Properties

Label 1600.2.s.c
Level $1600$
Weight $2$
Character orbit 1600.s
Analytic conductor $12.776$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1600,2,Mod(207,1600)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1600, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1600.207");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1600 = 2^{6} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1600.s (of order \(4\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.7760643234\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 2x^{14} + 6x^{12} - 12x^{10} + 36x^{8} - 48x^{6} + 96x^{4} - 128x^{2} + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{14} \)
Twist minimal: no (minimal twist has level 400)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{15}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{4} q^{3} - \beta_{7} q^{7} + ( - \beta_{12} + 1) q^{9} + (\beta_{10} - 1) q^{11} + (\beta_{7} - \beta_{5} - \beta_{3}) q^{13} + ( - \beta_{7} - \beta_{6} + \cdots - \beta_{4}) q^{17} + (\beta_{14} + \beta_{12} + \cdots - \beta_1) q^{19}+ \cdots + ( - \beta_{14} - \beta_{12} + \cdots - \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 16 q^{9} - 8 q^{11} - 8 q^{19} - 16 q^{29} + 48 q^{51} - 8 q^{59} - 16 q^{61} + 16 q^{69} + 32 q^{71} + 80 q^{79} + 16 q^{81} + 64 q^{91} - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{16} - 2x^{14} + 6x^{12} - 12x^{10} + 36x^{8} - 48x^{6} + 96x^{4} - 128x^{2} + 256 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( -\nu^{12} + 2\nu^{10} - 6\nu^{8} + 12\nu^{6} - 20\nu^{4} + 48\nu^{2} - 48 ) / 16 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -\nu^{15} + 18\nu^{13} - 42\nu^{11} + 68\nu^{9} - 60\nu^{7} + 224\nu^{5} - 432\nu^{3} + 320\nu ) / 448 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 5\nu^{15} - 6\nu^{13} - 42\nu^{11} + 108\nu^{9} + 132\nu^{7} + 480\nu^{3} + 1088\nu ) / 1344 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( \nu^{15} - 4\nu^{13} - 12\nu^{9} + 32\nu^{7} - 72\nu^{3} - 96\nu ) / 224 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( \nu^{15} + 6\nu^{11} - 24\nu^{9} + 36\nu^{7} - 24\nu^{5} + 144\nu^{3} - 128\nu ) / 192 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 2\nu^{15} + 6\nu^{13} + 21\nu^{11} + 18\nu^{9} + 78\nu^{7} + 84\nu^{5} + 276\nu^{3} + 32\nu ) / 336 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( -3\nu^{15} - 2\nu^{13} - 14\nu^{11} - 20\nu^{9} + 44\nu^{7} - 224\nu^{5} + 48\nu^{3} - 384\nu ) / 448 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( -3\nu^{15} + 12\nu^{13} - 42\nu^{11} + 64\nu^{9} - 124\nu^{7} + 280\nu^{5} - 176\nu^{3} + 64\nu ) / 448 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( 11\nu^{14} - 30\nu^{12} + 42\nu^{10} - 132\nu^{8} + 156\nu^{6} - 336\nu^{4} + 384\nu^{2} - 832 ) / 1344 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( -5\nu^{14} + 6\nu^{12} - 14\nu^{10} + 116\nu^{8} - 244\nu^{6} + 448\nu^{4} - 256\nu^{2} + 1600 ) / 448 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( 4\nu^{14} - 9\nu^{12} + 42\nu^{10} - 6\nu^{8} + 156\nu^{6} - 84\nu^{4} + 48\nu^{2} + 64 ) / 336 \) Copy content Toggle raw display
\(\beta_{12}\)\(=\) \( ( -\nu^{14} - 2\nu^{12} - 6\nu^{10} + 4\nu^{8} - 4\nu^{6} - 64\nu^{2} ) / 64 \) Copy content Toggle raw display
\(\beta_{13}\)\(=\) \( ( -11\nu^{15} + 9\nu^{13} - 42\nu^{11} + 90\nu^{9} - 156\nu^{7} + 420\nu^{5} - 216\nu^{3} + 1504\nu ) / 672 \) Copy content Toggle raw display
\(\beta_{14}\)\(=\) \( ( 23\nu^{14} + 6\nu^{12} + 42\nu^{10} - 108\nu^{8} + 540\nu^{6} + 672\nu^{4} + 1536\nu^{2} - 640 ) / 1344 \) Copy content Toggle raw display
\(\beta_{15}\)\(=\) \( ( 31\nu^{14} + 30\nu^{12} + 42\nu^{10} + 132\nu^{8} + 348\nu^{6} + 2304\nu^{2} + 832 ) / 1344 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{13} - 2\beta_{8} - \beta_{7} - \beta_{6} + \beta_{5} - \beta_{4} + \beta_{3} + \beta_{2} ) / 4 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{15} - \beta_{11} + \beta_{10} + \beta _1 - 1 ) / 4 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( \beta_{8} + \beta_{5} - \beta_{4} + \beta_{3} - \beta_{2} ) / 2 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( -\beta_{15} + 2\beta_{14} + \beta_{10} - 2 ) / 2 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( \beta_{13} + 2\beta_{8} - \beta_{7} + \beta_{6} + \beta_{5} + 3\beta_{4} - \beta_{3} - \beta_{2} ) / 2 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( \beta_{14} + \beta_{12} + \beta_{11} - \beta_{10} - 3\beta_{9} + 2 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( \beta_{13} - \beta_{8} + 2\beta_{7} + 2\beta_{6} + 3\beta_{4} + \beta_{2} \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( 3\beta_{15} - 2\beta_{14} + 2\beta_{12} + 2\beta_{11} + \beta_{10} - 2\beta_{9} - 8 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( -2\beta_{13} + 2\beta_{8} + 2\beta_{7} + 4\beta_{6} - 8\beta_{5} + 2\beta_{3} - 2\beta_{2} \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( -3\beta_{15} - 2\beta_{14} - 6\beta_{12} + 5\beta_{11} + 3\beta_{10} - 2\beta_{9} + \beta _1 - 9 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( -4\beta_{8} - 2\beta_{7} + 6\beta_{6} - 8\beta_{5} - 2\beta_{4} - 8\beta_{3} - 2\beta_{2} \) Copy content Toggle raw display
\(\nu^{12}\)\(=\) \( -2\beta_{15} - 12\beta_{12} - 2\beta_{11} - 10\beta_{10} - 28\beta_{9} - 2\beta _1 + 14 \) Copy content Toggle raw display
\(\nu^{13}\)\(=\) \( -2\beta_{13} - 12\beta_{8} + 2\beta_{7} + 2\beta_{6} + 14\beta_{5} - 22\beta_{4} - 10\beta_{3} + 22\beta_{2} \) Copy content Toggle raw display
\(\nu^{14}\)\(=\) \( 18\beta_{15} - 6\beta_{11} - 6\beta_{10} + 72\beta_{9} - 18\beta _1 + 2 \) Copy content Toggle raw display
\(\nu^{15}\)\(=\) \( -40\beta_{13} - 4\beta_{8} - 56\beta_{7} - 32\beta_{6} + 20\beta_{5} - 20\beta_{4} + 44\beta_{3} + 20\beta_{2} \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1600\mathbb{Z}\right)^\times\).

\(n\) \(577\) \(901\) \(1151\)
\(\chi(n)\) \(\beta_{9}\) \(\beta_{9}\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
207.1
−1.24570 0.669507i
0.601202 1.28006i
0.859408 + 1.12313i
1.35949 0.389597i
−1.35949 + 0.389597i
−0.859408 1.12313i
−0.601202 + 1.28006i
1.24570 + 0.669507i
−1.24570 + 0.669507i
0.601202 + 1.28006i
0.859408 1.12313i
1.35949 + 0.389597i
−1.35949 0.389597i
−0.859408 + 1.12313i
−0.601202 1.28006i
1.24570 0.669507i
0 −3.07455 0 0 0 −1.47763 1.47763i 0 6.45288 0
207.2 0 −2.02856 0 0 0 3.26957 + 3.26957i 0 1.11507 0
207.3 0 −1.54564 0 0 0 −1.17442 1.17442i 0 −0.611000 0
207.4 0 −0.207468 0 0 0 −1.32185 1.32185i 0 −2.95696 0
207.5 0 0.207468 0 0 0 1.32185 + 1.32185i 0 −2.95696 0
207.6 0 1.54564 0 0 0 1.17442 + 1.17442i 0 −0.611000 0
207.7 0 2.02856 0 0 0 −3.26957 3.26957i 0 1.11507 0
207.8 0 3.07455 0 0 0 1.47763 + 1.47763i 0 6.45288 0
943.1 0 −3.07455 0 0 0 −1.47763 + 1.47763i 0 6.45288 0
943.2 0 −2.02856 0 0 0 3.26957 3.26957i 0 1.11507 0
943.3 0 −1.54564 0 0 0 −1.17442 + 1.17442i 0 −0.611000 0
943.4 0 −0.207468 0 0 0 −1.32185 + 1.32185i 0 −2.95696 0
943.5 0 0.207468 0 0 0 1.32185 1.32185i 0 −2.95696 0
943.6 0 1.54564 0 0 0 1.17442 1.17442i 0 −0.611000 0
943.7 0 2.02856 0 0 0 −3.26957 + 3.26957i 0 1.11507 0
943.8 0 3.07455 0 0 0 1.47763 1.47763i 0 6.45288 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 207.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner
80.j even 4 1 inner
80.s even 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1600.2.s.c 16
4.b odd 2 1 400.2.s.c yes 16
5.b even 2 1 inner 1600.2.s.c 16
5.c odd 4 2 1600.2.j.c 16
16.e even 4 1 400.2.j.c 16
16.f odd 4 1 1600.2.j.c 16
20.d odd 2 1 400.2.s.c yes 16
20.e even 4 2 400.2.j.c 16
80.i odd 4 1 400.2.s.c yes 16
80.j even 4 1 inner 1600.2.s.c 16
80.k odd 4 1 1600.2.j.c 16
80.q even 4 1 400.2.j.c 16
80.s even 4 1 inner 1600.2.s.c 16
80.t odd 4 1 400.2.s.c yes 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
400.2.j.c 16 16.e even 4 1
400.2.j.c 16 20.e even 4 2
400.2.j.c 16 80.q even 4 1
400.2.s.c yes 16 4.b odd 2 1
400.2.s.c yes 16 20.d odd 2 1
400.2.s.c yes 16 80.i odd 4 1
400.2.s.c yes 16 80.t odd 4 1
1600.2.j.c 16 5.c odd 4 2
1600.2.j.c 16 16.f odd 4 1
1600.2.j.c 16 80.k odd 4 1
1600.2.s.c 16 1.a even 1 1 trivial
1600.2.s.c 16 5.b even 2 1 inner
1600.2.s.c 16 80.j even 4 1 inner
1600.2.s.c 16 80.s even 4 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{8} - 16T_{3}^{6} + 72T_{3}^{4} - 96T_{3}^{2} + 4 \) acting on \(S_{2}^{\mathrm{new}}(1600, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{16} \) Copy content Toggle raw display
$3$ \( (T^{8} - 16 T^{6} + 72 T^{4} + \cdots + 4)^{2} \) Copy content Toggle raw display
$5$ \( T^{16} \) Copy content Toggle raw display
$7$ \( T^{16} + 496 T^{12} + \cdots + 810000 \) Copy content Toggle raw display
$11$ \( (T^{8} + 4 T^{7} + \cdots + 7056)^{2} \) Copy content Toggle raw display
$13$ \( (T^{8} + 56 T^{6} + \cdots + 5184)^{2} \) Copy content Toggle raw display
$17$ \( T^{16} + \cdots + 1600000000 \) Copy content Toggle raw display
$19$ \( (T^{8} + 4 T^{7} + \cdots + 38416)^{2} \) Copy content Toggle raw display
$23$ \( T^{16} + 2448 T^{12} + \cdots + 10000 \) Copy content Toggle raw display
$29$ \( (T^{8} + 8 T^{7} + \cdots + 242064)^{2} \) Copy content Toggle raw display
$31$ \( (T^{8} + 160 T^{6} + \cdots + 1849600)^{2} \) Copy content Toggle raw display
$37$ \( (T^{8} + 144 T^{6} + \cdots + 9216)^{2} \) Copy content Toggle raw display
$41$ \( (T^{8} + 192 T^{6} + \cdots + 90000)^{2} \) Copy content Toggle raw display
$43$ \( (T^{8} + 96 T^{6} + \cdots + 36)^{2} \) Copy content Toggle raw display
$47$ \( T^{16} + 20464 T^{12} + \cdots + 38416 \) Copy content Toggle raw display
$53$ \( (T^{8} - 200 T^{6} + \cdots + 1915456)^{2} \) Copy content Toggle raw display
$59$ \( (T^{8} + 4 T^{7} + \cdots + 1192464)^{2} \) Copy content Toggle raw display
$61$ \( (T^{8} + 8 T^{7} + \cdots + 3625216)^{2} \) Copy content Toggle raw display
$67$ \( (T^{8} + 336 T^{6} + \cdots + 9771876)^{2} \) Copy content Toggle raw display
$71$ \( (T^{4} - 8 T^{3} + \cdots - 192)^{4} \) Copy content Toggle raw display
$73$ \( T^{16} + \cdots + 14281868906496 \) Copy content Toggle raw display
$79$ \( (T^{4} - 20 T^{3} + \cdots - 6000)^{4} \) Copy content Toggle raw display
$83$ \( (T^{8} - 256 T^{6} + \cdots + 4235364)^{2} \) Copy content Toggle raw display
$89$ \( (T^{4} - 136 T^{2} + \cdots - 240)^{4} \) Copy content Toggle raw display
$97$ \( T^{16} + \cdots + 77\!\cdots\!00 \) Copy content Toggle raw display
show more
show less