Properties

Label 1600.2.q.f.49.2
Level $1600$
Weight $2$
Character 1600.49
Analytic conductor $12.776$
Analytic rank $0$
Dimension $12$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1600 = 2^{6} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1600.q (of order \(4\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(12.7760643234\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(i)\)
Coefficient field: 12.0.4767670494822400.1
Defining polynomial: \(x^{12} - 4 x^{11} + 7 x^{10} - 4 x^{9} - 8 x^{8} + 24 x^{7} - 38 x^{6} + 48 x^{5} - 32 x^{4} - 32 x^{3} + 112 x^{2} - 128 x + 64\)
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 2^{7} \)
Twist minimal: no (minimal twist has level 400)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 49.2
Root \(1.22306 - 0.710021i\) of defining polynomial
Character \(\chi\) \(=\) 1600.49
Dual form 1600.2.q.f.849.2

$q$-expansion

\(f(q)\) \(=\) \(q+(-1.09156 - 1.09156i) q^{3} -0.973926 q^{7} -0.616985i q^{9} +O(q^{10})\) \(q+(-1.09156 - 1.09156i) q^{3} -0.973926 q^{7} -0.616985i q^{9} +(-1.40810 - 1.40810i) q^{11} +(4.60317 + 4.60317i) q^{13} +0.490104i q^{17} +(4.54863 - 4.54863i) q^{19} +(1.06310 + 1.06310i) q^{21} +1.94308 q^{23} +(-3.94816 + 3.94816i) q^{27} +(3.74613 - 3.74613i) q^{29} -4.29021 q^{31} +3.07405i q^{33} +(-4.55320 + 4.55320i) q^{37} -10.0493i q^{39} -10.1542i q^{41} +(1.79055 - 1.79055i) q^{43} -10.0162i q^{47} -6.05147 q^{49} +(0.534979 - 0.534979i) q^{51} +(5.61412 - 5.61412i) q^{53} -9.93022 q^{57} +(8.44185 + 8.44185i) q^{59} +(3.01095 - 3.01095i) q^{61} +0.600897i q^{63} +(-7.07504 - 7.07504i) q^{67} +(-2.12099 - 2.12099i) q^{69} -0.897891i q^{71} -9.71555 q^{73} +(1.37138 + 1.37138i) q^{77} -14.7857 q^{79} +6.76838 q^{81} +(0.815000 + 0.815000i) q^{83} -8.17827 q^{87} -1.12404i q^{89} +(-4.48314 - 4.48314i) q^{91} +(4.68303 + 4.68303i) q^{93} -7.54442i q^{97} +(-0.868775 + 0.868775i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12q + 2q^{3} - 12q^{7} + O(q^{10}) \) \( 12q + 2q^{3} - 12q^{7} + 2q^{11} + 4q^{13} - 14q^{19} - 20q^{21} - 12q^{23} - 10q^{27} + 4q^{31} - 8q^{37} - 4q^{49} - 10q^{51} - 16q^{53} - 16q^{57} + 20q^{59} + 4q^{61} - 50q^{67} + 40q^{73} - 8q^{77} + 12q^{79} - 8q^{81} - 2q^{83} + 64q^{87} + 44q^{93} + 12q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1600\mathbb{Z}\right)^\times\).

\(n\) \(577\) \(901\) \(1151\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.09156 1.09156i −0.630214 0.630214i 0.317908 0.948122i \(-0.397020\pi\)
−0.948122 + 0.317908i \(0.897020\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −0.973926 −0.368109 −0.184055 0.982916i \(-0.558922\pi\)
−0.184055 + 0.982916i \(0.558922\pi\)
\(8\) 0 0
\(9\) 0.616985i 0.205662i
\(10\) 0 0
\(11\) −1.40810 1.40810i −0.424558 0.424558i 0.462212 0.886769i \(-0.347056\pi\)
−0.886769 + 0.462212i \(0.847056\pi\)
\(12\) 0 0
\(13\) 4.60317 + 4.60317i 1.27669 + 1.27669i 0.942510 + 0.334179i \(0.108459\pi\)
0.334179 + 0.942510i \(0.391541\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 0.490104i 0.118868i 0.998232 + 0.0594338i \(0.0189295\pi\)
−0.998232 + 0.0594338i \(0.981070\pi\)
\(18\) 0 0
\(19\) 4.54863 4.54863i 1.04353 1.04353i 0.0445187 0.999009i \(-0.485825\pi\)
0.999009 0.0445187i \(-0.0141754\pi\)
\(20\) 0 0
\(21\) 1.06310 + 1.06310i 0.231988 + 0.231988i
\(22\) 0 0
\(23\) 1.94308 0.405160 0.202580 0.979266i \(-0.435067\pi\)
0.202580 + 0.979266i \(0.435067\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) −3.94816 + 3.94816i −0.759824 + 0.759824i
\(28\) 0 0
\(29\) 3.74613 3.74613i 0.695640 0.695640i −0.267827 0.963467i \(-0.586306\pi\)
0.963467 + 0.267827i \(0.0863057\pi\)
\(30\) 0 0
\(31\) −4.29021 −0.770545 −0.385272 0.922803i \(-0.625893\pi\)
−0.385272 + 0.922803i \(0.625893\pi\)
\(32\) 0 0
\(33\) 3.07405i 0.535124i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −4.55320 + 4.55320i −0.748542 + 0.748542i −0.974205 0.225663i \(-0.927545\pi\)
0.225663 + 0.974205i \(0.427545\pi\)
\(38\) 0 0
\(39\) 10.0493i 1.60917i
\(40\) 0 0
\(41\) 10.1542i 1.58582i −0.609341 0.792908i \(-0.708566\pi\)
0.609341 0.792908i \(-0.291434\pi\)
\(42\) 0 0
\(43\) 1.79055 1.79055i 0.273057 0.273057i −0.557273 0.830329i \(-0.688152\pi\)
0.830329 + 0.557273i \(0.188152\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 10.0162i 1.46102i −0.682902 0.730510i \(-0.739283\pi\)
0.682902 0.730510i \(-0.260717\pi\)
\(48\) 0 0
\(49\) −6.05147 −0.864495
\(50\) 0 0
\(51\) 0.534979 0.534979i 0.0749120 0.0749120i
\(52\) 0 0
\(53\) 5.61412 5.61412i 0.771158 0.771158i −0.207151 0.978309i \(-0.566419\pi\)
0.978309 + 0.207151i \(0.0664190\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −9.93022 −1.31529
\(58\) 0 0
\(59\) 8.44185 + 8.44185i 1.09904 + 1.09904i 0.994524 + 0.104512i \(0.0333281\pi\)
0.104512 + 0.994524i \(0.466672\pi\)
\(60\) 0 0
\(61\) 3.01095 3.01095i 0.385513 0.385513i −0.487571 0.873084i \(-0.662117\pi\)
0.873084 + 0.487571i \(0.162117\pi\)
\(62\) 0 0
\(63\) 0.600897i 0.0757060i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −7.07504 7.07504i −0.864354 0.864354i 0.127486 0.991840i \(-0.459309\pi\)
−0.991840 + 0.127486i \(0.959309\pi\)
\(68\) 0 0
\(69\) −2.12099 2.12099i −0.255337 0.255337i
\(70\) 0 0
\(71\) 0.897891i 0.106560i −0.998580 0.0532800i \(-0.983032\pi\)
0.998580 0.0532800i \(-0.0169676\pi\)
\(72\) 0 0
\(73\) −9.71555 −1.13712 −0.568559 0.822642i \(-0.692499\pi\)
−0.568559 + 0.822642i \(0.692499\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 1.37138 + 1.37138i 0.156284 + 0.156284i
\(78\) 0 0
\(79\) −14.7857 −1.66352 −0.831760 0.555135i \(-0.812666\pi\)
−0.831760 + 0.555135i \(0.812666\pi\)
\(80\) 0 0
\(81\) 6.76838 0.752042
\(82\) 0 0
\(83\) 0.815000 + 0.815000i 0.0894579 + 0.0894579i 0.750420 0.660962i \(-0.229851\pi\)
−0.660962 + 0.750420i \(0.729851\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −8.17827 −0.876803
\(88\) 0 0
\(89\) 1.12404i 0.119148i −0.998224 0.0595739i \(-0.981026\pi\)
0.998224 0.0595739i \(-0.0189742\pi\)
\(90\) 0 0
\(91\) −4.48314 4.48314i −0.469961 0.469961i
\(92\) 0 0
\(93\) 4.68303 + 4.68303i 0.485608 + 0.485608i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 7.54442i 0.766019i −0.923744 0.383010i \(-0.874888\pi\)
0.923744 0.383010i \(-0.125112\pi\)
\(98\) 0 0
\(99\) −0.868775 + 0.868775i −0.0873152 + 0.0873152i
\(100\) 0 0
\(101\) −2.60535 2.60535i −0.259242 0.259242i 0.565504 0.824746i \(-0.308682\pi\)
−0.824746 + 0.565504i \(0.808682\pi\)
\(102\) 0 0
\(103\) 13.8146 1.36120 0.680598 0.732657i \(-0.261720\pi\)
0.680598 + 0.732657i \(0.261720\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −9.89124 + 9.89124i −0.956222 + 0.956222i −0.999081 0.0428589i \(-0.986353\pi\)
0.0428589 + 0.999081i \(0.486353\pi\)
\(108\) 0 0
\(109\) 11.5454 11.5454i 1.10584 1.10584i 0.112154 0.993691i \(-0.464225\pi\)
0.993691 0.112154i \(-0.0357750\pi\)
\(110\) 0 0
\(111\) 9.94021 0.943483
\(112\) 0 0
\(113\) 17.2057i 1.61857i −0.587415 0.809286i \(-0.699854\pi\)
0.587415 0.809286i \(-0.300146\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 2.84008 2.84008i 0.262566 0.262566i
\(118\) 0 0
\(119\) 0.477325i 0.0437563i
\(120\) 0 0
\(121\) 7.03452i 0.639502i
\(122\) 0 0
\(123\) −11.0839 + 11.0839i −0.999403 + 0.999403i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 1.37608i 0.122107i 0.998134 + 0.0610535i \(0.0194460\pi\)
−0.998134 + 0.0610535i \(0.980554\pi\)
\(128\) 0 0
\(129\) −3.90900 −0.344168
\(130\) 0 0
\(131\) 9.03973 9.03973i 0.789804 0.789804i −0.191657 0.981462i \(-0.561386\pi\)
0.981462 + 0.191657i \(0.0613863\pi\)
\(132\) 0 0
\(133\) −4.43003 + 4.43003i −0.384132 + 0.384132i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −15.3056 −1.30764 −0.653822 0.756649i \(-0.726835\pi\)
−0.653822 + 0.756649i \(0.726835\pi\)
\(138\) 0 0
\(139\) −0.346824 0.346824i −0.0294173 0.0294173i 0.692245 0.721662i \(-0.256622\pi\)
−0.721662 + 0.692245i \(0.756622\pi\)
\(140\) 0 0
\(141\) −10.9334 + 10.9334i −0.920754 + 0.920754i
\(142\) 0 0
\(143\) 12.9634i 1.08406i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 6.60555 + 6.60555i 0.544817 + 0.544817i
\(148\) 0 0
\(149\) −4.30028 4.30028i −0.352293 0.352293i 0.508669 0.860962i \(-0.330138\pi\)
−0.860962 + 0.508669i \(0.830138\pi\)
\(150\) 0 0
\(151\) 2.02102i 0.164468i −0.996613 0.0822341i \(-0.973794\pi\)
0.996613 0.0822341i \(-0.0262055\pi\)
\(152\) 0 0
\(153\) 0.302387 0.0244465
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −2.93327 2.93327i −0.234101 0.234101i 0.580301 0.814402i \(-0.302935\pi\)
−0.814402 + 0.580301i \(0.802935\pi\)
\(158\) 0 0
\(159\) −12.2563 −0.971989
\(160\) 0 0
\(161\) −1.89241 −0.149143
\(162\) 0 0
\(163\) 5.74697 + 5.74697i 0.450137 + 0.450137i 0.895400 0.445263i \(-0.146890\pi\)
−0.445263 + 0.895400i \(0.646890\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 6.41553 0.496449 0.248224 0.968703i \(-0.420153\pi\)
0.248224 + 0.968703i \(0.420153\pi\)
\(168\) 0 0
\(169\) 29.3783i 2.25987i
\(170\) 0 0
\(171\) −2.80644 2.80644i −0.214613 0.214613i
\(172\) 0 0
\(173\) −0.545724 0.545724i −0.0414907 0.0414907i 0.686057 0.727548i \(-0.259340\pi\)
−0.727548 + 0.686057i \(0.759340\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 18.4296i 1.38525i
\(178\) 0 0
\(179\) −3.57757 + 3.57757i −0.267400 + 0.267400i −0.828052 0.560652i \(-0.810551\pi\)
0.560652 + 0.828052i \(0.310551\pi\)
\(180\) 0 0
\(181\) −1.64176 1.64176i −0.122031 0.122031i 0.643454 0.765485i \(-0.277501\pi\)
−0.765485 + 0.643454i \(0.777501\pi\)
\(182\) 0 0
\(183\) −6.57328 −0.485911
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0.690114 0.690114i 0.0504662 0.0504662i
\(188\) 0 0
\(189\) 3.84522 3.84522i 0.279698 0.279698i
\(190\) 0 0
\(191\) 15.3359 1.10967 0.554835 0.831960i \(-0.312781\pi\)
0.554835 + 0.831960i \(0.312781\pi\)
\(192\) 0 0
\(193\) 0.0812703i 0.00584996i −0.999996 0.00292498i \(-0.999069\pi\)
0.999996 0.00292498i \(-0.000931052\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 1.40711 1.40711i 0.100252 0.100252i −0.655202 0.755454i \(-0.727416\pi\)
0.755454 + 0.655202i \(0.227416\pi\)
\(198\) 0 0
\(199\) 14.3046i 1.01402i −0.861939 0.507011i \(-0.830750\pi\)
0.861939 0.507011i \(-0.169250\pi\)
\(200\) 0 0
\(201\) 15.4457i 1.08946i
\(202\) 0 0
\(203\) −3.64846 + 3.64846i −0.256071 + 0.256071i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 1.19885i 0.0833258i
\(208\) 0 0
\(209\) −12.8098 −0.886075
\(210\) 0 0
\(211\) −8.70115 + 8.70115i −0.599012 + 0.599012i −0.940050 0.341038i \(-0.889222\pi\)
0.341038 + 0.940050i \(0.389222\pi\)
\(212\) 0 0
\(213\) −0.980103 + 0.980103i −0.0671556 + 0.0671556i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 4.17835 0.283645
\(218\) 0 0
\(219\) 10.6051 + 10.6051i 0.716628 + 0.716628i
\(220\) 0 0
\(221\) −2.25603 + 2.25603i −0.151757 + 0.151757i
\(222\) 0 0
\(223\) 7.78095i 0.521051i −0.965467 0.260525i \(-0.916104\pi\)
0.965467 0.260525i \(-0.0838958\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 2.15443 + 2.15443i 0.142995 + 0.142995i 0.774980 0.631986i \(-0.217760\pi\)
−0.631986 + 0.774980i \(0.717760\pi\)
\(228\) 0 0
\(229\) 7.63865 + 7.63865i 0.504776 + 0.504776i 0.912918 0.408142i \(-0.133823\pi\)
−0.408142 + 0.912918i \(0.633823\pi\)
\(230\) 0 0
\(231\) 2.99390i 0.196984i
\(232\) 0 0
\(233\) 7.51503 0.492326 0.246163 0.969228i \(-0.420830\pi\)
0.246163 + 0.969228i \(0.420830\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 16.1395 + 16.1395i 1.04837 + 1.04837i
\(238\) 0 0
\(239\) 20.5776 1.33105 0.665526 0.746375i \(-0.268207\pi\)
0.665526 + 0.746375i \(0.268207\pi\)
\(240\) 0 0
\(241\) −23.2914 −1.50033 −0.750166 0.661250i \(-0.770026\pi\)
−0.750166 + 0.661250i \(0.770026\pi\)
\(242\) 0 0
\(243\) 4.45639 + 4.45639i 0.285877 + 0.285877i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 41.8762 2.66452
\(248\) 0 0
\(249\) 1.77925i 0.112755i
\(250\) 0 0
\(251\) 3.34230 + 3.34230i 0.210964 + 0.210964i 0.804677 0.593713i \(-0.202339\pi\)
−0.593713 + 0.804677i \(0.702339\pi\)
\(252\) 0 0
\(253\) −2.73604 2.73604i −0.172014 0.172014i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 22.4537i 1.40062i 0.713838 + 0.700311i \(0.246955\pi\)
−0.713838 + 0.700311i \(0.753045\pi\)
\(258\) 0 0
\(259\) 4.43448 4.43448i 0.275545 0.275545i
\(260\) 0 0
\(261\) −2.31131 2.31131i −0.143066 0.143066i
\(262\) 0 0
\(263\) −8.23670 −0.507897 −0.253948 0.967218i \(-0.581729\pi\)
−0.253948 + 0.967218i \(0.581729\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −1.22696 + 1.22696i −0.0750885 + 0.0750885i
\(268\) 0 0
\(269\) 17.2960 17.2960i 1.05455 1.05455i 0.0561306 0.998423i \(-0.482124\pi\)
0.998423 0.0561306i \(-0.0178763\pi\)
\(270\) 0 0
\(271\) 12.4753 0.757822 0.378911 0.925433i \(-0.376299\pi\)
0.378911 + 0.925433i \(0.376299\pi\)
\(272\) 0 0
\(273\) 9.78726i 0.592352i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 10.2583 10.2583i 0.616363 0.616363i −0.328234 0.944597i \(-0.606453\pi\)
0.944597 + 0.328234i \(0.106453\pi\)
\(278\) 0 0
\(279\) 2.64700i 0.158472i
\(280\) 0 0
\(281\) 21.4066i 1.27701i 0.769618 + 0.638505i \(0.220447\pi\)
−0.769618 + 0.638505i \(0.779553\pi\)
\(282\) 0 0
\(283\) −7.39635 + 7.39635i −0.439668 + 0.439668i −0.891900 0.452232i \(-0.850628\pi\)
0.452232 + 0.891900i \(0.350628\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 9.88942i 0.583754i
\(288\) 0 0
\(289\) 16.7598 0.985870
\(290\) 0 0
\(291\) −8.23520 + 8.23520i −0.482756 + 0.482756i
\(292\) 0 0
\(293\) 0.556728 0.556728i 0.0325244 0.0325244i −0.690658 0.723182i \(-0.742679\pi\)
0.723182 + 0.690658i \(0.242679\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 11.1188 0.645178
\(298\) 0 0
\(299\) 8.94430 + 8.94430i 0.517263 + 0.517263i
\(300\) 0 0
\(301\) −1.74387 + 1.74387i −0.100515 + 0.100515i
\(302\) 0 0
\(303\) 5.68781i 0.326756i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 9.76852 + 9.76852i 0.557519 + 0.557519i 0.928600 0.371082i \(-0.121013\pi\)
−0.371082 + 0.928600i \(0.621013\pi\)
\(308\) 0 0
\(309\) −15.0795 15.0795i −0.857844 0.857844i
\(310\) 0 0
\(311\) 30.6874i 1.74013i 0.492941 + 0.870063i \(0.335922\pi\)
−0.492941 + 0.870063i \(0.664078\pi\)
\(312\) 0 0
\(313\) 1.71127 0.0967268 0.0483634 0.998830i \(-0.484599\pi\)
0.0483634 + 0.998830i \(0.484599\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 10.0380 + 10.0380i 0.563790 + 0.563790i 0.930382 0.366592i \(-0.119476\pi\)
−0.366592 + 0.930382i \(0.619476\pi\)
\(318\) 0 0
\(319\) −10.5498 −0.590678
\(320\) 0 0
\(321\) 21.5938 1.20525
\(322\) 0 0
\(323\) 2.22930 + 2.22930i 0.124042 + 0.124042i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −25.2049 −1.39384
\(328\) 0 0
\(329\) 9.75508i 0.537815i
\(330\) 0 0
\(331\) −7.89713 7.89713i −0.434066 0.434066i 0.455943 0.890009i \(-0.349302\pi\)
−0.890009 + 0.455943i \(0.849302\pi\)
\(332\) 0 0
\(333\) 2.80926 + 2.80926i 0.153946 + 0.153946i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 3.46077i 0.188520i 0.995548 + 0.0942601i \(0.0300485\pi\)
−0.995548 + 0.0942601i \(0.969951\pi\)
\(338\) 0 0
\(339\) −18.7810 + 18.7810i −1.02005 + 1.02005i
\(340\) 0 0
\(341\) 6.04104 + 6.04104i 0.327141 + 0.327141i
\(342\) 0 0
\(343\) 12.7112 0.686338
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 17.4637 17.4637i 0.937498 0.937498i −0.0606600 0.998158i \(-0.519321\pi\)
0.998158 + 0.0606600i \(0.0193205\pi\)
\(348\) 0 0
\(349\) −24.2159 + 24.2159i −1.29625 + 1.29625i −0.365397 + 0.930852i \(0.619067\pi\)
−0.930852 + 0.365397i \(0.880933\pi\)
\(350\) 0 0
\(351\) −36.3481 −1.94012
\(352\) 0 0
\(353\) 10.7028i 0.569650i −0.958580 0.284825i \(-0.908065\pi\)
0.958580 0.284825i \(-0.0919355\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) −0.521030 + 0.521030i −0.0275758 + 0.0275758i
\(358\) 0 0
\(359\) 23.6390i 1.24762i 0.781577 + 0.623809i \(0.214416\pi\)
−0.781577 + 0.623809i \(0.785584\pi\)
\(360\) 0 0
\(361\) 22.3801i 1.17790i
\(362\) 0 0
\(363\) −7.67861 + 7.67861i −0.403023 + 0.403023i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 13.7431i 0.717386i −0.933456 0.358693i \(-0.883223\pi\)
0.933456 0.358693i \(-0.116777\pi\)
\(368\) 0 0
\(369\) −6.26498 −0.326142
\(370\) 0 0
\(371\) −5.46773 + 5.46773i −0.283871 + 0.283871i
\(372\) 0 0
\(373\) −18.4703 + 18.4703i −0.956355 + 0.956355i −0.999087 0.0427313i \(-0.986394\pi\)
0.0427313 + 0.999087i \(0.486394\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 34.4881 1.77623
\(378\) 0 0
\(379\) −16.1028 16.1028i −0.827143 0.827143i 0.159978 0.987121i \(-0.448858\pi\)
−0.987121 + 0.159978i \(0.948858\pi\)
\(380\) 0 0
\(381\) 1.50207 1.50207i 0.0769535 0.0769535i
\(382\) 0 0
\(383\) 23.1255i 1.18166i −0.806796 0.590830i \(-0.798800\pi\)
0.806796 0.590830i \(-0.201200\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −1.10474 1.10474i −0.0561573 0.0561573i
\(388\) 0 0
\(389\) 19.4044 + 19.4044i 0.983842 + 0.983842i 0.999872 0.0160295i \(-0.00510257\pi\)
−0.0160295 + 0.999872i \(0.505103\pi\)
\(390\) 0 0
\(391\) 0.952310i 0.0481604i
\(392\) 0 0
\(393\) −19.7348 −0.995491
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 4.00102 + 4.00102i 0.200806 + 0.200806i 0.800345 0.599540i \(-0.204650\pi\)
−0.599540 + 0.800345i \(0.704650\pi\)
\(398\) 0 0
\(399\) 9.67130 0.484171
\(400\) 0 0
\(401\) 38.9287 1.94401 0.972003 0.234967i \(-0.0754980\pi\)
0.972003 + 0.234967i \(0.0754980\pi\)
\(402\) 0 0
\(403\) −19.7486 19.7486i −0.983746 0.983746i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 12.8227 0.635598
\(408\) 0 0
\(409\) 4.59845i 0.227379i −0.993516 0.113689i \(-0.963733\pi\)
0.993516 0.113689i \(-0.0362669\pi\)
\(410\) 0 0
\(411\) 16.7070 + 16.7070i 0.824095 + 0.824095i
\(412\) 0 0
\(413\) −8.22174 8.22174i −0.404565 0.404565i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0.757161i 0.0370783i
\(418\) 0 0
\(419\) 16.6774 16.6774i 0.814746 0.814746i −0.170595 0.985341i \(-0.554569\pi\)
0.985341 + 0.170595i \(0.0545689\pi\)
\(420\) 0 0
\(421\) 15.4169 + 15.4169i 0.751372 + 0.751372i 0.974735 0.223364i \(-0.0717037\pi\)
−0.223364 + 0.974735i \(0.571704\pi\)
\(422\) 0 0
\(423\) −6.17987 −0.300476
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −2.93244 + 2.93244i −0.141911 + 0.141911i
\(428\) 0 0
\(429\) −14.1504 + 14.1504i −0.683186 + 0.683186i
\(430\) 0 0
\(431\) −20.2234 −0.974126 −0.487063 0.873367i \(-0.661932\pi\)
−0.487063 + 0.873367i \(0.661932\pi\)
\(432\) 0 0
\(433\) 0.676118i 0.0324922i 0.999868 + 0.0162461i \(0.00517152\pi\)
−0.999868 + 0.0162461i \(0.994828\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 8.83834 8.83834i 0.422795 0.422795i
\(438\) 0 0
\(439\) 13.3550i 0.637400i 0.947856 + 0.318700i \(0.103246\pi\)
−0.947856 + 0.318700i \(0.896754\pi\)
\(440\) 0 0
\(441\) 3.73366i 0.177794i
\(442\) 0 0
\(443\) 28.1262 28.1262i 1.33631 1.33631i 0.436714 0.899600i \(-0.356142\pi\)
0.899600 0.436714i \(-0.143858\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 9.38805i 0.444039i
\(448\) 0 0
\(449\) 8.37972 0.395464 0.197732 0.980256i \(-0.436642\pi\)
0.197732 + 0.980256i \(0.436642\pi\)
\(450\) 0 0
\(451\) −14.2981 + 14.2981i −0.673271 + 0.673271i
\(452\) 0 0
\(453\) −2.20607 + 2.20607i −0.103650 + 0.103650i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −5.66561 −0.265026 −0.132513 0.991181i \(-0.542305\pi\)
−0.132513 + 0.991181i \(0.542305\pi\)
\(458\) 0 0
\(459\) −1.93501 1.93501i −0.0903186 0.0903186i
\(460\) 0 0
\(461\) 16.6375 16.6375i 0.774887 0.774887i −0.204069 0.978956i \(-0.565417\pi\)
0.978956 + 0.204069i \(0.0654168\pi\)
\(462\) 0 0
\(463\) 41.6835i 1.93720i 0.248631 + 0.968598i \(0.420019\pi\)
−0.248631 + 0.968598i \(0.579981\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 3.11020 + 3.11020i 0.143923 + 0.143923i 0.775397 0.631474i \(-0.217550\pi\)
−0.631474 + 0.775397i \(0.717550\pi\)
\(468\) 0 0
\(469\) 6.89057 + 6.89057i 0.318177 + 0.318177i
\(470\) 0 0
\(471\) 6.40370i 0.295067i
\(472\) 0 0
\(473\) −5.04255 −0.231857
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −3.46383 3.46383i −0.158598 0.158598i
\(478\) 0 0
\(479\) −8.32325 −0.380299 −0.190149 0.981755i \(-0.560897\pi\)
−0.190149 + 0.981755i \(0.560897\pi\)
\(480\) 0 0
\(481\) −41.9183 −1.91131
\(482\) 0 0
\(483\) 2.06569 + 2.06569i 0.0939920 + 0.0939920i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −7.29577 −0.330603 −0.165301 0.986243i \(-0.552860\pi\)
−0.165301 + 0.986243i \(0.552860\pi\)
\(488\) 0 0
\(489\) 12.5463i 0.567365i
\(490\) 0 0
\(491\) −3.57528 3.57528i −0.161350 0.161350i 0.621815 0.783165i \(-0.286396\pi\)
−0.783165 + 0.621815i \(0.786396\pi\)
\(492\) 0 0
\(493\) 1.83600 + 1.83600i 0.0826891 + 0.0826891i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0.874479i 0.0392257i
\(498\) 0 0
\(499\) −10.8833 + 10.8833i −0.487203 + 0.487203i −0.907422 0.420220i \(-0.861953\pi\)
0.420220 + 0.907422i \(0.361953\pi\)
\(500\) 0 0
\(501\) −7.00295 7.00295i −0.312869 0.312869i
\(502\) 0 0
\(503\) −29.3781 −1.30991 −0.654953 0.755670i \(-0.727312\pi\)
−0.654953 + 0.755670i \(0.727312\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 32.0682 32.0682i 1.42420 1.42420i
\(508\) 0 0
\(509\) −17.4592 + 17.4592i −0.773863 + 0.773863i −0.978780 0.204916i \(-0.934308\pi\)
0.204916 + 0.978780i \(0.434308\pi\)
\(510\) 0 0
\(511\) 9.46222 0.418584
\(512\) 0 0
\(513\) 35.9175i 1.58579i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −14.1039 + 14.1039i −0.620287 + 0.620287i
\(518\) 0 0
\(519\) 1.19138i 0.0522959i
\(520\) 0 0
\(521\) 9.48578i 0.415580i 0.978174 + 0.207790i \(0.0666270\pi\)
−0.978174 + 0.207790i \(0.933373\pi\)
\(522\) 0 0
\(523\) 16.2705 16.2705i 0.711460 0.711460i −0.255380 0.966841i \(-0.582201\pi\)
0.966841 + 0.255380i \(0.0822006\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 2.10265i 0.0915929i
\(528\) 0 0
\(529\) −19.2245 −0.835846
\(530\) 0 0
\(531\) 5.20849 5.20849i 0.226029 0.226029i
\(532\) 0 0
\(533\) 46.7414 46.7414i 2.02459 2.02459i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 7.81028 0.337039
\(538\) 0 0
\(539\) 8.52106 + 8.52106i 0.367028 + 0.367028i
\(540\) 0 0
\(541\) −2.55686 + 2.55686i −0.109928 + 0.109928i −0.759931 0.650003i \(-0.774767\pi\)
0.650003 + 0.759931i \(0.274767\pi\)
\(542\) 0 0
\(543\) 3.58416i 0.153811i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −21.9660 21.9660i −0.939197 0.939197i 0.0590579 0.998255i \(-0.481190\pi\)
−0.998255 + 0.0590579i \(0.981190\pi\)
\(548\) 0 0
\(549\) −1.85771 1.85771i −0.0792852 0.0792852i
\(550\) 0 0
\(551\) 34.0796i 1.45184i
\(552\) 0 0
\(553\) 14.4002 0.612357
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −17.5409 17.5409i −0.743234 0.743234i 0.229965 0.973199i \(-0.426139\pi\)
−0.973199 + 0.229965i \(0.926139\pi\)
\(558\) 0 0
\(559\) 16.4844 0.697217
\(560\) 0 0
\(561\) −1.50661 −0.0636089
\(562\) 0 0
\(563\) −27.5975 27.5975i −1.16309 1.16309i −0.983794 0.179300i \(-0.942617\pi\)
−0.179300 0.983794i \(-0.557383\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −6.59190 −0.276834
\(568\) 0 0
\(569\) 23.6390i 0.990998i −0.868608 0.495499i \(-0.834985\pi\)
0.868608 0.495499i \(-0.165015\pi\)
\(570\) 0 0
\(571\) 21.7518 + 21.7518i 0.910284 + 0.910284i 0.996294 0.0860105i \(-0.0274118\pi\)
−0.0860105 + 0.996294i \(0.527412\pi\)
\(572\) 0 0
\(573\) −16.7401 16.7401i −0.699329 0.699329i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 3.69585i 0.153860i 0.997036 + 0.0769302i \(0.0245119\pi\)
−0.997036 + 0.0769302i \(0.975488\pi\)
\(578\) 0 0
\(579\) −0.0887116 + 0.0887116i −0.00368673 + 0.00368673i
\(580\) 0 0
\(581\) −0.793750 0.793750i −0.0329303 0.0329303i
\(582\) 0 0
\(583\) −15.8105 −0.654802
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −27.0313 + 27.0313i −1.11570 + 1.11570i −0.123335 + 0.992365i \(0.539359\pi\)
−0.992365 + 0.123335i \(0.960641\pi\)
\(588\) 0 0
\(589\) −19.5146 + 19.5146i −0.804085 + 0.804085i
\(590\) 0 0
\(591\) −3.07189 −0.126361
\(592\) 0 0
\(593\) 4.55524i 0.187061i −0.995616 0.0935306i \(-0.970185\pi\)
0.995616 0.0935306i \(-0.0298153\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −15.6143 + 15.6143i −0.639051 + 0.639051i
\(598\) 0 0
\(599\) 7.46846i 0.305153i 0.988292 + 0.152576i \(0.0487570\pi\)
−0.988292 + 0.152576i \(0.951243\pi\)
\(600\) 0 0
\(601\) 12.2638i 0.500250i −0.968214 0.250125i \(-0.919528\pi\)
0.968214 0.250125i \(-0.0804717\pi\)
\(602\) 0 0
\(603\) −4.36519 + 4.36519i −0.177764 + 0.177764i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 5.23884i 0.212638i 0.994332 + 0.106319i \(0.0339065\pi\)
−0.994332 + 0.106319i \(0.966094\pi\)
\(608\) 0 0
\(609\) 7.96503 0.322759
\(610\) 0 0
\(611\) 46.1064 46.1064i 1.86527 1.86527i
\(612\) 0 0
\(613\) −20.7209 + 20.7209i −0.836910 + 0.836910i −0.988451 0.151541i \(-0.951576\pi\)
0.151541 + 0.988451i \(0.451576\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 2.20286 0.0886838 0.0443419 0.999016i \(-0.485881\pi\)
0.0443419 + 0.999016i \(0.485881\pi\)
\(618\) 0 0
\(619\) −31.4569 31.4569i −1.26436 1.26436i −0.948958 0.315404i \(-0.897860\pi\)
−0.315404 0.948958i \(-0.602140\pi\)
\(620\) 0 0
\(621\) −7.67158 + 7.67158i −0.307850 + 0.307850i
\(622\) 0 0
\(623\) 1.09473i 0.0438594i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 13.9827 + 13.9827i 0.558416 + 0.558416i
\(628\) 0 0
\(629\) −2.23154 2.23154i −0.0889775 0.0889775i
\(630\) 0 0
\(631\) 16.8215i 0.669655i −0.942279 0.334828i \(-0.891322\pi\)
0.942279 0.334828i \(-0.108678\pi\)
\(632\) 0 0
\(633\) 18.9957 0.755011
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −27.8559 27.8559i −1.10369 1.10369i
\(638\) 0 0
\(639\) −0.553985 −0.0219153
\(640\) 0 0
\(641\) −14.9208 −0.589336 −0.294668 0.955600i \(-0.595209\pi\)
−0.294668 + 0.955600i \(0.595209\pi\)
\(642\) 0 0
\(643\) 0.541845 + 0.541845i 0.0213683 + 0.0213683i 0.717710 0.696342i \(-0.245190\pi\)
−0.696342 + 0.717710i \(0.745190\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −32.6391 −1.28318 −0.641588 0.767049i \(-0.721724\pi\)
−0.641588 + 0.767049i \(0.721724\pi\)
\(648\) 0 0
\(649\) 23.7739i 0.933208i
\(650\) 0 0
\(651\) −4.56093 4.56093i −0.178757 0.178757i
\(652\) 0 0
\(653\) 9.73805 + 9.73805i 0.381079 + 0.381079i 0.871491 0.490412i \(-0.163154\pi\)
−0.490412 + 0.871491i \(0.663154\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 5.99434i 0.233862i
\(658\) 0 0
\(659\) 1.26445 1.26445i 0.0492560 0.0492560i −0.682050 0.731306i \(-0.738911\pi\)
0.731306 + 0.682050i \(0.238911\pi\)
\(660\) 0 0
\(661\) 22.6701 + 22.6701i 0.881763 + 0.881763i 0.993714 0.111951i \(-0.0357099\pi\)
−0.111951 + 0.993714i \(0.535710\pi\)
\(662\) 0 0
\(663\) 4.92519 0.191279
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 7.27903 7.27903i 0.281845 0.281845i
\(668\) 0 0
\(669\) −8.49339 + 8.49339i −0.328373 + 0.328373i
\(670\) 0 0
\(671\) −8.47943 −0.327345
\(672\) 0 0
\(673\) 3.58765i 0.138294i 0.997606 + 0.0691469i \(0.0220277\pi\)
−0.997606 + 0.0691469i \(0.977972\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 10.1507 10.1507i 0.390124 0.390124i −0.484608 0.874731i \(-0.661038\pi\)
0.874731 + 0.484608i \(0.161038\pi\)
\(678\) 0 0
\(679\) 7.34770i 0.281979i
\(680\) 0 0
\(681\) 4.70339i 0.180234i
\(682\) 0 0
\(683\) 16.6805 16.6805i 0.638260 0.638260i −0.311866 0.950126i \(-0.600954\pi\)
0.950126 + 0.311866i \(0.100954\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 16.6761i 0.636234i
\(688\) 0 0
\(689\) 51.6854 1.96906
\(690\) 0 0
\(691\) −12.4781 + 12.4781i −0.474689 + 0.474689i −0.903428 0.428739i \(-0.858958\pi\)
0.428739 + 0.903428i \(0.358958\pi\)
\(692\) 0 0
\(693\) 0.846123 0.846123i 0.0321415 0.0321415i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 4.97661 0.188502
\(698\) 0 0
\(699\) −8.20312 8.20312i −0.310271 0.310271i
\(700\) 0 0
\(701\) 6.40945 6.40945i 0.242082 0.242082i −0.575629 0.817711i \(-0.695243\pi\)
0.817711 + 0.575629i \(0.195243\pi\)
\(702\) 0 0
\(703\) 41.4217i 1.56225i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 2.53742 + 2.53742i 0.0954295 + 0.0954295i
\(708\) 0 0
\(709\) −8.78514 8.78514i −0.329933 0.329933i 0.522628 0.852561i \(-0.324952\pi\)
−0.852561 + 0.522628i \(0.824952\pi\)
\(710\) 0 0
\(711\) 9.12255i 0.342122i
\(712\) 0 0
\(713\) −8.33621 −0.312194
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −22.4617 22.4617i −0.838847 0.838847i
\(718\) 0 0
\(719\) 46.2329 1.72420 0.862099 0.506740i \(-0.169150\pi\)
0.862099 + 0.506740i \(0.169150\pi\)
\(720\) 0 0
\(721\) −13.4544 −0.501069
\(722\) 0 0
\(723\) 25.4240 + 25.4240i 0.945530 + 0.945530i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 17.4640 0.647703 0.323852 0.946108i \(-0.395022\pi\)
0.323852 + 0.946108i \(0.395022\pi\)
\(728\) 0 0
\(729\) 30.0340i 1.11237i
\(730\) 0 0
\(731\) 0.877557 + 0.877557i 0.0324576 + 0.0324576i
\(732\) 0 0
\(733\) 7.89695 + 7.89695i 0.291680 + 0.291680i 0.837744 0.546063i \(-0.183874\pi\)
−0.546063 + 0.837744i \(0.683874\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 19.9247i 0.733936i
\(738\) 0 0
\(739\) 26.1724 26.1724i 0.962769 0.962769i −0.0365624 0.999331i \(-0.511641\pi\)
0.999331 + 0.0365624i \(0.0116408\pi\)
\(740\) 0 0
\(741\) −45.7105 45.7105i −1.67922 1.67922i
\(742\) 0 0
\(743\) 49.7660 1.82574 0.912868 0.408254i \(-0.133862\pi\)
0.912868 + 0.408254i \(0.133862\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0.502843 0.502843i 0.0183981 0.0183981i
\(748\) 0 0
\(749\) 9.63333 9.63333i 0.351994 0.351994i
\(750\) 0 0
\(751\) 24.2379 0.884454 0.442227 0.896903i \(-0.354189\pi\)
0.442227 + 0.896903i \(0.354189\pi\)
\(752\) 0 0
\(753\) 7.29665i 0.265905i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −15.4872 + 15.4872i −0.562890 + 0.562890i −0.930127 0.367237i \(-0.880304\pi\)
0.367237 + 0.930127i \(0.380304\pi\)
\(758\) 0 0
\(759\) 5.97312i 0.216811i
\(760\) 0 0
\(761\) 25.9821i 0.941849i 0.882174 + 0.470924i \(0.156080\pi\)
−0.882174 + 0.470924i \(0.843920\pi\)
\(762\) 0 0
\(763\) −11.2443 + 11.2443i −0.407072 + 0.407072i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 77.7185i 2.80625i
\(768\) 0 0
\(769\) 24.9737 0.900573 0.450287 0.892884i \(-0.351322\pi\)
0.450287 + 0.892884i \(0.351322\pi\)
\(770\) 0 0
\(771\) 24.5096 24.5096i 0.882691 0.882691i
\(772\) 0 0
\(773\) 1.32495 1.32495i 0.0476550 0.0476550i −0.682878 0.730533i \(-0.739272\pi\)
0.730533 + 0.682878i \(0.239272\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −9.68103 −0.347305
\(778\) 0 0
\(779\) −46.1876 46.1876i −1.65484 1.65484i
\(780\) 0 0
\(781\) −1.26432 + 1.26432i −0.0452409 + 0.0452409i
\(782\) 0 0
\(783\) 29.5807i 1.05713i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 0.647036 + 0.647036i 0.0230644 + 0.0230644i 0.718545 0.695481i \(-0.244808\pi\)
−0.695481 + 0.718545i \(0.744808\pi\)
\(788\) 0 0
\(789\) 8.99087 + 8.99087i 0.320084 + 0.320084i
\(790\) 0 0
\(791\) 16.7570i 0.595811i
\(792\) 0 0
\(793\) 27.7198 0.984360
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −18.3024 18.3024i −0.648303 0.648303i 0.304280 0.952583i \(-0.401584\pi\)
−0.952583 + 0.304280i \(0.901584\pi\)
\(798\) 0 0
\(799\) 4.90900 0.173668
\(800\) 0 0
\(801\) −0.693514 −0.0245041
\(802\) 0 0