Properties

Label 1600.2.o.c.543.1
Level $1600$
Weight $2$
Character 1600.543
Analytic conductor $12.776$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1600 = 2^{6} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1600.o (of order \(4\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(12.7760643234\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
Defining polynomial: \(x^{2} + 1\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 320)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 543.1
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 1600.543
Dual form 1600.2.o.c.607.1

$q$-expansion

\(f(q)\) \(=\) \(q+(1.00000 + 1.00000i) q^{3} +(-1.00000 - 1.00000i) q^{7} -1.00000i q^{9} +O(q^{10})\) \(q+(1.00000 + 1.00000i) q^{3} +(-1.00000 - 1.00000i) q^{7} -1.00000i q^{9} -4.00000 q^{11} +(-3.00000 + 3.00000i) q^{13} +(3.00000 - 3.00000i) q^{17} -6.00000i q^{19} -2.00000i q^{21} +(-3.00000 + 3.00000i) q^{23} +(4.00000 - 4.00000i) q^{27} -2.00000 q^{29} -6.00000i q^{31} +(-4.00000 - 4.00000i) q^{33} +(-3.00000 - 3.00000i) q^{37} -6.00000 q^{39} +6.00000 q^{41} +(-3.00000 - 3.00000i) q^{43} +(-9.00000 - 9.00000i) q^{47} -5.00000i q^{49} +6.00000 q^{51} +(5.00000 - 5.00000i) q^{53} +(6.00000 - 6.00000i) q^{57} +10.0000i q^{59} +12.0000i q^{61} +(-1.00000 + 1.00000i) q^{63} +(-9.00000 + 9.00000i) q^{67} -6.00000 q^{69} -6.00000i q^{71} +(-5.00000 - 5.00000i) q^{73} +(4.00000 + 4.00000i) q^{77} +5.00000 q^{81} +(-3.00000 - 3.00000i) q^{83} +(-2.00000 - 2.00000i) q^{87} +6.00000 q^{91} +(6.00000 - 6.00000i) q^{93} +(7.00000 - 7.00000i) q^{97} +4.00000i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q + 2q^{3} - 2q^{7} + O(q^{10}) \) \( 2q + 2q^{3} - 2q^{7} - 8q^{11} - 6q^{13} + 6q^{17} - 6q^{23} + 8q^{27} - 4q^{29} - 8q^{33} - 6q^{37} - 12q^{39} + 12q^{41} - 6q^{43} - 18q^{47} + 12q^{51} + 10q^{53} + 12q^{57} - 2q^{63} - 18q^{67} - 12q^{69} - 10q^{73} + 8q^{77} + 10q^{81} - 6q^{83} - 4q^{87} + 12q^{91} + 12q^{93} + 14q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1600\mathbb{Z}\right)^\times\).

\(n\) \(577\) \(901\) \(1151\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000 + 1.00000i 0.577350 + 0.577350i 0.934172 0.356822i \(-0.116140\pi\)
−0.356822 + 0.934172i \(0.616140\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −1.00000 1.00000i −0.377964 0.377964i 0.492403 0.870367i \(-0.336119\pi\)
−0.870367 + 0.492403i \(0.836119\pi\)
\(8\) 0 0
\(9\) 1.00000i 0.333333i
\(10\) 0 0
\(11\) −4.00000 −1.20605 −0.603023 0.797724i \(-0.706037\pi\)
−0.603023 + 0.797724i \(0.706037\pi\)
\(12\) 0 0
\(13\) −3.00000 + 3.00000i −0.832050 + 0.832050i −0.987797 0.155747i \(-0.950222\pi\)
0.155747 + 0.987797i \(0.450222\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 3.00000 3.00000i 0.727607 0.727607i −0.242536 0.970143i \(-0.577979\pi\)
0.970143 + 0.242536i \(0.0779791\pi\)
\(18\) 0 0
\(19\) 6.00000i 1.37649i −0.725476 0.688247i \(-0.758380\pi\)
0.725476 0.688247i \(-0.241620\pi\)
\(20\) 0 0
\(21\) 2.00000i 0.436436i
\(22\) 0 0
\(23\) −3.00000 + 3.00000i −0.625543 + 0.625543i −0.946943 0.321400i \(-0.895847\pi\)
0.321400 + 0.946943i \(0.395847\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 4.00000 4.00000i 0.769800 0.769800i
\(28\) 0 0
\(29\) −2.00000 −0.371391 −0.185695 0.982607i \(-0.559454\pi\)
−0.185695 + 0.982607i \(0.559454\pi\)
\(30\) 0 0
\(31\) 6.00000i 1.07763i −0.842424 0.538816i \(-0.818872\pi\)
0.842424 0.538816i \(-0.181128\pi\)
\(32\) 0 0
\(33\) −4.00000 4.00000i −0.696311 0.696311i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −3.00000 3.00000i −0.493197 0.493197i 0.416115 0.909312i \(-0.363391\pi\)
−0.909312 + 0.416115i \(0.863391\pi\)
\(38\) 0 0
\(39\) −6.00000 −0.960769
\(40\) 0 0
\(41\) 6.00000 0.937043 0.468521 0.883452i \(-0.344787\pi\)
0.468521 + 0.883452i \(0.344787\pi\)
\(42\) 0 0
\(43\) −3.00000 3.00000i −0.457496 0.457496i 0.440337 0.897833i \(-0.354859\pi\)
−0.897833 + 0.440337i \(0.854859\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −9.00000 9.00000i −1.31278 1.31278i −0.919354 0.393431i \(-0.871288\pi\)
−0.393431 0.919354i \(-0.628712\pi\)
\(48\) 0 0
\(49\) 5.00000i 0.714286i
\(50\) 0 0
\(51\) 6.00000 0.840168
\(52\) 0 0
\(53\) 5.00000 5.00000i 0.686803 0.686803i −0.274721 0.961524i \(-0.588586\pi\)
0.961524 + 0.274721i \(0.0885855\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 6.00000 6.00000i 0.794719 0.794719i
\(58\) 0 0
\(59\) 10.0000i 1.30189i 0.759125 + 0.650945i \(0.225627\pi\)
−0.759125 + 0.650945i \(0.774373\pi\)
\(60\) 0 0
\(61\) 12.0000i 1.53644i 0.640184 + 0.768221i \(0.278858\pi\)
−0.640184 + 0.768221i \(0.721142\pi\)
\(62\) 0 0
\(63\) −1.00000 + 1.00000i −0.125988 + 0.125988i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −9.00000 + 9.00000i −1.09952 + 1.09952i −0.105059 + 0.994466i \(0.533503\pi\)
−0.994466 + 0.105059i \(0.966497\pi\)
\(68\) 0 0
\(69\) −6.00000 −0.722315
\(70\) 0 0
\(71\) 6.00000i 0.712069i −0.934473 0.356034i \(-0.884129\pi\)
0.934473 0.356034i \(-0.115871\pi\)
\(72\) 0 0
\(73\) −5.00000 5.00000i −0.585206 0.585206i 0.351123 0.936329i \(-0.385800\pi\)
−0.936329 + 0.351123i \(0.885800\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 4.00000 + 4.00000i 0.455842 + 0.455842i
\(78\) 0 0
\(79\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(80\) 0 0
\(81\) 5.00000 0.555556
\(82\) 0 0
\(83\) −3.00000 3.00000i −0.329293 0.329293i 0.523025 0.852318i \(-0.324804\pi\)
−0.852318 + 0.523025i \(0.824804\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −2.00000 2.00000i −0.214423 0.214423i
\(88\) 0 0
\(89\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(90\) 0 0
\(91\) 6.00000 0.628971
\(92\) 0 0
\(93\) 6.00000 6.00000i 0.622171 0.622171i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 7.00000 7.00000i 0.710742 0.710742i −0.255948 0.966691i \(-0.582388\pi\)
0.966691 + 0.255948i \(0.0823876\pi\)
\(98\) 0 0
\(99\) 4.00000i 0.402015i
\(100\) 0 0
\(101\) 8.00000i 0.796030i −0.917379 0.398015i \(-0.869699\pi\)
0.917379 0.398015i \(-0.130301\pi\)
\(102\) 0 0
\(103\) −11.0000 + 11.0000i −1.08386 + 1.08386i −0.0877167 + 0.996145i \(0.527957\pi\)
−0.996145 + 0.0877167i \(0.972043\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 3.00000 3.00000i 0.290021 0.290021i −0.547068 0.837088i \(-0.684256\pi\)
0.837088 + 0.547068i \(0.184256\pi\)
\(108\) 0 0
\(109\) 18.0000 1.72409 0.862044 0.506834i \(-0.169184\pi\)
0.862044 + 0.506834i \(0.169184\pi\)
\(110\) 0 0
\(111\) 6.00000i 0.569495i
\(112\) 0 0
\(113\) 3.00000 + 3.00000i 0.282216 + 0.282216i 0.833992 0.551776i \(-0.186050\pi\)
−0.551776 + 0.833992i \(0.686050\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 3.00000 + 3.00000i 0.277350 + 0.277350i
\(118\) 0 0
\(119\) −6.00000 −0.550019
\(120\) 0 0
\(121\) 5.00000 0.454545
\(122\) 0 0
\(123\) 6.00000 + 6.00000i 0.541002 + 0.541002i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −5.00000 5.00000i −0.443678 0.443678i 0.449568 0.893246i \(-0.351578\pi\)
−0.893246 + 0.449568i \(0.851578\pi\)
\(128\) 0 0
\(129\) 6.00000i 0.528271i
\(130\) 0 0
\(131\) −4.00000 −0.349482 −0.174741 0.984614i \(-0.555909\pi\)
−0.174741 + 0.984614i \(0.555909\pi\)
\(132\) 0 0
\(133\) −6.00000 + 6.00000i −0.520266 + 0.520266i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 3.00000 3.00000i 0.256307 0.256307i −0.567243 0.823550i \(-0.691990\pi\)
0.823550 + 0.567243i \(0.191990\pi\)
\(138\) 0 0
\(139\) 6.00000i 0.508913i −0.967084 0.254457i \(-0.918103\pi\)
0.967084 0.254457i \(-0.0818966\pi\)
\(140\) 0 0
\(141\) 18.0000i 1.51587i
\(142\) 0 0
\(143\) 12.0000 12.0000i 1.00349 1.00349i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 5.00000 5.00000i 0.412393 0.412393i
\(148\) 0 0
\(149\) 2.00000 0.163846 0.0819232 0.996639i \(-0.473894\pi\)
0.0819232 + 0.996639i \(0.473894\pi\)
\(150\) 0 0
\(151\) 10.0000i 0.813788i 0.913475 + 0.406894i \(0.133388\pi\)
−0.913475 + 0.406894i \(0.866612\pi\)
\(152\) 0 0
\(153\) −3.00000 3.00000i −0.242536 0.242536i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −3.00000 3.00000i −0.239426 0.239426i 0.577186 0.816612i \(-0.304151\pi\)
−0.816612 + 0.577186i \(0.804151\pi\)
\(158\) 0 0
\(159\) 10.0000 0.793052
\(160\) 0 0
\(161\) 6.00000 0.472866
\(162\) 0 0
\(163\) 9.00000 + 9.00000i 0.704934 + 0.704934i 0.965465 0.260531i \(-0.0838976\pi\)
−0.260531 + 0.965465i \(0.583898\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 3.00000 + 3.00000i 0.232147 + 0.232147i 0.813588 0.581441i \(-0.197511\pi\)
−0.581441 + 0.813588i \(0.697511\pi\)
\(168\) 0 0
\(169\) 5.00000i 0.384615i
\(170\) 0 0
\(171\) −6.00000 −0.458831
\(172\) 0 0
\(173\) −15.0000 + 15.0000i −1.14043 + 1.14043i −0.152057 + 0.988372i \(0.548590\pi\)
−0.988372 + 0.152057i \(0.951410\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −10.0000 + 10.0000i −0.751646 + 0.751646i
\(178\) 0 0
\(179\) 2.00000i 0.149487i 0.997203 + 0.0747435i \(0.0238138\pi\)
−0.997203 + 0.0747435i \(0.976186\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(182\) 0 0
\(183\) −12.0000 + 12.0000i −0.887066 + 0.887066i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −12.0000 + 12.0000i −0.877527 + 0.877527i
\(188\) 0 0
\(189\) −8.00000 −0.581914
\(190\) 0 0
\(191\) 6.00000i 0.434145i −0.976156 0.217072i \(-0.930349\pi\)
0.976156 0.217072i \(-0.0696508\pi\)
\(192\) 0 0
\(193\) −5.00000 5.00000i −0.359908 0.359908i 0.503871 0.863779i \(-0.331909\pi\)
−0.863779 + 0.503871i \(0.831909\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 5.00000 + 5.00000i 0.356235 + 0.356235i 0.862423 0.506188i \(-0.168946\pi\)
−0.506188 + 0.862423i \(0.668946\pi\)
\(198\) 0 0
\(199\) −16.0000 −1.13421 −0.567105 0.823646i \(-0.691937\pi\)
−0.567105 + 0.823646i \(0.691937\pi\)
\(200\) 0 0
\(201\) −18.0000 −1.26962
\(202\) 0 0
\(203\) 2.00000 + 2.00000i 0.140372 + 0.140372i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 3.00000 + 3.00000i 0.208514 + 0.208514i
\(208\) 0 0
\(209\) 24.0000i 1.66011i
\(210\) 0 0
\(211\) −12.0000 −0.826114 −0.413057 0.910705i \(-0.635539\pi\)
−0.413057 + 0.910705i \(0.635539\pi\)
\(212\) 0 0
\(213\) 6.00000 6.00000i 0.411113 0.411113i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −6.00000 + 6.00000i −0.407307 + 0.407307i
\(218\) 0 0
\(219\) 10.0000i 0.675737i
\(220\) 0 0
\(221\) 18.0000i 1.21081i
\(222\) 0 0
\(223\) 13.0000 13.0000i 0.870544 0.870544i −0.121987 0.992532i \(-0.538927\pi\)
0.992532 + 0.121987i \(0.0389267\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 11.0000 11.0000i 0.730096 0.730096i −0.240543 0.970639i \(-0.577325\pi\)
0.970639 + 0.240543i \(0.0773255\pi\)
\(228\) 0 0
\(229\) 6.00000 0.396491 0.198246 0.980152i \(-0.436476\pi\)
0.198246 + 0.980152i \(0.436476\pi\)
\(230\) 0 0
\(231\) 8.00000i 0.526361i
\(232\) 0 0
\(233\) 15.0000 + 15.0000i 0.982683 + 0.982683i 0.999853 0.0171699i \(-0.00546562\pi\)
−0.0171699 + 0.999853i \(0.505466\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 24.0000 1.55243 0.776215 0.630468i \(-0.217137\pi\)
0.776215 + 0.630468i \(0.217137\pi\)
\(240\) 0 0
\(241\) −18.0000 −1.15948 −0.579741 0.814801i \(-0.696846\pi\)
−0.579741 + 0.814801i \(0.696846\pi\)
\(242\) 0 0
\(243\) −7.00000 7.00000i −0.449050 0.449050i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 18.0000 + 18.0000i 1.14531 + 1.14531i
\(248\) 0 0
\(249\) 6.00000i 0.380235i
\(250\) 0 0
\(251\) 4.00000 0.252478 0.126239 0.992000i \(-0.459709\pi\)
0.126239 + 0.992000i \(0.459709\pi\)
\(252\) 0 0
\(253\) 12.0000 12.0000i 0.754434 0.754434i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 3.00000 3.00000i 0.187135 0.187135i −0.607321 0.794456i \(-0.707756\pi\)
0.794456 + 0.607321i \(0.207756\pi\)
\(258\) 0 0
\(259\) 6.00000i 0.372822i
\(260\) 0 0
\(261\) 2.00000i 0.123797i
\(262\) 0 0
\(263\) 9.00000 9.00000i 0.554964 0.554964i −0.372906 0.927869i \(-0.621638\pi\)
0.927869 + 0.372906i \(0.121638\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −14.0000 −0.853595 −0.426798 0.904347i \(-0.640358\pi\)
−0.426798 + 0.904347i \(0.640358\pi\)
\(270\) 0 0
\(271\) 2.00000i 0.121491i 0.998153 + 0.0607457i \(0.0193479\pi\)
−0.998153 + 0.0607457i \(0.980652\pi\)
\(272\) 0 0
\(273\) 6.00000 + 6.00000i 0.363137 + 0.363137i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −15.0000 15.0000i −0.901263 0.901263i 0.0942828 0.995545i \(-0.469944\pi\)
−0.995545 + 0.0942828i \(0.969944\pi\)
\(278\) 0 0
\(279\) −6.00000 −0.359211
\(280\) 0 0
\(281\) 6.00000 0.357930 0.178965 0.983855i \(-0.442725\pi\)
0.178965 + 0.983855i \(0.442725\pi\)
\(282\) 0 0
\(283\) −15.0000 15.0000i −0.891657 0.891657i 0.103022 0.994679i \(-0.467149\pi\)
−0.994679 + 0.103022i \(0.967149\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −6.00000 6.00000i −0.354169 0.354169i
\(288\) 0 0
\(289\) 1.00000i 0.0588235i
\(290\) 0 0
\(291\) 14.0000 0.820695
\(292\) 0 0
\(293\) 1.00000 1.00000i 0.0584206 0.0584206i −0.677293 0.735714i \(-0.736847\pi\)
0.735714 + 0.677293i \(0.236847\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −16.0000 + 16.0000i −0.928414 + 0.928414i
\(298\) 0 0
\(299\) 18.0000i 1.04097i
\(300\) 0 0
\(301\) 6.00000i 0.345834i
\(302\) 0 0
\(303\) 8.00000 8.00000i 0.459588 0.459588i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 15.0000 15.0000i 0.856095 0.856095i −0.134780 0.990876i \(-0.543033\pi\)
0.990876 + 0.134780i \(0.0430329\pi\)
\(308\) 0 0
\(309\) −22.0000 −1.25154
\(310\) 0 0
\(311\) 18.0000i 1.02069i 0.859971 + 0.510343i \(0.170482\pi\)
−0.859971 + 0.510343i \(0.829518\pi\)
\(312\) 0 0
\(313\) −1.00000 1.00000i −0.0565233 0.0565233i 0.678280 0.734803i \(-0.262726\pi\)
−0.734803 + 0.678280i \(0.762726\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −3.00000 3.00000i −0.168497 0.168497i 0.617822 0.786318i \(-0.288015\pi\)
−0.786318 + 0.617822i \(0.788015\pi\)
\(318\) 0 0
\(319\) 8.00000 0.447914
\(320\) 0 0
\(321\) 6.00000 0.334887
\(322\) 0 0
\(323\) −18.0000 18.0000i −1.00155 1.00155i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 18.0000 + 18.0000i 0.995402 + 0.995402i
\(328\) 0 0
\(329\) 18.0000i 0.992372i
\(330\) 0 0
\(331\) 12.0000 0.659580 0.329790 0.944054i \(-0.393022\pi\)
0.329790 + 0.944054i \(0.393022\pi\)
\(332\) 0 0
\(333\) −3.00000 + 3.00000i −0.164399 + 0.164399i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −25.0000 + 25.0000i −1.36184 + 1.36184i −0.490261 + 0.871576i \(0.663099\pi\)
−0.871576 + 0.490261i \(0.836901\pi\)
\(338\) 0 0
\(339\) 6.00000i 0.325875i
\(340\) 0 0
\(341\) 24.0000i 1.29967i
\(342\) 0 0
\(343\) −12.0000 + 12.0000i −0.647939 + 0.647939i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −17.0000 + 17.0000i −0.912608 + 0.912608i −0.996477 0.0838690i \(-0.973272\pi\)
0.0838690 + 0.996477i \(0.473272\pi\)
\(348\) 0 0
\(349\) −18.0000 −0.963518 −0.481759 0.876304i \(-0.660002\pi\)
−0.481759 + 0.876304i \(0.660002\pi\)
\(350\) 0 0
\(351\) 24.0000i 1.28103i
\(352\) 0 0
\(353\) 15.0000 + 15.0000i 0.798369 + 0.798369i 0.982838 0.184469i \(-0.0590565\pi\)
−0.184469 + 0.982838i \(0.559057\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) −6.00000 6.00000i −0.317554 0.317554i
\(358\) 0 0
\(359\) 24.0000 1.26667 0.633336 0.773877i \(-0.281685\pi\)
0.633336 + 0.773877i \(0.281685\pi\)
\(360\) 0 0
\(361\) −17.0000 −0.894737
\(362\) 0 0
\(363\) 5.00000 + 5.00000i 0.262432 + 0.262432i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 11.0000 + 11.0000i 0.574195 + 0.574195i 0.933298 0.359103i \(-0.116917\pi\)
−0.359103 + 0.933298i \(0.616917\pi\)
\(368\) 0 0
\(369\) 6.00000i 0.312348i
\(370\) 0 0
\(371\) −10.0000 −0.519174
\(372\) 0 0
\(373\) −3.00000 + 3.00000i −0.155334 + 0.155334i −0.780496 0.625161i \(-0.785033\pi\)
0.625161 + 0.780496i \(0.285033\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 6.00000 6.00000i 0.309016 0.309016i
\(378\) 0 0
\(379\) 18.0000i 0.924598i 0.886724 + 0.462299i \(0.152975\pi\)
−0.886724 + 0.462299i \(0.847025\pi\)
\(380\) 0 0
\(381\) 10.0000i 0.512316i
\(382\) 0 0
\(383\) 21.0000 21.0000i 1.07305 1.07305i 0.0759373 0.997113i \(-0.475805\pi\)
0.997113 0.0759373i \(-0.0241949\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −3.00000 + 3.00000i −0.152499 + 0.152499i
\(388\) 0 0
\(389\) 26.0000 1.31825 0.659126 0.752032i \(-0.270926\pi\)
0.659126 + 0.752032i \(0.270926\pi\)
\(390\) 0 0
\(391\) 18.0000i 0.910299i
\(392\) 0 0
\(393\) −4.00000 4.00000i −0.201773 0.201773i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 9.00000 + 9.00000i 0.451697 + 0.451697i 0.895918 0.444220i \(-0.146519\pi\)
−0.444220 + 0.895918i \(0.646519\pi\)
\(398\) 0 0
\(399\) −12.0000 −0.600751
\(400\) 0 0
\(401\) −30.0000 −1.49813 −0.749064 0.662497i \(-0.769497\pi\)
−0.749064 + 0.662497i \(0.769497\pi\)
\(402\) 0 0
\(403\) 18.0000 + 18.0000i 0.896644 + 0.896644i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 12.0000 + 12.0000i 0.594818 + 0.594818i
\(408\) 0 0
\(409\) 12.0000i 0.593362i 0.954977 + 0.296681i \(0.0958798\pi\)
−0.954977 + 0.296681i \(0.904120\pi\)
\(410\) 0 0
\(411\) 6.00000 0.295958
\(412\) 0 0
\(413\) 10.0000 10.0000i 0.492068 0.492068i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 6.00000 6.00000i 0.293821 0.293821i
\(418\) 0 0
\(419\) 10.0000i 0.488532i 0.969708 + 0.244266i \(0.0785470\pi\)
−0.969708 + 0.244266i \(0.921453\pi\)
\(420\) 0 0
\(421\) 12.0000i 0.584844i −0.956289 0.292422i \(-0.905539\pi\)
0.956289 0.292422i \(-0.0944612\pi\)
\(422\) 0 0
\(423\) −9.00000 + 9.00000i −0.437595 + 0.437595i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 12.0000 12.0000i 0.580721 0.580721i
\(428\) 0 0
\(429\) 24.0000 1.15873
\(430\) 0 0
\(431\) 30.0000i 1.44505i −0.691345 0.722525i \(-0.742982\pi\)
0.691345 0.722525i \(-0.257018\pi\)
\(432\) 0 0
\(433\) 7.00000 + 7.00000i 0.336399 + 0.336399i 0.855010 0.518611i \(-0.173551\pi\)
−0.518611 + 0.855010i \(0.673551\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 18.0000 + 18.0000i 0.861057 + 0.861057i
\(438\) 0 0
\(439\) −8.00000 −0.381819 −0.190910 0.981608i \(-0.561144\pi\)
−0.190910 + 0.981608i \(0.561144\pi\)
\(440\) 0 0
\(441\) −5.00000 −0.238095
\(442\) 0 0
\(443\) 25.0000 + 25.0000i 1.18779 + 1.18779i 0.977678 + 0.210108i \(0.0673814\pi\)
0.210108 + 0.977678i \(0.432619\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 2.00000 + 2.00000i 0.0945968 + 0.0945968i
\(448\) 0 0
\(449\) 12.0000i 0.566315i −0.959073 0.283158i \(-0.908618\pi\)
0.959073 0.283158i \(-0.0913819\pi\)
\(450\) 0 0
\(451\) −24.0000 −1.13012
\(452\) 0 0
\(453\) −10.0000 + 10.0000i −0.469841 + 0.469841i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −17.0000 + 17.0000i −0.795226 + 0.795226i −0.982339 0.187112i \(-0.940087\pi\)
0.187112 + 0.982339i \(0.440087\pi\)
\(458\) 0 0
\(459\) 24.0000i 1.12022i
\(460\) 0 0
\(461\) 40.0000i 1.86299i −0.363760 0.931493i \(-0.618507\pi\)
0.363760 0.931493i \(-0.381493\pi\)
\(462\) 0 0
\(463\) 1.00000 1.00000i 0.0464739 0.0464739i −0.683488 0.729962i \(-0.739538\pi\)
0.729962 + 0.683488i \(0.239538\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −21.0000 + 21.0000i −0.971764 + 0.971764i −0.999612 0.0278481i \(-0.991135\pi\)
0.0278481 + 0.999612i \(0.491135\pi\)
\(468\) 0 0
\(469\) 18.0000 0.831163
\(470\) 0 0
\(471\) 6.00000i 0.276465i
\(472\) 0 0
\(473\) 12.0000 + 12.0000i 0.551761 + 0.551761i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −5.00000 5.00000i −0.228934 0.228934i
\(478\) 0 0
\(479\) 24.0000 1.09659 0.548294 0.836286i \(-0.315277\pi\)
0.548294 + 0.836286i \(0.315277\pi\)
\(480\) 0 0
\(481\) 18.0000 0.820729
\(482\) 0 0
\(483\) 6.00000 + 6.00000i 0.273009 + 0.273009i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −1.00000 1.00000i −0.0453143 0.0453143i 0.684087 0.729401i \(-0.260201\pi\)
−0.729401 + 0.684087i \(0.760201\pi\)
\(488\) 0 0
\(489\) 18.0000i 0.813988i
\(490\) 0 0
\(491\) −20.0000 −0.902587 −0.451294 0.892375i \(-0.649037\pi\)
−0.451294 + 0.892375i \(0.649037\pi\)
\(492\) 0 0
\(493\) −6.00000 + 6.00000i −0.270226 + 0.270226i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −6.00000 + 6.00000i −0.269137 + 0.269137i
\(498\) 0 0
\(499\) 6.00000i 0.268597i −0.990941 0.134298i \(-0.957122\pi\)
0.990941 0.134298i \(-0.0428781\pi\)
\(500\) 0 0
\(501\) 6.00000i 0.268060i
\(502\) 0 0
\(503\) 21.0000 21.0000i 0.936344 0.936344i −0.0617480 0.998092i \(-0.519668\pi\)
0.998092 + 0.0617480i \(0.0196675\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 5.00000 5.00000i 0.222058 0.222058i
\(508\) 0 0
\(509\) 14.0000 0.620539 0.310270 0.950649i \(-0.399581\pi\)
0.310270 + 0.950649i \(0.399581\pi\)
\(510\) 0 0
\(511\) 10.0000i 0.442374i
\(512\) 0 0
\(513\) −24.0000 24.0000i −1.05963 1.05963i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 36.0000 + 36.0000i 1.58328 + 1.58328i
\(518\) 0 0
\(519\) −30.0000 −1.31685
\(520\) 0 0
\(521\) 18.0000 0.788594 0.394297 0.918983i \(-0.370988\pi\)
0.394297 + 0.918983i \(0.370988\pi\)
\(522\) 0 0
\(523\) −15.0000 15.0000i −0.655904 0.655904i 0.298504 0.954408i \(-0.403512\pi\)
−0.954408 + 0.298504i \(0.903512\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −18.0000 18.0000i −0.784092 0.784092i
\(528\) 0 0
\(529\) 5.00000i 0.217391i
\(530\) 0 0
\(531\) 10.0000 0.433963
\(532\) 0 0
\(533\) −18.0000 + 18.0000i −0.779667 + 0.779667i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −2.00000 + 2.00000i −0.0863064 + 0.0863064i
\(538\) 0 0
\(539\) 20.0000i 0.861461i
\(540\) 0 0
\(541\) 24.0000i 1.03184i −0.856637 0.515920i \(-0.827450\pi\)
0.856637 0.515920i \(-0.172550\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 3.00000 3.00000i 0.128271 0.128271i −0.640057 0.768328i \(-0.721089\pi\)
0.768328 + 0.640057i \(0.221089\pi\)
\(548\) 0 0
\(549\) 12.0000 0.512148
\(550\) 0 0
\(551\) 12.0000i 0.511217i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −31.0000 31.0000i −1.31351 1.31351i −0.918808 0.394704i \(-0.870847\pi\)
−0.394704 0.918808i \(-0.629153\pi\)
\(558\) 0 0
\(559\) 18.0000 0.761319
\(560\) 0 0
\(561\) −24.0000 −1.01328
\(562\) 0 0
\(563\) 1.00000 + 1.00000i 0.0421450 + 0.0421450i 0.727865 0.685720i \(-0.240513\pi\)
−0.685720 + 0.727865i \(0.740513\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −5.00000 5.00000i −0.209980 0.209980i
\(568\) 0 0
\(569\) 12.0000i 0.503066i −0.967849 0.251533i \(-0.919065\pi\)
0.967849 0.251533i \(-0.0809347\pi\)
\(570\) 0 0
\(571\) 12.0000 0.502184 0.251092 0.967963i \(-0.419210\pi\)
0.251092 + 0.967963i \(0.419210\pi\)
\(572\) 0 0
\(573\) 6.00000 6.00000i 0.250654 0.250654i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 19.0000 19.0000i 0.790980 0.790980i −0.190673 0.981654i \(-0.561067\pi\)
0.981654 + 0.190673i \(0.0610671\pi\)
\(578\) 0 0
\(579\) 10.0000i 0.415586i
\(580\) 0 0
\(581\) 6.00000i 0.248922i
\(582\) 0 0
\(583\) −20.0000 + 20.0000i −0.828315 + 0.828315i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 15.0000 15.0000i 0.619116 0.619116i −0.326188 0.945305i \(-0.605764\pi\)
0.945305 + 0.326188i \(0.105764\pi\)
\(588\) 0 0
\(589\) −36.0000 −1.48335
\(590\) 0 0
\(591\) 10.0000i 0.411345i
\(592\) 0 0
\(593\) 15.0000 + 15.0000i 0.615976 + 0.615976i 0.944497 0.328521i \(-0.106550\pi\)
−0.328521 + 0.944497i \(0.606550\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −16.0000 16.0000i −0.654836 0.654836i
\(598\) 0 0
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 0 0
\(601\) −10.0000 −0.407909 −0.203954 0.978980i \(-0.565379\pi\)
−0.203954 + 0.978980i \(0.565379\pi\)
\(602\) 0 0
\(603\) 9.00000 + 9.00000i 0.366508 + 0.366508i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 7.00000 + 7.00000i 0.284121 + 0.284121i 0.834750 0.550629i \(-0.185612\pi\)
−0.550629 + 0.834750i \(0.685612\pi\)
\(608\) 0 0
\(609\) 4.00000i 0.162088i
\(610\) 0 0
\(611\) 54.0000 2.18461
\(612\) 0 0
\(613\) 9.00000 9.00000i 0.363507 0.363507i −0.501596 0.865102i \(-0.667253\pi\)
0.865102 + 0.501596i \(0.167253\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 15.0000 15.0000i 0.603877 0.603877i −0.337462 0.941339i \(-0.609568\pi\)
0.941339 + 0.337462i \(0.109568\pi\)
\(618\) 0 0
\(619\) 42.0000i 1.68812i 0.536247 + 0.844061i \(0.319842\pi\)
−0.536247 + 0.844061i \(0.680158\pi\)
\(620\) 0 0
\(621\) 24.0000i 0.963087i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) −24.0000 + 24.0000i −0.958468 + 0.958468i
\(628\) 0 0
\(629\) −18.0000 −0.717707
\(630\) 0 0
\(631\) 30.0000i 1.19428i −0.802137 0.597141i \(-0.796303\pi\)
0.802137 0.597141i \(-0.203697\pi\)
\(632\) 0 0
\(633\) −12.0000 12.0000i −0.476957 0.476957i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 15.0000 + 15.0000i 0.594322 + 0.594322i
\(638\) 0 0
\(639\) −6.00000 −0.237356
\(640\) 0 0
\(641\) 30.0000 1.18493 0.592464 0.805597i \(-0.298155\pi\)
0.592464 + 0.805597i \(0.298155\pi\)
\(642\) 0 0
\(643\) −3.00000 3.00000i −0.118308 0.118308i 0.645474 0.763782i \(-0.276660\pi\)
−0.763782 + 0.645474i \(0.776660\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −9.00000 9.00000i −0.353827 0.353827i 0.507705 0.861531i \(-0.330494\pi\)
−0.861531 + 0.507705i \(0.830494\pi\)
\(648\) 0 0
\(649\) 40.0000i 1.57014i
\(650\) 0 0
\(651\) −12.0000 −0.470317
\(652\) 0 0
\(653\) 33.0000 33.0000i 1.29139 1.29139i 0.357462 0.933928i \(-0.383642\pi\)
0.933928 0.357462i \(-0.116358\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −5.00000 + 5.00000i −0.195069 + 0.195069i
\(658\) 0 0
\(659\) 22.0000i 0.856998i −0.903542 0.428499i \(-0.859042\pi\)
0.903542 0.428499i \(-0.140958\pi\)
\(660\) 0 0
\(661\) 12.0000i 0.466746i 0.972387 + 0.233373i \(0.0749763\pi\)
−0.972387 + 0.233373i \(0.925024\pi\)
\(662\) 0 0
\(663\) −18.0000 + 18.0000i −0.699062 + 0.699062i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 6.00000 6.00000i 0.232321 0.232321i
\(668\) 0 0
\(669\) 26.0000 1.00522
\(670\) 0 0
\(671\) 48.0000i 1.85302i
\(672\) 0 0
\(673\) −25.0000 25.0000i −0.963679 0.963679i 0.0356839 0.999363i \(-0.488639\pi\)
−0.999363 + 0.0356839i \(0.988639\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −27.0000 27.0000i −1.03769 1.03769i −0.999261 0.0384331i \(-0.987763\pi\)
−0.0384331 0.999261i \(-0.512237\pi\)
\(678\) 0 0
\(679\) −14.0000 −0.537271
\(680\) 0 0
\(681\) 22.0000 0.843042
\(682\) 0 0
\(683\) −27.0000 27.0000i −1.03313 1.03313i −0.999432 0.0336941i \(-0.989273\pi\)
−0.0336941 0.999432i \(-0.510727\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 6.00000 + 6.00000i 0.228914 + 0.228914i
\(688\) 0 0
\(689\) 30.0000i 1.14291i
\(690\) 0 0
\(691\) −12.0000 −0.456502 −0.228251 0.973602i \(-0.573301\pi\)
−0.228251 + 0.973602i \(0.573301\pi\)
\(692\) 0 0
\(693\) 4.00000 4.00000i 0.151947 0.151947i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 18.0000 18.0000i 0.681799 0.681799i
\(698\) 0 0
\(699\) 30.0000i 1.13470i
\(700\) 0 0
\(701\) 20.0000i 0.755390i 0.925930 + 0.377695i \(0.123283\pi\)
−0.925930 + 0.377695i \(0.876717\pi\)
\(702\) 0 0
\(703\) −18.0000 + 18.0000i −0.678883 + 0.678883i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −8.00000 + 8.00000i −0.300871 + 0.300871i
\(708\) 0 0
\(709\) −42.0000 −1.57734 −0.788672 0.614815i \(-0.789231\pi\)
−0.788672 + 0.614815i \(0.789231\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 18.0000 + 18.0000i 0.674105 + 0.674105i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 24.0000 + 24.0000i 0.896296 + 0.896296i
\(718\) 0 0
\(719\) −24.0000 −0.895049 −0.447524 0.894272i \(-0.647694\pi\)
−0.447524 + 0.894272i \(0.647694\pi\)
\(720\) 0 0
\(721\) 22.0000 0.819323
\(722\) 0 0
\(723\) −18.0000 18.0000i −0.669427 0.669427i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −25.0000 25.0000i −0.927199 0.927199i 0.0703254 0.997524i \(-0.477596\pi\)
−0.997524 + 0.0703254i \(0.977596\pi\)
\(728\) 0 0
\(729\) 29.0000i 1.07407i
\(730\) 0 0
\(731\) −18.0000 −0.665754
\(732\) 0 0
\(733\) −15.0000 + 15.0000i −0.554038 + 0.554038i −0.927604 0.373566i \(-0.878135\pi\)
0.373566 + 0.927604i \(0.378135\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 36.0000 36.0000i 1.32608 1.32608i
\(738\) 0 0
\(739\) 30.0000i 1.10357i −0.833987 0.551784i \(-0.813947\pi\)
0.833987 0.551784i \(-0.186053\pi\)
\(740\) 0 0
\(741\) 36.0000i 1.32249i
\(742\) 0 0
\(743\) 9.00000 9.00000i 0.330178 0.330178i −0.522476 0.852654i \(-0.674992\pi\)
0.852654 + 0.522476i \(0.174992\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −3.00000 + 3.00000i −0.109764 + 0.109764i
\(748\) 0 0
\(749\) −6.00000 −0.219235
\(750\) 0 0
\(751\) 42.0000i 1.53260i 0.642482 + 0.766301i \(0.277905\pi\)
−0.642482 + 0.766301i \(0.722095\pi\)
\(752\) 0 0
\(753\) 4.00000 + 4.00000i 0.145768 + 0.145768i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 9.00000 + 9.00000i 0.327111 + 0.327111i 0.851487 0.524376i \(-0.175701\pi\)
−0.524376 + 0.851487i \(0.675701\pi\)
\(758\) 0 0
\(759\) 24.0000 0.871145
\(760\) 0 0
\(761\) 18.0000 0.652499 0.326250 0.945284i \(-0.394215\pi\)
0.326250 + 0.945284i \(0.394215\pi\)
\(762\) 0 0
\(763\) −18.0000 18.0000i −0.651644 0.651644i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −30.0000 30.0000i −1.08324 1.08324i
\(768\) 0 0
\(769\) 40.0000i 1.44244i −0.692708 0.721218i \(-0.743582\pi\)
0.692708 0.721218i \(-0.256418\pi\)
\(770\) 0 0
\(771\) 6.00000 0.216085
\(772\) 0 0
\(773\) 9.00000 9.00000i 0.323708 0.323708i −0.526480 0.850188i \(-0.676489\pi\)
0.850188 + 0.526480i \(0.176489\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −6.00000 + 6.00000i −0.215249 + 0.215249i
\(778\) 0 0
\(779\) 36.0000i 1.28983i
\(780\) 0 0
\(781\) 24.0000i 0.858788i
\(782\) 0 0
\(783\) −8.00000 + 8.00000i −0.285897 + 0.285897i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 15.0000 15.0000i 0.534692 0.534692i −0.387273 0.921965i \(-0.626583\pi\)
0.921965 + 0.387273i \(0.126583\pi\)
\(788\) 0 0
\(789\) 18.0000 0.640817
\(790\) 0 0
\(791\) 6.00000i 0.213335i
\(792\) 0 0
\(793\) −36.0000 36.0000i −1.27840 1.27840i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −3.00000 3.00000i −0.106265 0.106265i 0.651975 0.758240i \(-0.273941\pi\)
−0.758240 + 0.651975i \(0.773941\pi\)
\(798\) 0 0
\(799\) −54.0000 −1.91038
\(800\) 0 0
\(801\) 0 0
\(802\) 0