Properties

Label 1600.4.a.bx
Level $1600$
Weight $4$
Character orbit 1600.a
Self dual yes
Analytic conductor $94.403$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1600,4,Mod(1,1600)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1600, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1600.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1600 = 2^{6} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1600.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(94.4030560092\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 10)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + 8 q^{3} - 4 q^{7} + 37 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + 8 q^{3} - 4 q^{7} + 37 q^{9} + 12 q^{11} - 58 q^{13} - 66 q^{17} - 100 q^{19} - 32 q^{21} + 132 q^{23} + 80 q^{27} + 90 q^{29} - 152 q^{31} + 96 q^{33} - 34 q^{37} - 464 q^{39} - 438 q^{41} - 32 q^{43} - 204 q^{47} - 327 q^{49} - 528 q^{51} + 222 q^{53} - 800 q^{57} + 420 q^{59} - 902 q^{61} - 148 q^{63} + 1024 q^{67} + 1056 q^{69} - 432 q^{71} - 362 q^{73} - 48 q^{77} + 160 q^{79} - 359 q^{81} - 72 q^{83} + 720 q^{87} + 810 q^{89} + 232 q^{91} - 1216 q^{93} - 1106 q^{97} + 444 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 8.00000 0 0 0 −4.00000 0 37.0000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(5\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1600.4.a.bx 1
4.b odd 2 1 1600.4.a.d 1
5.b even 2 1 320.4.a.b 1
8.b even 2 1 400.4.a.b 1
8.d odd 2 1 50.4.a.c 1
20.d odd 2 1 320.4.a.m 1
24.f even 2 1 450.4.a.q 1
40.e odd 2 1 10.4.a.a 1
40.f even 2 1 80.4.a.f 1
40.i odd 4 2 400.4.c.c 2
40.k even 4 2 50.4.b.a 2
56.e even 2 1 2450.4.a.b 1
80.k odd 4 2 1280.4.d.j 2
80.q even 4 2 1280.4.d.g 2
120.i odd 2 1 720.4.a.j 1
120.m even 2 1 90.4.a.a 1
120.q odd 4 2 450.4.c.d 2
280.n even 2 1 490.4.a.o 1
280.ba even 6 2 490.4.e.a 2
280.bi odd 6 2 490.4.e.i 2
360.z odd 6 2 810.4.e.c 2
360.bd even 6 2 810.4.e.w 2
440.c even 2 1 1210.4.a.b 1
520.b odd 2 1 1690.4.a.a 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
10.4.a.a 1 40.e odd 2 1
50.4.a.c 1 8.d odd 2 1
50.4.b.a 2 40.k even 4 2
80.4.a.f 1 40.f even 2 1
90.4.a.a 1 120.m even 2 1
320.4.a.b 1 5.b even 2 1
320.4.a.m 1 20.d odd 2 1
400.4.a.b 1 8.b even 2 1
400.4.c.c 2 40.i odd 4 2
450.4.a.q 1 24.f even 2 1
450.4.c.d 2 120.q odd 4 2
490.4.a.o 1 280.n even 2 1
490.4.e.a 2 280.ba even 6 2
490.4.e.i 2 280.bi odd 6 2
720.4.a.j 1 120.i odd 2 1
810.4.e.c 2 360.z odd 6 2
810.4.e.w 2 360.bd even 6 2
1210.4.a.b 1 440.c even 2 1
1280.4.d.g 2 80.q even 4 2
1280.4.d.j 2 80.k odd 4 2
1600.4.a.d 1 4.b odd 2 1
1600.4.a.bx 1 1.a even 1 1 trivial
1690.4.a.a 1 520.b odd 2 1
2450.4.a.b 1 56.e even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1600))\):

\( T_{3} - 8 \) Copy content Toggle raw display
\( T_{7} + 4 \) Copy content Toggle raw display
\( T_{11} - 12 \) Copy content Toggle raw display
\( T_{13} + 58 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T - 8 \) Copy content Toggle raw display
$5$ \( T \) Copy content Toggle raw display
$7$ \( T + 4 \) Copy content Toggle raw display
$11$ \( T - 12 \) Copy content Toggle raw display
$13$ \( T + 58 \) Copy content Toggle raw display
$17$ \( T + 66 \) Copy content Toggle raw display
$19$ \( T + 100 \) Copy content Toggle raw display
$23$ \( T - 132 \) Copy content Toggle raw display
$29$ \( T - 90 \) Copy content Toggle raw display
$31$ \( T + 152 \) Copy content Toggle raw display
$37$ \( T + 34 \) Copy content Toggle raw display
$41$ \( T + 438 \) Copy content Toggle raw display
$43$ \( T + 32 \) Copy content Toggle raw display
$47$ \( T + 204 \) Copy content Toggle raw display
$53$ \( T - 222 \) Copy content Toggle raw display
$59$ \( T - 420 \) Copy content Toggle raw display
$61$ \( T + 902 \) Copy content Toggle raw display
$67$ \( T - 1024 \) Copy content Toggle raw display
$71$ \( T + 432 \) Copy content Toggle raw display
$73$ \( T + 362 \) Copy content Toggle raw display
$79$ \( T - 160 \) Copy content Toggle raw display
$83$ \( T + 72 \) Copy content Toggle raw display
$89$ \( T - 810 \) Copy content Toggle raw display
$97$ \( T + 1106 \) Copy content Toggle raw display
show more
show less