Properties

Label 1600.2.q.b.849.1
Level $1600$
Weight $2$
Character 1600.849
Analytic conductor $12.776$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1600 = 2^{6} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1600.q (of order \(4\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(12.7760643234\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
Defining polynomial: \(x^{2} + 1\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 16)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 849.1
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 1600.849
Dual form 1600.2.q.b.49.1

$q$-expansion

\(f(q)\) \(=\) \(q+(1.00000 - 1.00000i) q^{3} +2.00000 q^{7} +1.00000i q^{9} +O(q^{10})\) \(q+(1.00000 - 1.00000i) q^{3} +2.00000 q^{7} +1.00000i q^{9} +(-1.00000 + 1.00000i) q^{11} +(-1.00000 + 1.00000i) q^{13} -2.00000i q^{17} +(3.00000 + 3.00000i) q^{19} +(2.00000 - 2.00000i) q^{21} +6.00000 q^{23} +(4.00000 + 4.00000i) q^{27} +(-3.00000 - 3.00000i) q^{29} +8.00000 q^{31} +2.00000i q^{33} +(3.00000 + 3.00000i) q^{37} +2.00000i q^{39} +(5.00000 + 5.00000i) q^{43} -8.00000i q^{47} -3.00000 q^{49} +(-2.00000 - 2.00000i) q^{51} +(5.00000 + 5.00000i) q^{53} +6.00000 q^{57} +(-3.00000 + 3.00000i) q^{59} +(-9.00000 - 9.00000i) q^{61} +2.00000i q^{63} +(-5.00000 + 5.00000i) q^{67} +(6.00000 - 6.00000i) q^{69} -10.0000i q^{71} +4.00000 q^{73} +(-2.00000 + 2.00000i) q^{77} +5.00000 q^{81} +(1.00000 - 1.00000i) q^{83} -6.00000 q^{87} +4.00000i q^{89} +(-2.00000 + 2.00000i) q^{91} +(8.00000 - 8.00000i) q^{93} -2.00000i q^{97} +(-1.00000 - 1.00000i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q + 2q^{3} + 4q^{7} + O(q^{10}) \) \( 2q + 2q^{3} + 4q^{7} - 2q^{11} - 2q^{13} + 6q^{19} + 4q^{21} + 12q^{23} + 8q^{27} - 6q^{29} + 16q^{31} + 6q^{37} + 10q^{43} - 6q^{49} - 4q^{51} + 10q^{53} + 12q^{57} - 6q^{59} - 18q^{61} - 10q^{67} + 12q^{69} + 8q^{73} - 4q^{77} + 10q^{81} + 2q^{83} - 12q^{87} - 4q^{91} + 16q^{93} - 2q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1600\mathbb{Z}\right)^\times\).

\(n\) \(577\) \(901\) \(1151\)
\(\chi(n)\) \(-1\) \(e\left(\frac{3}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000 1.00000i 0.577350 0.577350i −0.356822 0.934172i \(-0.616140\pi\)
0.934172 + 0.356822i \(0.116140\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 2.00000 0.755929 0.377964 0.925820i \(-0.376624\pi\)
0.377964 + 0.925820i \(0.376624\pi\)
\(8\) 0 0
\(9\) 1.00000i 0.333333i
\(10\) 0 0
\(11\) −1.00000 + 1.00000i −0.301511 + 0.301511i −0.841605 0.540094i \(-0.818389\pi\)
0.540094 + 0.841605i \(0.318389\pi\)
\(12\) 0 0
\(13\) −1.00000 + 1.00000i −0.277350 + 0.277350i −0.832050 0.554700i \(-0.812833\pi\)
0.554700 + 0.832050i \(0.312833\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 2.00000i 0.485071i −0.970143 0.242536i \(-0.922021\pi\)
0.970143 0.242536i \(-0.0779791\pi\)
\(18\) 0 0
\(19\) 3.00000 + 3.00000i 0.688247 + 0.688247i 0.961844 0.273597i \(-0.0882135\pi\)
−0.273597 + 0.961844i \(0.588214\pi\)
\(20\) 0 0
\(21\) 2.00000 2.00000i 0.436436 0.436436i
\(22\) 0 0
\(23\) 6.00000 1.25109 0.625543 0.780189i \(-0.284877\pi\)
0.625543 + 0.780189i \(0.284877\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 4.00000 + 4.00000i 0.769800 + 0.769800i
\(28\) 0 0
\(29\) −3.00000 3.00000i −0.557086 0.557086i 0.371391 0.928477i \(-0.378881\pi\)
−0.928477 + 0.371391i \(0.878881\pi\)
\(30\) 0 0
\(31\) 8.00000 1.43684 0.718421 0.695608i \(-0.244865\pi\)
0.718421 + 0.695608i \(0.244865\pi\)
\(32\) 0 0
\(33\) 2.00000i 0.348155i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 3.00000 + 3.00000i 0.493197 + 0.493197i 0.909312 0.416115i \(-0.136609\pi\)
−0.416115 + 0.909312i \(0.636609\pi\)
\(38\) 0 0
\(39\) 2.00000i 0.320256i
\(40\) 0 0
\(41\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(42\) 0 0
\(43\) 5.00000 + 5.00000i 0.762493 + 0.762493i 0.976772 0.214280i \(-0.0687403\pi\)
−0.214280 + 0.976772i \(0.568740\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 8.00000i 1.16692i −0.812142 0.583460i \(-0.801699\pi\)
0.812142 0.583460i \(-0.198301\pi\)
\(48\) 0 0
\(49\) −3.00000 −0.428571
\(50\) 0 0
\(51\) −2.00000 2.00000i −0.280056 0.280056i
\(52\) 0 0
\(53\) 5.00000 + 5.00000i 0.686803 + 0.686803i 0.961524 0.274721i \(-0.0885855\pi\)
−0.274721 + 0.961524i \(0.588586\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 6.00000 0.794719
\(58\) 0 0
\(59\) −3.00000 + 3.00000i −0.390567 + 0.390567i −0.874889 0.484323i \(-0.839066\pi\)
0.484323 + 0.874889i \(0.339066\pi\)
\(60\) 0 0
\(61\) −9.00000 9.00000i −1.15233 1.15233i −0.986084 0.166248i \(-0.946835\pi\)
−0.166248 0.986084i \(-0.553165\pi\)
\(62\) 0 0
\(63\) 2.00000i 0.251976i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −5.00000 + 5.00000i −0.610847 + 0.610847i −0.943167 0.332320i \(-0.892169\pi\)
0.332320 + 0.943167i \(0.392169\pi\)
\(68\) 0 0
\(69\) 6.00000 6.00000i 0.722315 0.722315i
\(70\) 0 0
\(71\) 10.0000i 1.18678i −0.804914 0.593391i \(-0.797789\pi\)
0.804914 0.593391i \(-0.202211\pi\)
\(72\) 0 0
\(73\) 4.00000 0.468165 0.234082 0.972217i \(-0.424791\pi\)
0.234082 + 0.972217i \(0.424791\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −2.00000 + 2.00000i −0.227921 + 0.227921i
\(78\) 0 0
\(79\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(80\) 0 0
\(81\) 5.00000 0.555556
\(82\) 0 0
\(83\) 1.00000 1.00000i 0.109764 0.109764i −0.650092 0.759856i \(-0.725269\pi\)
0.759856 + 0.650092i \(0.225269\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −6.00000 −0.643268
\(88\) 0 0
\(89\) 4.00000i 0.423999i 0.977270 + 0.212000i \(0.0679975\pi\)
−0.977270 + 0.212000i \(0.932002\pi\)
\(90\) 0 0
\(91\) −2.00000 + 2.00000i −0.209657 + 0.209657i
\(92\) 0 0
\(93\) 8.00000 8.00000i 0.829561 0.829561i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 2.00000i 0.203069i −0.994832 0.101535i \(-0.967625\pi\)
0.994832 0.101535i \(-0.0323753\pi\)
\(98\) 0 0
\(99\) −1.00000 1.00000i −0.100504 0.100504i
\(100\) 0 0
\(101\) 11.0000 11.0000i 1.09454 1.09454i 0.0995037 0.995037i \(-0.468274\pi\)
0.995037 0.0995037i \(-0.0317255\pi\)
\(102\) 0 0
\(103\) 6.00000 0.591198 0.295599 0.955312i \(-0.404481\pi\)
0.295599 + 0.955312i \(0.404481\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 7.00000 + 7.00000i 0.676716 + 0.676716i 0.959256 0.282540i \(-0.0911770\pi\)
−0.282540 + 0.959256i \(0.591177\pi\)
\(108\) 0 0
\(109\) −3.00000 3.00000i −0.287348 0.287348i 0.548683 0.836031i \(-0.315129\pi\)
−0.836031 + 0.548683i \(0.815129\pi\)
\(110\) 0 0
\(111\) 6.00000 0.569495
\(112\) 0 0
\(113\) 6.00000i 0.564433i 0.959351 + 0.282216i \(0.0910696\pi\)
−0.959351 + 0.282216i \(0.908930\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −1.00000 1.00000i −0.0924500 0.0924500i
\(118\) 0 0
\(119\) 4.00000i 0.366679i
\(120\) 0 0
\(121\) 9.00000i 0.818182i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 8.00000i 0.709885i −0.934888 0.354943i \(-0.884500\pi\)
0.934888 0.354943i \(-0.115500\pi\)
\(128\) 0 0
\(129\) 10.0000 0.880451
\(130\) 0 0
\(131\) −11.0000 11.0000i −0.961074 0.961074i 0.0381958 0.999270i \(-0.487839\pi\)
−0.999270 + 0.0381958i \(0.987839\pi\)
\(132\) 0 0
\(133\) 6.00000 + 6.00000i 0.520266 + 0.520266i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 8.00000 0.683486 0.341743 0.939793i \(-0.388983\pi\)
0.341743 + 0.939793i \(0.388983\pi\)
\(138\) 0 0
\(139\) −3.00000 + 3.00000i −0.254457 + 0.254457i −0.822795 0.568338i \(-0.807586\pi\)
0.568338 + 0.822795i \(0.307586\pi\)
\(140\) 0 0
\(141\) −8.00000 8.00000i −0.673722 0.673722i
\(142\) 0 0
\(143\) 2.00000i 0.167248i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −3.00000 + 3.00000i −0.247436 + 0.247436i
\(148\) 0 0
\(149\) −7.00000 + 7.00000i −0.573462 + 0.573462i −0.933094 0.359632i \(-0.882902\pi\)
0.359632 + 0.933094i \(0.382902\pi\)
\(150\) 0 0
\(151\) 10.0000i 0.813788i −0.913475 0.406894i \(-0.866612\pi\)
0.913475 0.406894i \(-0.133388\pi\)
\(152\) 0 0
\(153\) 2.00000 0.161690
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −15.0000 + 15.0000i −1.19713 + 1.19713i −0.222108 + 0.975022i \(0.571294\pi\)
−0.975022 + 0.222108i \(0.928706\pi\)
\(158\) 0 0
\(159\) 10.0000 0.793052
\(160\) 0 0
\(161\) 12.0000 0.945732
\(162\) 0 0
\(163\) 1.00000 1.00000i 0.0783260 0.0783260i −0.666858 0.745184i \(-0.732361\pi\)
0.745184 + 0.666858i \(0.232361\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 2.00000 0.154765 0.0773823 0.997001i \(-0.475344\pi\)
0.0773823 + 0.997001i \(0.475344\pi\)
\(168\) 0 0
\(169\) 11.0000i 0.846154i
\(170\) 0 0
\(171\) −3.00000 + 3.00000i −0.229416 + 0.229416i
\(172\) 0 0
\(173\) −1.00000 + 1.00000i −0.0760286 + 0.0760286i −0.744099 0.668070i \(-0.767121\pi\)
0.668070 + 0.744099i \(0.267121\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 6.00000i 0.450988i
\(178\) 0 0
\(179\) −17.0000 17.0000i −1.27064 1.27064i −0.945753 0.324887i \(-0.894674\pi\)
−0.324887 0.945753i \(-0.605326\pi\)
\(180\) 0 0
\(181\) −9.00000 + 9.00000i −0.668965 + 0.668965i −0.957476 0.288512i \(-0.906840\pi\)
0.288512 + 0.957476i \(0.406840\pi\)
\(182\) 0 0
\(183\) −18.0000 −1.33060
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 2.00000 + 2.00000i 0.146254 + 0.146254i
\(188\) 0 0
\(189\) 8.00000 + 8.00000i 0.581914 + 0.581914i
\(190\) 0 0
\(191\) 8.00000 0.578860 0.289430 0.957199i \(-0.406534\pi\)
0.289430 + 0.957199i \(0.406534\pi\)
\(192\) 0 0
\(193\) 14.0000i 1.00774i −0.863779 0.503871i \(-0.831909\pi\)
0.863779 0.503871i \(-0.168091\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −17.0000 17.0000i −1.21120 1.21120i −0.970632 0.240567i \(-0.922666\pi\)
−0.240567 0.970632i \(-0.577334\pi\)
\(198\) 0 0
\(199\) 14.0000i 0.992434i −0.868199 0.496217i \(-0.834722\pi\)
0.868199 0.496217i \(-0.165278\pi\)
\(200\) 0 0
\(201\) 10.0000i 0.705346i
\(202\) 0 0
\(203\) −6.00000 6.00000i −0.421117 0.421117i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 6.00000i 0.417029i
\(208\) 0 0
\(209\) −6.00000 −0.415029
\(210\) 0 0
\(211\) 9.00000 + 9.00000i 0.619586 + 0.619586i 0.945425 0.325840i \(-0.105647\pi\)
−0.325840 + 0.945425i \(0.605647\pi\)
\(212\) 0 0
\(213\) −10.0000 10.0000i −0.685189 0.685189i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 16.0000 1.08615
\(218\) 0 0
\(219\) 4.00000 4.00000i 0.270295 0.270295i
\(220\) 0 0
\(221\) 2.00000 + 2.00000i 0.134535 + 0.134535i
\(222\) 0 0
\(223\) 24.0000i 1.60716i 0.595198 + 0.803579i \(0.297074\pi\)
−0.595198 + 0.803579i \(0.702926\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 15.0000 15.0000i 0.995585 0.995585i −0.00440533 0.999990i \(-0.501402\pi\)
0.999990 + 0.00440533i \(0.00140226\pi\)
\(228\) 0 0
\(229\) −7.00000 + 7.00000i −0.462573 + 0.462573i −0.899498 0.436925i \(-0.856068\pi\)
0.436925 + 0.899498i \(0.356068\pi\)
\(230\) 0 0
\(231\) 4.00000i 0.263181i
\(232\) 0 0
\(233\) 4.00000 0.262049 0.131024 0.991379i \(-0.458173\pi\)
0.131024 + 0.991379i \(0.458173\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) −18.0000 −1.15948 −0.579741 0.814801i \(-0.696846\pi\)
−0.579741 + 0.814801i \(0.696846\pi\)
\(242\) 0 0
\(243\) −7.00000 + 7.00000i −0.449050 + 0.449050i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −6.00000 −0.381771
\(248\) 0 0
\(249\) 2.00000i 0.126745i
\(250\) 0 0
\(251\) −21.0000 + 21.0000i −1.32551 + 1.32551i −0.416265 + 0.909243i \(0.636661\pi\)
−0.909243 + 0.416265i \(0.863339\pi\)
\(252\) 0 0
\(253\) −6.00000 + 6.00000i −0.377217 + 0.377217i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 22.0000i 1.37232i −0.727450 0.686161i \(-0.759294\pi\)
0.727450 0.686161i \(-0.240706\pi\)
\(258\) 0 0
\(259\) 6.00000 + 6.00000i 0.372822 + 0.372822i
\(260\) 0 0
\(261\) 3.00000 3.00000i 0.185695 0.185695i
\(262\) 0 0
\(263\) 6.00000 0.369976 0.184988 0.982741i \(-0.440775\pi\)
0.184988 + 0.982741i \(0.440775\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 4.00000 + 4.00000i 0.244796 + 0.244796i
\(268\) 0 0
\(269\) −3.00000 3.00000i −0.182913 0.182913i 0.609711 0.792624i \(-0.291286\pi\)
−0.792624 + 0.609711i \(0.791286\pi\)
\(270\) 0 0
\(271\) 8.00000 0.485965 0.242983 0.970031i \(-0.421874\pi\)
0.242983 + 0.970031i \(0.421874\pi\)
\(272\) 0 0
\(273\) 4.00000i 0.242091i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 3.00000 + 3.00000i 0.180253 + 0.180253i 0.791466 0.611213i \(-0.209318\pi\)
−0.611213 + 0.791466i \(0.709318\pi\)
\(278\) 0 0
\(279\) 8.00000i 0.478947i
\(280\) 0 0
\(281\) 20.0000i 1.19310i 0.802576 + 0.596550i \(0.203462\pi\)
−0.802576 + 0.596550i \(0.796538\pi\)
\(282\) 0 0
\(283\) −15.0000 15.0000i −0.891657 0.891657i 0.103022 0.994679i \(-0.467149\pi\)
−0.994679 + 0.103022i \(0.967149\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 13.0000 0.764706
\(290\) 0 0
\(291\) −2.00000 2.00000i −0.117242 0.117242i
\(292\) 0 0
\(293\) −15.0000 15.0000i −0.876309 0.876309i 0.116841 0.993151i \(-0.462723\pi\)
−0.993151 + 0.116841i \(0.962723\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −8.00000 −0.464207
\(298\) 0 0
\(299\) −6.00000 + 6.00000i −0.346989 + 0.346989i
\(300\) 0 0
\(301\) 10.0000 + 10.0000i 0.576390 + 0.576390i
\(302\) 0 0
\(303\) 22.0000i 1.26387i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −5.00000 + 5.00000i −0.285365 + 0.285365i −0.835244 0.549879i \(-0.814674\pi\)
0.549879 + 0.835244i \(0.314674\pi\)
\(308\) 0 0
\(309\) 6.00000 6.00000i 0.341328 0.341328i
\(310\) 0 0
\(311\) 30.0000i 1.70114i 0.525859 + 0.850572i \(0.323744\pi\)
−0.525859 + 0.850572i \(0.676256\pi\)
\(312\) 0 0
\(313\) −16.0000 −0.904373 −0.452187 0.891923i \(-0.649356\pi\)
−0.452187 + 0.891923i \(0.649356\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 5.00000 5.00000i 0.280828 0.280828i −0.552611 0.833439i \(-0.686369\pi\)
0.833439 + 0.552611i \(0.186369\pi\)
\(318\) 0 0
\(319\) 6.00000 0.335936
\(320\) 0 0
\(321\) 14.0000 0.781404
\(322\) 0 0
\(323\) 6.00000 6.00000i 0.333849 0.333849i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −6.00000 −0.331801
\(328\) 0 0
\(329\) 16.0000i 0.882109i
\(330\) 0 0
\(331\) −1.00000 + 1.00000i −0.0549650 + 0.0549650i −0.734055 0.679090i \(-0.762375\pi\)
0.679090 + 0.734055i \(0.262375\pi\)
\(332\) 0 0
\(333\) −3.00000 + 3.00000i −0.164399 + 0.164399i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 18.0000i 0.980522i 0.871576 + 0.490261i \(0.163099\pi\)
−0.871576 + 0.490261i \(0.836901\pi\)
\(338\) 0 0
\(339\) 6.00000 + 6.00000i 0.325875 + 0.325875i
\(340\) 0 0
\(341\) −8.00000 + 8.00000i −0.433224 + 0.433224i
\(342\) 0 0
\(343\) −20.0000 −1.07990
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −13.0000 13.0000i −0.697877 0.697877i 0.266076 0.963952i \(-0.414273\pi\)
−0.963952 + 0.266076i \(0.914273\pi\)
\(348\) 0 0
\(349\) −3.00000 3.00000i −0.160586 0.160586i 0.622240 0.782826i \(-0.286223\pi\)
−0.782826 + 0.622240i \(0.786223\pi\)
\(350\) 0 0
\(351\) −8.00000 −0.427008
\(352\) 0 0
\(353\) 6.00000i 0.319348i 0.987170 + 0.159674i \(0.0510443\pi\)
−0.987170 + 0.159674i \(0.948956\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) −4.00000 4.00000i −0.211702 0.211702i
\(358\) 0 0
\(359\) 26.0000i 1.37223i 0.727494 + 0.686114i \(0.240685\pi\)
−0.727494 + 0.686114i \(0.759315\pi\)
\(360\) 0 0
\(361\) 1.00000i 0.0526316i
\(362\) 0 0
\(363\) 9.00000 + 9.00000i 0.472377 + 0.472377i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 8.00000i 0.417597i −0.977959 0.208798i \(-0.933045\pi\)
0.977959 0.208798i \(-0.0669552\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 10.0000 + 10.0000i 0.519174 + 0.519174i
\(372\) 0 0
\(373\) 5.00000 + 5.00000i 0.258890 + 0.258890i 0.824603 0.565712i \(-0.191399\pi\)
−0.565712 + 0.824603i \(0.691399\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 6.00000 0.309016
\(378\) 0 0
\(379\) −3.00000 + 3.00000i −0.154100 + 0.154100i −0.779946 0.625847i \(-0.784754\pi\)
0.625847 + 0.779946i \(0.284754\pi\)
\(380\) 0 0
\(381\) −8.00000 8.00000i −0.409852 0.409852i
\(382\) 0 0
\(383\) 16.0000i 0.817562i −0.912633 0.408781i \(-0.865954\pi\)
0.912633 0.408781i \(-0.134046\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −5.00000 + 5.00000i −0.254164 + 0.254164i
\(388\) 0 0
\(389\) 13.0000 13.0000i 0.659126 0.659126i −0.296047 0.955173i \(-0.595669\pi\)
0.955173 + 0.296047i \(0.0956686\pi\)
\(390\) 0 0
\(391\) 12.0000i 0.606866i
\(392\) 0 0
\(393\) −22.0000 −1.10975
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 5.00000 5.00000i 0.250943 0.250943i −0.570414 0.821357i \(-0.693217\pi\)
0.821357 + 0.570414i \(0.193217\pi\)
\(398\) 0 0
\(399\) 12.0000 0.600751
\(400\) 0 0
\(401\) −18.0000 −0.898877 −0.449439 0.893311i \(-0.648376\pi\)
−0.449439 + 0.893311i \(0.648376\pi\)
\(402\) 0 0
\(403\) −8.00000 + 8.00000i −0.398508 + 0.398508i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −6.00000 −0.297409
\(408\) 0 0
\(409\) 16.0000i 0.791149i −0.918434 0.395575i \(-0.870545\pi\)
0.918434 0.395575i \(-0.129455\pi\)
\(410\) 0 0
\(411\) 8.00000 8.00000i 0.394611 0.394611i
\(412\) 0 0
\(413\) −6.00000 + 6.00000i −0.295241 + 0.295241i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 6.00000i 0.293821i
\(418\) 0 0
\(419\) 3.00000 + 3.00000i 0.146560 + 0.146560i 0.776579 0.630020i \(-0.216953\pi\)
−0.630020 + 0.776579i \(0.716953\pi\)
\(420\) 0 0
\(421\) −9.00000 + 9.00000i −0.438633 + 0.438633i −0.891552 0.452919i \(-0.850383\pi\)
0.452919 + 0.891552i \(0.350383\pi\)
\(422\) 0 0
\(423\) 8.00000 0.388973
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −18.0000 18.0000i −0.871081 0.871081i
\(428\) 0 0
\(429\) −2.00000 2.00000i −0.0965609 0.0965609i
\(430\) 0 0
\(431\) −32.0000 −1.54139 −0.770693 0.637207i \(-0.780090\pi\)
−0.770693 + 0.637207i \(0.780090\pi\)
\(432\) 0 0
\(433\) 14.0000i 0.672797i −0.941720 0.336399i \(-0.890791\pi\)
0.941720 0.336399i \(-0.109209\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 18.0000 + 18.0000i 0.861057 + 0.861057i
\(438\) 0 0
\(439\) 14.0000i 0.668184i −0.942541 0.334092i \(-0.891570\pi\)
0.942541 0.334092i \(-0.108430\pi\)
\(440\) 0 0
\(441\) 3.00000i 0.142857i
\(442\) 0 0
\(443\) −15.0000 15.0000i −0.712672 0.712672i 0.254422 0.967093i \(-0.418115\pi\)
−0.967093 + 0.254422i \(0.918115\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 14.0000i 0.662177i
\(448\) 0 0
\(449\) −30.0000 −1.41579 −0.707894 0.706319i \(-0.750354\pi\)
−0.707894 + 0.706319i \(0.750354\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) −10.0000 10.0000i −0.469841 0.469841i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −32.0000 −1.49690 −0.748448 0.663193i \(-0.769201\pi\)
−0.748448 + 0.663193i \(0.769201\pi\)
\(458\) 0 0
\(459\) 8.00000 8.00000i 0.373408 0.373408i
\(460\) 0 0
\(461\) 11.0000 + 11.0000i 0.512321 + 0.512321i 0.915237 0.402916i \(-0.132003\pi\)
−0.402916 + 0.915237i \(0.632003\pi\)
\(462\) 0 0
\(463\) 16.0000i 0.743583i −0.928316 0.371792i \(-0.878744\pi\)
0.928316 0.371792i \(-0.121256\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −5.00000 + 5.00000i −0.231372 + 0.231372i −0.813265 0.581893i \(-0.802312\pi\)
0.581893 + 0.813265i \(0.302312\pi\)
\(468\) 0 0
\(469\) −10.0000 + 10.0000i −0.461757 + 0.461757i
\(470\) 0 0
\(471\) 30.0000i 1.38233i
\(472\) 0 0
\(473\) −10.0000 −0.459800
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −5.00000 + 5.00000i −0.228934 + 0.228934i
\(478\) 0 0
\(479\) −40.0000 −1.82765 −0.913823 0.406112i \(-0.866884\pi\)
−0.913823 + 0.406112i \(0.866884\pi\)
\(480\) 0 0
\(481\) −6.00000 −0.273576
\(482\) 0 0
\(483\) 12.0000 12.0000i 0.546019 0.546019i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 2.00000 0.0906287 0.0453143 0.998973i \(-0.485571\pi\)
0.0453143 + 0.998973i \(0.485571\pi\)
\(488\) 0 0
\(489\) 2.00000i 0.0904431i
\(490\) 0 0
\(491\) 19.0000 19.0000i 0.857458 0.857458i −0.133580 0.991038i \(-0.542647\pi\)
0.991038 + 0.133580i \(0.0426473\pi\)
\(492\) 0 0
\(493\) −6.00000 + 6.00000i −0.270226 + 0.270226i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 20.0000i 0.897123i
\(498\) 0 0
\(499\) 23.0000 + 23.0000i 1.02962 + 1.02962i 0.999548 + 0.0300737i \(0.00957421\pi\)
0.0300737 + 0.999548i \(0.490426\pi\)
\(500\) 0 0
\(501\) 2.00000 2.00000i 0.0893534 0.0893534i
\(502\) 0 0
\(503\) 6.00000 0.267527 0.133763 0.991013i \(-0.457294\pi\)
0.133763 + 0.991013i \(0.457294\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 11.0000 + 11.0000i 0.488527 + 0.488527i
\(508\) 0 0
\(509\) −23.0000 23.0000i −1.01946 1.01946i −0.999807 0.0196502i \(-0.993745\pi\)
−0.0196502 0.999807i \(-0.506255\pi\)
\(510\) 0 0
\(511\) 8.00000 0.353899
\(512\) 0 0
\(513\) 24.0000i 1.05963i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 8.00000 + 8.00000i 0.351840 + 0.351840i
\(518\) 0 0
\(519\) 2.00000i 0.0877903i
\(520\) 0 0
\(521\) 40.0000i 1.75243i −0.481919 0.876216i \(-0.660060\pi\)
0.481919 0.876216i \(-0.339940\pi\)
\(522\) 0 0
\(523\) 25.0000 + 25.0000i 1.09317 + 1.09317i 0.995188 + 0.0979859i \(0.0312400\pi\)
0.0979859 + 0.995188i \(0.468760\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 16.0000i 0.696971i
\(528\) 0 0
\(529\) 13.0000 0.565217
\(530\) 0 0
\(531\) −3.00000 3.00000i −0.130189 0.130189i
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −34.0000 −1.46721
\(538\) 0 0
\(539\) 3.00000 3.00000i 0.129219 0.129219i
\(540\) 0 0
\(541\) −9.00000 9.00000i −0.386940 0.386940i 0.486654 0.873595i \(-0.338217\pi\)
−0.873595 + 0.486654i \(0.838217\pi\)
\(542\) 0 0
\(543\) 18.0000i 0.772454i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −5.00000 + 5.00000i −0.213785 + 0.213785i −0.805873 0.592088i \(-0.798304\pi\)
0.592088 + 0.805873i \(0.298304\pi\)
\(548\) 0 0
\(549\) 9.00000 9.00000i 0.384111 0.384111i
\(550\) 0 0
\(551\) 18.0000i 0.766826i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 25.0000 25.0000i 1.05928 1.05928i 0.0611558 0.998128i \(-0.480521\pi\)
0.998128 0.0611558i \(-0.0194786\pi\)
\(558\) 0 0
\(559\) −10.0000 −0.422955
\(560\) 0 0
\(561\) 4.00000 0.168880
\(562\) 0 0
\(563\) −19.0000 + 19.0000i −0.800755 + 0.800755i −0.983213 0.182459i \(-0.941594\pi\)
0.182459 + 0.983213i \(0.441594\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 10.0000 0.419961
\(568\) 0 0
\(569\) 24.0000i 1.00613i 0.864248 + 0.503066i \(0.167795\pi\)
−0.864248 + 0.503066i \(0.832205\pi\)
\(570\) 0 0
\(571\) −1.00000 + 1.00000i −0.0418487 + 0.0418487i −0.727721 0.685873i \(-0.759421\pi\)
0.685873 + 0.727721i \(0.259421\pi\)
\(572\) 0 0
\(573\) 8.00000 8.00000i 0.334205 0.334205i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 18.0000i 0.749350i 0.927156 + 0.374675i \(0.122246\pi\)
−0.927156 + 0.374675i \(0.877754\pi\)
\(578\) 0 0
\(579\) −14.0000 14.0000i −0.581820 0.581820i
\(580\) 0 0
\(581\) 2.00000 2.00000i 0.0829740 0.0829740i
\(582\) 0 0
\(583\) −10.0000 −0.414158
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 7.00000 + 7.00000i 0.288921 + 0.288921i 0.836653 0.547733i \(-0.184509\pi\)
−0.547733 + 0.836653i \(0.684509\pi\)
\(588\) 0 0
\(589\) 24.0000 + 24.0000i 0.988903 + 0.988903i
\(590\) 0 0
\(591\) −34.0000 −1.39857
\(592\) 0 0
\(593\) 34.0000i 1.39621i −0.715994 0.698106i \(-0.754026\pi\)
0.715994 0.698106i \(-0.245974\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −14.0000 14.0000i −0.572982 0.572982i
\(598\) 0 0
\(599\) 14.0000i 0.572024i −0.958226 0.286012i \(-0.907670\pi\)
0.958226 0.286012i \(-0.0923298\pi\)
\(600\) 0 0
\(601\) 20.0000i 0.815817i −0.913023 0.407909i \(-0.866258\pi\)
0.913023 0.407909i \(-0.133742\pi\)
\(602\) 0 0
\(603\) −5.00000 5.00000i −0.203616 0.203616i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 32.0000i 1.29884i 0.760430 + 0.649420i \(0.224988\pi\)
−0.760430 + 0.649420i \(0.775012\pi\)
\(608\) 0 0
\(609\) −12.0000 −0.486265
\(610\) 0 0
\(611\) 8.00000 + 8.00000i 0.323645 + 0.323645i
\(612\) 0 0
\(613\) 25.0000 + 25.0000i 1.00974 + 1.00974i 0.999952 + 0.00978840i \(0.00311579\pi\)
0.00978840 + 0.999952i \(0.496884\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −12.0000 −0.483102 −0.241551 0.970388i \(-0.577656\pi\)
−0.241551 + 0.970388i \(0.577656\pi\)
\(618\) 0 0
\(619\) 17.0000 17.0000i 0.683288 0.683288i −0.277452 0.960740i \(-0.589490\pi\)
0.960740 + 0.277452i \(0.0894899\pi\)
\(620\) 0 0
\(621\) 24.0000 + 24.0000i 0.963087 + 0.963087i
\(622\) 0 0
\(623\) 8.00000i 0.320513i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) −6.00000 + 6.00000i −0.239617 + 0.239617i
\(628\) 0 0
\(629\) 6.00000 6.00000i 0.239236 0.239236i
\(630\) 0 0
\(631\) 10.0000i 0.398094i −0.979990 0.199047i \(-0.936215\pi\)
0.979990 0.199047i \(-0.0637846\pi\)
\(632\) 0 0
\(633\) 18.0000 0.715436
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 3.00000 3.00000i 0.118864 0.118864i
\(638\) 0 0
\(639\) 10.0000 0.395594
\(640\) 0 0
\(641\) −18.0000 −0.710957 −0.355479 0.934684i \(-0.615682\pi\)
−0.355479 + 0.934684i \(0.615682\pi\)
\(642\) 0 0
\(643\) 21.0000 21.0000i 0.828159 0.828159i −0.159103 0.987262i \(-0.550860\pi\)
0.987262 + 0.159103i \(0.0508601\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 42.0000 1.65119 0.825595 0.564263i \(-0.190840\pi\)
0.825595 + 0.564263i \(0.190840\pi\)
\(648\) 0 0
\(649\) 6.00000i 0.235521i
\(650\) 0 0
\(651\) 16.0000 16.0000i 0.627089 0.627089i
\(652\) 0 0
\(653\) 19.0000 19.0000i 0.743527 0.743527i −0.229728 0.973255i \(-0.573784\pi\)
0.973255 + 0.229728i \(0.0737835\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 4.00000i 0.156055i
\(658\) 0 0
\(659\) −17.0000 17.0000i −0.662226 0.662226i 0.293678 0.955904i \(-0.405121\pi\)
−0.955904 + 0.293678i \(0.905121\pi\)
\(660\) 0 0
\(661\) −9.00000 + 9.00000i −0.350059 + 0.350059i −0.860132 0.510072i \(-0.829619\pi\)
0.510072 + 0.860132i \(0.329619\pi\)
\(662\) 0 0
\(663\) 4.00000 0.155347
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −18.0000 18.0000i −0.696963 0.696963i
\(668\) 0 0
\(669\) 24.0000 + 24.0000i 0.927894 + 0.927894i
\(670\) 0 0
\(671\) 18.0000 0.694882
\(672\) 0 0
\(673\) 14.0000i 0.539660i −0.962908 0.269830i \(-0.913032\pi\)
0.962908 0.269830i \(-0.0869676\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 3.00000 + 3.00000i 0.115299 + 0.115299i 0.762402 0.647103i \(-0.224020\pi\)
−0.647103 + 0.762402i \(0.724020\pi\)
\(678\) 0 0
\(679\) 4.00000i 0.153506i
\(680\) 0 0
\(681\) 30.0000i 1.14960i
\(682\) 0 0
\(683\) 5.00000 + 5.00000i 0.191320 + 0.191320i 0.796266 0.604946i \(-0.206805\pi\)
−0.604946 + 0.796266i \(0.706805\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 14.0000i 0.534133i
\(688\) 0 0
\(689\) −10.0000 −0.380970
\(690\) 0 0
\(691\) 9.00000 + 9.00000i 0.342376 + 0.342376i 0.857260 0.514884i \(-0.172165\pi\)
−0.514884 + 0.857260i \(0.672165\pi\)
\(692\) 0 0
\(693\) −2.00000 2.00000i −0.0759737 0.0759737i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 4.00000 4.00000i 0.151294 0.151294i
\(700\) 0 0
\(701\) 31.0000 + 31.0000i 1.17085 + 1.17085i 0.982006 + 0.188847i \(0.0604752\pi\)
0.188847 + 0.982006i \(0.439525\pi\)
\(702\) 0 0
\(703\) 18.0000i 0.678883i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 22.0000 22.0000i 0.827395 0.827395i
\(708\) 0 0
\(709\) −27.0000 + 27.0000i −1.01401 + 1.01401i −0.0141058 + 0.999901i \(0.504490\pi\)
−0.999901 + 0.0141058i \(0.995510\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 48.0000 1.79761
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) 12.0000 0.446903
\(722\) 0 0
\(723\) −18.0000 + 18.0000i −0.669427 + 0.669427i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 2.00000 0.0741759 0.0370879 0.999312i \(-0.488192\pi\)
0.0370879 + 0.999312i \(0.488192\pi\)
\(728\) 0 0
\(729\) 29.0000i 1.07407i
\(730\) 0 0
\(731\) 10.0000 10.0000i 0.369863 0.369863i
\(732\) 0 0
\(733\) −21.0000 + 21.0000i −0.775653 + 0.775653i −0.979088 0.203436i \(-0.934789\pi\)
0.203436 + 0.979088i \(0.434789\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 10.0000i 0.368355i
\(738\) 0 0
\(739\) 23.0000 + 23.0000i 0.846069 + 0.846069i 0.989640 0.143571i \(-0.0458586\pi\)
−0.143571 + 0.989640i \(0.545859\pi\)
\(740\) 0 0
\(741\) −6.00000 + 6.00000i −0.220416 + 0.220416i
\(742\) 0 0
\(743\) 46.0000 1.68758 0.843788 0.536676i \(-0.180320\pi\)
0.843788 + 0.536676i \(0.180320\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 1.00000 + 1.00000i 0.0365881 + 0.0365881i
\(748\) 0 0
\(749\) 14.0000 + 14.0000i 0.511549 + 0.511549i
\(750\) 0 0
\(751\) −32.0000 −1.16770 −0.583848 0.811863i \(-0.698454\pi\)
−0.583848 + 0.811863i \(0.698454\pi\)
\(752\) 0 0
\(753\) 42.0000i 1.53057i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 23.0000 + 23.0000i 0.835949 + 0.835949i 0.988323 0.152374i \(-0.0486917\pi\)
−0.152374 + 0.988323i \(0.548692\pi\)
\(758\) 0 0
\(759\) 12.0000i 0.435572i
\(760\) 0 0
\(761\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(762\) 0 0
\(763\) −6.00000 6.00000i −0.217215 0.217215i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 6.00000i 0.216647i
\(768\) 0 0
\(769\) 50.0000 1.80305 0.901523 0.432731i \(-0.142450\pi\)
0.901523 + 0.432731i \(0.142450\pi\)
\(770\) 0 0
\(771\) −22.0000 22.0000i −0.792311 0.792311i
\(772\) 0 0
\(773\) 5.00000 + 5.00000i 0.179838 + 0.179838i 0.791285 0.611448i \(-0.209412\pi\)
−0.611448 + 0.791285i \(0.709412\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 12.0000 0.430498
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 10.0000 + 10.0000i 0.357828 + 0.357828i
\(782\) 0 0
\(783\) 24.0000i 0.857690i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 15.0000 15.0000i 0.534692 0.534692i −0.387273 0.921965i \(-0.626583\pi\)
0.921965 + 0.387273i \(0.126583\pi\)
\(788\) 0 0
\(789\) 6.00000 6.00000i 0.213606 0.213606i
\(790\) 0 0
\(791\) 12.0000i 0.426671i
\(792\) 0 0
\(793\) 18.0000 0.639199
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 25.0000 25.0000i 0.885545 0.885545i −0.108546 0.994091i \(-0.534619\pi\)
0.994091 + 0.108546i \(0.0346195\pi\)
\(798\) 0 0
\(799\) −16.0000 −0.566039
\(800\) 0 0
\(801\) −4.00000 −0.141333
\(802\) 0 0
\(803\)