\(769\) −11479.3 −0.538301 −0.269151 0.963098i \(-0.586743\pi\)
−0.269151 + 0.963098i \(0.586743\pi\)
\(770\) 0 0
\(771\) −15676.7 −0.732275
\(772\) 0 0
\(773\) −2512.27 −0.116895 −0.0584477 0.998290i \(-0.518615\pi\)
−0.0584477 + 0.998290i \(0.518615\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 12902.8 0.595736
\(778\) 0 0
\(779\) 18988.0 0.873320
\(780\) 0 0
\(781\) 3593.34 0.164635
\(782\) 0 0
\(783\) −1108.17 −0.0505781
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −2650.18 −0.120036 −0.0600182 0.998197i \(-0.519116\pi\)
−0.0600182 + 0.998197i \(0.519116\pi\)
\(788\) 0 0
\(789\) 5993.16 0.270421
\(790\) 0 0
\(791\) −4901.81 −0.220339
\(792\) 0 0
\(793\) 29859.0 1.33711
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 24516.7 1.08962 0.544810 0.838560i \(-0.316602\pi\)
0.544810 + 0.838560i \(0.316602\pi\)
\(798\) 0 0
\(799\) 8399.07 0.371887
\(800\) 0 0
\(801\) 1763.80 0.0778039
\(802\) 0 0
\(803\) 14944.8 0.656775
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −1717.32 −0.0749102
\(808\) 0 0
\(809\) −29725.5 −1.29183 −0.645917 0.763408i \(-0.723525\pi\)
−0.645917 + 0.763408i \(0.723525\pi\)
\(810\) 0 0
\(811\) 2050.38 0.0887773 0.0443887 0.999014i \(-0.485866\pi\)
0.0443887 + 0.999014i \(0.485866\pi\)
\(812\) 0 0
\(813\) 7488.83 0.323056
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −4920.11 −0.210689
\(818\) 0 0
\(819\) 19188.0 0.818658
\(820\) 0 0
\(821\) 33863.4 1.43952 0.719758 0.694225i \(-0.244253\pi\)
0.719758 + 0.694225i \(0.244253\pi\)
\(822\) 0 0
\(823\) 1216.52 0.0515251 0.0257625 0.999668i \(-0.491799\pi\)
0.0257625 + 0.999668i \(0.491799\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −25654.4 −1.07871 −0.539355 0.842079i \(-0.681332\pi\)
−0.539355 + 0.842079i \(0.681332\pi\)
\(828\) 0 0
\(829\) −24544.6 −1.02831 −0.514154 0.857698i \(-0.671894\pi\)
−0.514154 + 0.857698i \(0.671894\pi\)
\(830\) 0 0
\(831\) 13010.9 0.543131
\(832\) 0 0
\(833\) −1951.00 −0.0811504
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 43772.1 1.80763
\(838\) 0 0
\(839\) 16548.6 0.680954 0.340477 0.940253i \(-0.389411\pi\)
0.340477 + 0.940253i \(0.389411\pi\)
\(840\) 0 0
\(841\) −24318.7 −0.997118
\(842\) 0 0
\(843\) 18207.2 0.743877
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 16073.7 0.652065
\(848\) 0 0
\(849\) 15171.5 0.613292
\(850\) 0 0
\(851\) −54828.9 −2.20859
\(852\) 0 0
\(853\) 24363.5 0.977950 0.488975 0.872298i \(-0.337371\pi\)
0.488975 + 0.872298i \(0.337371\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −575.718 −0.0229477 −0.0114738 0.999934i \(-0.503652\pi\)
−0.0114738 + 0.999934i \(0.503652\pi\)
\(858\) 0 0
\(859\) −1531.31 −0.0608236 −0.0304118 0.999537i \(-0.509682\pi\)
−0.0304118 + 0.999537i \(0.509682\pi\)
\(860\) 0 0
\(861\) −15527.4 −0.614604
\(862\) 0 0
\(863\) 7706.51 0.303978 0.151989 0.988382i \(-0.451432\pi\)
0.151989 + 0.988382i \(0.451432\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 11566.4 0.453076
\(868\) 0 0
\(869\) −8566.92 −0.334422
\(870\) 0 0
\(871\) 7644.85 0.297400
\(872\) 0 0
\(873\) 4686.93 0.181705
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −43618.9 −1.67948 −0.839741 0.542988i \(-0.817293\pi\)
−0.839741 + 0.542988i \(0.817293\pi\)
\(878\) 0 0
\(879\) 7068.31 0.271227
\(880\) 0 0
\(881\) −13416.4 −0.513066 −0.256533 0.966536i \(-0.582580\pi\)
−0.256533 + 0.966536i \(0.582580\pi\)
\(882\) 0 0
\(883\) −29538.2 −1.12575 −0.562875 0.826542i \(-0.690305\pi\)
−0.562875 + 0.826542i \(0.690305\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −1950.88 −0.0738490 −0.0369245 0.999318i \(-0.511756\pi\)
−0.0369245 + 0.999318i \(0.511756\pi\)
\(888\) 0 0
\(889\) 12935.4 0.488009
\(890\) 0 0
\(891\) 2281.87 0.0857974
\(892\) 0 0
\(893\) −16362.6 −0.613162
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 36849.0 1.37163
\(898\) 0 0
\(899\) −2776.26 −0.102996
\(900\) 0 0
\(901\) 11876.6 0.439142
\(902\) 0 0
\(903\) 4023.42 0.148273
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −3507.55 −0.128408 −0.0642042 0.997937i \(-0.520451\pi\)
−0.0642042 + 0.997937i \(0.520451\pi\)
\(908\) 0 0
\(909\) 705.127 0.0257289
\(910\) 0 0
\(911\) −33841.4 −1.23075 −0.615377 0.788233i \(-0.710996\pi\)
−0.615377 + 0.788233i \(0.710996\pi\)
\(912\) 0 0
\(913\) −20229.2 −0.733283
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 5582.50 0.201036
\(918\) 0 0
\(919\) 25440.7 0.913178 0.456589 0.889678i \(-0.349071\pi\)
0.456589 + 0.889678i \(0.349071\pi\)
\(920\) 0 0
\(921\) −22932.2 −0.820458
\(922\) 0 0
\(923\) 11570.6 0.412623
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 1755.70 0.0622058
\(928\) 0 0
\(929\) −26416.7 −0.932941 −0.466471 0.884537i \(-0.654475\pi\)
−0.466471 + 0.884537i \(0.654475\pi\)
\(930\) 0 0
\(931\) 3800.84 0.133800
\(932\) 0 0
\(933\) −15711.6 −0.551313
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −1936.70 −0.0675231 −0.0337616 0.999430i \(-0.510749\pi\)
−0.0337616 + 0.999430i \(0.510749\pi\)
\(938\) 0 0
\(939\) 16149.8 0.561266
\(940\) 0 0
\(941\) −23459.1 −0.812694 −0.406347 0.913719i \(-0.633198\pi\)
−0.406347 + 0.913719i \(0.633198\pi\)
\(942\) 0 0
\(943\) 65981.8 2.27854
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −23606.8 −0.810049 −0.405025 0.914306i \(-0.632737\pi\)
−0.405025 + 0.914306i \(0.632737\pi\)
\(948\) 0 0
\(949\) 48122.4 1.64607
\(950\) 0 0
\(951\) 10796.1 0.368125
\(952\) 0 0
\(953\) 30164.2 1.02530 0.512652 0.858596i \(-0.328663\pi\)
0.512652 + 0.858596i \(0.328663\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 466.440 0.0157553
\(958\) 0 0
\(959\) 5401.70 0.181887
\(960\) 0 0
\(961\) 79870.0 2.68101
\(962\) 0 0
\(963\) 16763.6 0.560953
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 9034.04 0.300429 0.150215 0.988653i \(-0.452004\pi\)
0.150215 + 0.988653i \(0.452004\pi\)
\(968\) 0 0
\(969\) 5213.71 0.172847
\(970\) 0 0
\(971\) −36159.0 −1.19506 −0.597528 0.801848i \(-0.703850\pi\)
−0.597528 + 0.801848i \(0.703850\pi\)
\(972\) 0 0
\(973\) −6620.03 −0.218118
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −38584.0 −1.26347 −0.631736 0.775184i \(-0.717657\pi\)
−0.631736 + 0.775184i \(0.717657\pi\)
\(978\) 0 0
\(979\) −1820.33 −0.0594258
\(980\) 0 0
\(981\) 26326.1 0.856808
\(982\) 0 0
\(983\) 53046.3 1.72117 0.860587 0.509303i \(-0.170097\pi\)
0.860587 + 0.509303i \(0.170097\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 13380.5 0.431516
\(988\) 0 0
\(989\) −17097.0 −0.549699
\(990\) 0 0
\(991\) −16425.7 −0.526517 −0.263259 0.964725i \(-0.584797\pi\)
−0.263259 + 0.964725i \(0.584797\pi\)
\(992\) 0 0
\(993\) 9346.19 0.298683
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −20024.6 −0.636092 −0.318046 0.948075i \(-0.603027\pi\)
−0.318046 + 0.948075i \(0.603027\pi\)
\(998\) 0 0
\(999\) 35235.0 1.11590
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1600.4.a.cl.1.1 2
4.3 odd 2 1600.4.a.cf.1.2 2
5.2 odd 4 320.4.c.g.129.3 4
5.3 odd 4 320.4.c.g.129.2 4
5.4 even 2 1600.4.a.ce.1.2 2
8.3 odd 2 400.4.a.x.1.1 2
8.5 even 2 200.4.a.k.1.2 2
20.3 even 4 320.4.c.h.129.3 4
20.7 even 4 320.4.c.h.129.2 4
20.19 odd 2 1600.4.a.cm.1.1 2
24.5 odd 2 1800.4.a.bk.1.1 2
40.3 even 4 80.4.c.c.49.2 4
40.13 odd 4 40.4.c.a.9.3 yes 4
40.19 odd 2 400.4.a.v.1.2 2
40.27 even 4 80.4.c.c.49.3 4
40.29 even 2 200.4.a.l.1.1 2
40.37 odd 4 40.4.c.a.9.2 4
120.29 odd 2 1800.4.a.bp.1.2 2
120.53 even 4 360.4.f.e.289.1 4
120.77 even 4 360.4.f.e.289.2 4
120.83 odd 4 720.4.f.m.289.1 4
120.107 odd 4 720.4.f.m.289.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
40.4.c.a.9.2 4 40.37 odd 4
40.4.c.a.9.3 yes 4 40.13 odd 4
80.4.c.c.49.2 4 40.3 even 4
80.4.c.c.49.3 4 40.27 even 4
200.4.a.k.1.2 2 8.5 even 2
200.4.a.l.1.1 2 40.29 even 2
320.4.c.g.129.2 4 5.3 odd 4
320.4.c.g.129.3 4 5.2 odd 4
320.4.c.h.129.2 4 20.7 even 4
320.4.c.h.129.3 4 20.3 even 4
360.4.f.e.289.1 4 120.53 even 4
360.4.f.e.289.2 4 120.77 even 4
400.4.a.v.1.2 2 40.19 odd 2
400.4.a.x.1.1 2 8.3 odd 2
720.4.f.m.289.1 4 120.83 odd 4
720.4.f.m.289.2 4 120.107 odd 4
1600.4.a.ce.1.2 2 5.4 even 2
1600.4.a.cf.1.2 2 4.3 odd 2
1600.4.a.cl.1.1 2 1.1 even 1 trivial
1600.4.a.cm.1.1 2 20.19 odd 2
1800.4.a.bk.1.1 2 24.5 odd 2
1800.4.a.bp.1.2 2 120.29 odd 2