Properties

Label 1600.2.o.b.607.1
Level $1600$
Weight $2$
Character 1600.607
Analytic conductor $12.776$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1600,2,Mod(543,1600)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1600, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 2, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1600.543");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1600 = 2^{6} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1600.o (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.7760643234\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 320)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 607.1
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 1600.607
Dual form 1600.2.o.b.543.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.00000 + 1.00000i) q^{3} +(1.00000 - 1.00000i) q^{7} +1.00000i q^{9} +O(q^{10})\) \(q+(-1.00000 + 1.00000i) q^{3} +(1.00000 - 1.00000i) q^{7} +1.00000i q^{9} +4.00000 q^{11} +(-3.00000 - 3.00000i) q^{13} +(3.00000 + 3.00000i) q^{17} -6.00000i q^{19} +2.00000i q^{21} +(3.00000 + 3.00000i) q^{23} +(-4.00000 - 4.00000i) q^{27} -2.00000 q^{29} -6.00000i q^{31} +(-4.00000 + 4.00000i) q^{33} +(-3.00000 + 3.00000i) q^{37} +6.00000 q^{39} +6.00000 q^{41} +(3.00000 - 3.00000i) q^{43} +(9.00000 - 9.00000i) q^{47} +5.00000i q^{49} -6.00000 q^{51} +(5.00000 + 5.00000i) q^{53} +(6.00000 + 6.00000i) q^{57} +10.0000i q^{59} -12.0000i q^{61} +(1.00000 + 1.00000i) q^{63} +(9.00000 + 9.00000i) q^{67} -6.00000 q^{69} -6.00000i q^{71} +(-5.00000 + 5.00000i) q^{73} +(4.00000 - 4.00000i) q^{77} +5.00000 q^{81} +(3.00000 - 3.00000i) q^{83} +(2.00000 - 2.00000i) q^{87} -6.00000 q^{91} +(6.00000 + 6.00000i) q^{93} +(7.00000 + 7.00000i) q^{97} +4.00000i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{3} + 2 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 2 q^{3} + 2 q^{7} + 8 q^{11} - 6 q^{13} + 6 q^{17} + 6 q^{23} - 8 q^{27} - 4 q^{29} - 8 q^{33} - 6 q^{37} + 12 q^{39} + 12 q^{41} + 6 q^{43} + 18 q^{47} - 12 q^{51} + 10 q^{53} + 12 q^{57} + 2 q^{63} + 18 q^{67} - 12 q^{69} - 10 q^{73} + 8 q^{77} + 10 q^{81} + 6 q^{83} + 4 q^{87} - 12 q^{91} + 12 q^{93} + 14 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1600\mathbb{Z}\right)^\times\).

\(n\) \(577\) \(901\) \(1151\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.00000 + 1.00000i −0.577350 + 0.577350i −0.934172 0.356822i \(-0.883860\pi\)
0.356822 + 0.934172i \(0.383860\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 1.00000 1.00000i 0.377964 0.377964i −0.492403 0.870367i \(-0.663881\pi\)
0.870367 + 0.492403i \(0.163881\pi\)
\(8\) 0 0
\(9\) 1.00000i 0.333333i
\(10\) 0 0
\(11\) 4.00000 1.20605 0.603023 0.797724i \(-0.293963\pi\)
0.603023 + 0.797724i \(0.293963\pi\)
\(12\) 0 0
\(13\) −3.00000 3.00000i −0.832050 0.832050i 0.155747 0.987797i \(-0.450222\pi\)
−0.987797 + 0.155747i \(0.950222\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 3.00000 + 3.00000i 0.727607 + 0.727607i 0.970143 0.242536i \(-0.0779791\pi\)
−0.242536 + 0.970143i \(0.577979\pi\)
\(18\) 0 0
\(19\) 6.00000i 1.37649i −0.725476 0.688247i \(-0.758380\pi\)
0.725476 0.688247i \(-0.241620\pi\)
\(20\) 0 0
\(21\) 2.00000i 0.436436i
\(22\) 0 0
\(23\) 3.00000 + 3.00000i 0.625543 + 0.625543i 0.946943 0.321400i \(-0.104153\pi\)
−0.321400 + 0.946943i \(0.604153\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) −4.00000 4.00000i −0.769800 0.769800i
\(28\) 0 0
\(29\) −2.00000 −0.371391 −0.185695 0.982607i \(-0.559454\pi\)
−0.185695 + 0.982607i \(0.559454\pi\)
\(30\) 0 0
\(31\) 6.00000i 1.07763i −0.842424 0.538816i \(-0.818872\pi\)
0.842424 0.538816i \(-0.181128\pi\)
\(32\) 0 0
\(33\) −4.00000 + 4.00000i −0.696311 + 0.696311i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −3.00000 + 3.00000i −0.493197 + 0.493197i −0.909312 0.416115i \(-0.863391\pi\)
0.416115 + 0.909312i \(0.363391\pi\)
\(38\) 0 0
\(39\) 6.00000 0.960769
\(40\) 0 0
\(41\) 6.00000 0.937043 0.468521 0.883452i \(-0.344787\pi\)
0.468521 + 0.883452i \(0.344787\pi\)
\(42\) 0 0
\(43\) 3.00000 3.00000i 0.457496 0.457496i −0.440337 0.897833i \(-0.645141\pi\)
0.897833 + 0.440337i \(0.145141\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 9.00000 9.00000i 1.31278 1.31278i 0.393431 0.919354i \(-0.371288\pi\)
0.919354 0.393431i \(-0.128712\pi\)
\(48\) 0 0
\(49\) 5.00000i 0.714286i
\(50\) 0 0
\(51\) −6.00000 −0.840168
\(52\) 0 0
\(53\) 5.00000 + 5.00000i 0.686803 + 0.686803i 0.961524 0.274721i \(-0.0885855\pi\)
−0.274721 + 0.961524i \(0.588586\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 6.00000 + 6.00000i 0.794719 + 0.794719i
\(58\) 0 0
\(59\) 10.0000i 1.30189i 0.759125 + 0.650945i \(0.225627\pi\)
−0.759125 + 0.650945i \(0.774373\pi\)
\(60\) 0 0
\(61\) 12.0000i 1.53644i −0.640184 0.768221i \(-0.721142\pi\)
0.640184 0.768221i \(-0.278858\pi\)
\(62\) 0 0
\(63\) 1.00000 + 1.00000i 0.125988 + 0.125988i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 9.00000 + 9.00000i 1.09952 + 1.09952i 0.994466 + 0.105059i \(0.0335031\pi\)
0.105059 + 0.994466i \(0.466497\pi\)
\(68\) 0 0
\(69\) −6.00000 −0.722315
\(70\) 0 0
\(71\) 6.00000i 0.712069i −0.934473 0.356034i \(-0.884129\pi\)
0.934473 0.356034i \(-0.115871\pi\)
\(72\) 0 0
\(73\) −5.00000 + 5.00000i −0.585206 + 0.585206i −0.936329 0.351123i \(-0.885800\pi\)
0.351123 + 0.936329i \(0.385800\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 4.00000 4.00000i 0.455842 0.455842i
\(78\) 0 0
\(79\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(80\) 0 0
\(81\) 5.00000 0.555556
\(82\) 0 0
\(83\) 3.00000 3.00000i 0.329293 0.329293i −0.523025 0.852318i \(-0.675196\pi\)
0.852318 + 0.523025i \(0.175196\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 2.00000 2.00000i 0.214423 0.214423i
\(88\) 0 0
\(89\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(90\) 0 0
\(91\) −6.00000 −0.628971
\(92\) 0 0
\(93\) 6.00000 + 6.00000i 0.622171 + 0.622171i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 7.00000 + 7.00000i 0.710742 + 0.710742i 0.966691 0.255948i \(-0.0823876\pi\)
−0.255948 + 0.966691i \(0.582388\pi\)
\(98\) 0 0
\(99\) 4.00000i 0.402015i
\(100\) 0 0
\(101\) 8.00000i 0.796030i 0.917379 + 0.398015i \(0.130301\pi\)
−0.917379 + 0.398015i \(0.869699\pi\)
\(102\) 0 0
\(103\) 11.0000 + 11.0000i 1.08386 + 1.08386i 0.996145 + 0.0877167i \(0.0279570\pi\)
0.0877167 + 0.996145i \(0.472043\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −3.00000 3.00000i −0.290021 0.290021i 0.547068 0.837088i \(-0.315744\pi\)
−0.837088 + 0.547068i \(0.815744\pi\)
\(108\) 0 0
\(109\) 18.0000 1.72409 0.862044 0.506834i \(-0.169184\pi\)
0.862044 + 0.506834i \(0.169184\pi\)
\(110\) 0 0
\(111\) 6.00000i 0.569495i
\(112\) 0 0
\(113\) 3.00000 3.00000i 0.282216 0.282216i −0.551776 0.833992i \(-0.686050\pi\)
0.833992 + 0.551776i \(0.186050\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 3.00000 3.00000i 0.277350 0.277350i
\(118\) 0 0
\(119\) 6.00000 0.550019
\(120\) 0 0
\(121\) 5.00000 0.454545
\(122\) 0 0
\(123\) −6.00000 + 6.00000i −0.541002 + 0.541002i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 5.00000 5.00000i 0.443678 0.443678i −0.449568 0.893246i \(-0.648422\pi\)
0.893246 + 0.449568i \(0.148422\pi\)
\(128\) 0 0
\(129\) 6.00000i 0.528271i
\(130\) 0 0
\(131\) 4.00000 0.349482 0.174741 0.984614i \(-0.444091\pi\)
0.174741 + 0.984614i \(0.444091\pi\)
\(132\) 0 0
\(133\) −6.00000 6.00000i −0.520266 0.520266i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 3.00000 + 3.00000i 0.256307 + 0.256307i 0.823550 0.567243i \(-0.191990\pi\)
−0.567243 + 0.823550i \(0.691990\pi\)
\(138\) 0 0
\(139\) 6.00000i 0.508913i −0.967084 0.254457i \(-0.918103\pi\)
0.967084 0.254457i \(-0.0818966\pi\)
\(140\) 0 0
\(141\) 18.0000i 1.51587i
\(142\) 0 0
\(143\) −12.0000 12.0000i −1.00349 1.00349i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −5.00000 5.00000i −0.412393 0.412393i
\(148\) 0 0
\(149\) 2.00000 0.163846 0.0819232 0.996639i \(-0.473894\pi\)
0.0819232 + 0.996639i \(0.473894\pi\)
\(150\) 0 0
\(151\) 10.0000i 0.813788i 0.913475 + 0.406894i \(0.133388\pi\)
−0.913475 + 0.406894i \(0.866612\pi\)
\(152\) 0 0
\(153\) −3.00000 + 3.00000i −0.242536 + 0.242536i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −3.00000 + 3.00000i −0.239426 + 0.239426i −0.816612 0.577186i \(-0.804151\pi\)
0.577186 + 0.816612i \(0.304151\pi\)
\(158\) 0 0
\(159\) −10.0000 −0.793052
\(160\) 0 0
\(161\) 6.00000 0.472866
\(162\) 0 0
\(163\) −9.00000 + 9.00000i −0.704934 + 0.704934i −0.965465 0.260531i \(-0.916102\pi\)
0.260531 + 0.965465i \(0.416102\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −3.00000 + 3.00000i −0.232147 + 0.232147i −0.813588 0.581441i \(-0.802489\pi\)
0.581441 + 0.813588i \(0.302489\pi\)
\(168\) 0 0
\(169\) 5.00000i 0.384615i
\(170\) 0 0
\(171\) 6.00000 0.458831
\(172\) 0 0
\(173\) −15.0000 15.0000i −1.14043 1.14043i −0.988372 0.152057i \(-0.951410\pi\)
−0.152057 0.988372i \(-0.548590\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −10.0000 10.0000i −0.751646 0.751646i
\(178\) 0 0
\(179\) 2.00000i 0.149487i 0.997203 + 0.0747435i \(0.0238138\pi\)
−0.997203 + 0.0747435i \(0.976186\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(182\) 0 0
\(183\) 12.0000 + 12.0000i 0.887066 + 0.887066i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 12.0000 + 12.0000i 0.877527 + 0.877527i
\(188\) 0 0
\(189\) −8.00000 −0.581914
\(190\) 0 0
\(191\) 6.00000i 0.434145i −0.976156 0.217072i \(-0.930349\pi\)
0.976156 0.217072i \(-0.0696508\pi\)
\(192\) 0 0
\(193\) −5.00000 + 5.00000i −0.359908 + 0.359908i −0.863779 0.503871i \(-0.831909\pi\)
0.503871 + 0.863779i \(0.331909\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 5.00000 5.00000i 0.356235 0.356235i −0.506188 0.862423i \(-0.668946\pi\)
0.862423 + 0.506188i \(0.168946\pi\)
\(198\) 0 0
\(199\) 16.0000 1.13421 0.567105 0.823646i \(-0.308063\pi\)
0.567105 + 0.823646i \(0.308063\pi\)
\(200\) 0 0
\(201\) −18.0000 −1.26962
\(202\) 0 0
\(203\) −2.00000 + 2.00000i −0.140372 + 0.140372i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −3.00000 + 3.00000i −0.208514 + 0.208514i
\(208\) 0 0
\(209\) 24.0000i 1.66011i
\(210\) 0 0
\(211\) 12.0000 0.826114 0.413057 0.910705i \(-0.364461\pi\)
0.413057 + 0.910705i \(0.364461\pi\)
\(212\) 0 0
\(213\) 6.00000 + 6.00000i 0.411113 + 0.411113i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −6.00000 6.00000i −0.407307 0.407307i
\(218\) 0 0
\(219\) 10.0000i 0.675737i
\(220\) 0 0
\(221\) 18.0000i 1.21081i
\(222\) 0 0
\(223\) −13.0000 13.0000i −0.870544 0.870544i 0.121987 0.992532i \(-0.461073\pi\)
−0.992532 + 0.121987i \(0.961073\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −11.0000 11.0000i −0.730096 0.730096i 0.240543 0.970639i \(-0.422675\pi\)
−0.970639 + 0.240543i \(0.922675\pi\)
\(228\) 0 0
\(229\) 6.00000 0.396491 0.198246 0.980152i \(-0.436476\pi\)
0.198246 + 0.980152i \(0.436476\pi\)
\(230\) 0 0
\(231\) 8.00000i 0.526361i
\(232\) 0 0
\(233\) 15.0000 15.0000i 0.982683 0.982683i −0.0171699 0.999853i \(-0.505466\pi\)
0.999853 + 0.0171699i \(0.00546562\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −24.0000 −1.55243 −0.776215 0.630468i \(-0.782863\pi\)
−0.776215 + 0.630468i \(0.782863\pi\)
\(240\) 0 0
\(241\) −18.0000 −1.15948 −0.579741 0.814801i \(-0.696846\pi\)
−0.579741 + 0.814801i \(0.696846\pi\)
\(242\) 0 0
\(243\) 7.00000 7.00000i 0.449050 0.449050i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −18.0000 + 18.0000i −1.14531 + 1.14531i
\(248\) 0 0
\(249\) 6.00000i 0.380235i
\(250\) 0 0
\(251\) −4.00000 −0.252478 −0.126239 0.992000i \(-0.540291\pi\)
−0.126239 + 0.992000i \(0.540291\pi\)
\(252\) 0 0
\(253\) 12.0000 + 12.0000i 0.754434 + 0.754434i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 3.00000 + 3.00000i 0.187135 + 0.187135i 0.794456 0.607321i \(-0.207756\pi\)
−0.607321 + 0.794456i \(0.707756\pi\)
\(258\) 0 0
\(259\) 6.00000i 0.372822i
\(260\) 0 0
\(261\) 2.00000i 0.123797i
\(262\) 0 0
\(263\) −9.00000 9.00000i −0.554964 0.554964i 0.372906 0.927869i \(-0.378362\pi\)
−0.927869 + 0.372906i \(0.878362\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −14.0000 −0.853595 −0.426798 0.904347i \(-0.640358\pi\)
−0.426798 + 0.904347i \(0.640358\pi\)
\(270\) 0 0
\(271\) 2.00000i 0.121491i 0.998153 + 0.0607457i \(0.0193479\pi\)
−0.998153 + 0.0607457i \(0.980652\pi\)
\(272\) 0 0
\(273\) 6.00000 6.00000i 0.363137 0.363137i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −15.0000 + 15.0000i −0.901263 + 0.901263i −0.995545 0.0942828i \(-0.969944\pi\)
0.0942828 + 0.995545i \(0.469944\pi\)
\(278\) 0 0
\(279\) 6.00000 0.359211
\(280\) 0 0
\(281\) 6.00000 0.357930 0.178965 0.983855i \(-0.442725\pi\)
0.178965 + 0.983855i \(0.442725\pi\)
\(282\) 0 0
\(283\) 15.0000 15.0000i 0.891657 0.891657i −0.103022 0.994679i \(-0.532851\pi\)
0.994679 + 0.103022i \(0.0328511\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 6.00000 6.00000i 0.354169 0.354169i
\(288\) 0 0
\(289\) 1.00000i 0.0588235i
\(290\) 0 0
\(291\) −14.0000 −0.820695
\(292\) 0 0
\(293\) 1.00000 + 1.00000i 0.0584206 + 0.0584206i 0.735714 0.677293i \(-0.236847\pi\)
−0.677293 + 0.735714i \(0.736847\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −16.0000 16.0000i −0.928414 0.928414i
\(298\) 0 0
\(299\) 18.0000i 1.04097i
\(300\) 0 0
\(301\) 6.00000i 0.345834i
\(302\) 0 0
\(303\) −8.00000 8.00000i −0.459588 0.459588i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −15.0000 15.0000i −0.856095 0.856095i 0.134780 0.990876i \(-0.456967\pi\)
−0.990876 + 0.134780i \(0.956967\pi\)
\(308\) 0 0
\(309\) −22.0000 −1.25154
\(310\) 0 0
\(311\) 18.0000i 1.02069i 0.859971 + 0.510343i \(0.170482\pi\)
−0.859971 + 0.510343i \(0.829518\pi\)
\(312\) 0 0
\(313\) −1.00000 + 1.00000i −0.0565233 + 0.0565233i −0.734803 0.678280i \(-0.762726\pi\)
0.678280 + 0.734803i \(0.262726\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −3.00000 + 3.00000i −0.168497 + 0.168497i −0.786318 0.617822i \(-0.788015\pi\)
0.617822 + 0.786318i \(0.288015\pi\)
\(318\) 0 0
\(319\) −8.00000 −0.447914
\(320\) 0 0
\(321\) 6.00000 0.334887
\(322\) 0 0
\(323\) 18.0000 18.0000i 1.00155 1.00155i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −18.0000 + 18.0000i −0.995402 + 0.995402i
\(328\) 0 0
\(329\) 18.0000i 0.992372i
\(330\) 0 0
\(331\) −12.0000 −0.659580 −0.329790 0.944054i \(-0.606978\pi\)
−0.329790 + 0.944054i \(0.606978\pi\)
\(332\) 0 0
\(333\) −3.00000 3.00000i −0.164399 0.164399i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −25.0000 25.0000i −1.36184 1.36184i −0.871576 0.490261i \(-0.836901\pi\)
−0.490261 0.871576i \(-0.663099\pi\)
\(338\) 0 0
\(339\) 6.00000i 0.325875i
\(340\) 0 0
\(341\) 24.0000i 1.29967i
\(342\) 0 0
\(343\) 12.0000 + 12.0000i 0.647939 + 0.647939i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 17.0000 + 17.0000i 0.912608 + 0.912608i 0.996477 0.0838690i \(-0.0267277\pi\)
−0.0838690 + 0.996477i \(0.526728\pi\)
\(348\) 0 0
\(349\) −18.0000 −0.963518 −0.481759 0.876304i \(-0.660002\pi\)
−0.481759 + 0.876304i \(0.660002\pi\)
\(350\) 0 0
\(351\) 24.0000i 1.28103i
\(352\) 0 0
\(353\) 15.0000 15.0000i 0.798369 0.798369i −0.184469 0.982838i \(-0.559057\pi\)
0.982838 + 0.184469i \(0.0590565\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) −6.00000 + 6.00000i −0.317554 + 0.317554i
\(358\) 0 0
\(359\) −24.0000 −1.26667 −0.633336 0.773877i \(-0.718315\pi\)
−0.633336 + 0.773877i \(0.718315\pi\)
\(360\) 0 0
\(361\) −17.0000 −0.894737
\(362\) 0 0
\(363\) −5.00000 + 5.00000i −0.262432 + 0.262432i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −11.0000 + 11.0000i −0.574195 + 0.574195i −0.933298 0.359103i \(-0.883083\pi\)
0.359103 + 0.933298i \(0.383083\pi\)
\(368\) 0 0
\(369\) 6.00000i 0.312348i
\(370\) 0 0
\(371\) 10.0000 0.519174
\(372\) 0 0
\(373\) −3.00000 3.00000i −0.155334 0.155334i 0.625161 0.780496i \(-0.285033\pi\)
−0.780496 + 0.625161i \(0.785033\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 6.00000 + 6.00000i 0.309016 + 0.309016i
\(378\) 0 0
\(379\) 18.0000i 0.924598i 0.886724 + 0.462299i \(0.152975\pi\)
−0.886724 + 0.462299i \(0.847025\pi\)
\(380\) 0 0
\(381\) 10.0000i 0.512316i
\(382\) 0 0
\(383\) −21.0000 21.0000i −1.07305 1.07305i −0.997113 0.0759373i \(-0.975805\pi\)
−0.0759373 0.997113i \(-0.524195\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 3.00000 + 3.00000i 0.152499 + 0.152499i
\(388\) 0 0
\(389\) 26.0000 1.31825 0.659126 0.752032i \(-0.270926\pi\)
0.659126 + 0.752032i \(0.270926\pi\)
\(390\) 0 0
\(391\) 18.0000i 0.910299i
\(392\) 0 0
\(393\) −4.00000 + 4.00000i −0.201773 + 0.201773i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 9.00000 9.00000i 0.451697 0.451697i −0.444220 0.895918i \(-0.646519\pi\)
0.895918 + 0.444220i \(0.146519\pi\)
\(398\) 0 0
\(399\) 12.0000 0.600751
\(400\) 0 0
\(401\) −30.0000 −1.49813 −0.749064 0.662497i \(-0.769497\pi\)
−0.749064 + 0.662497i \(0.769497\pi\)
\(402\) 0 0
\(403\) −18.0000 + 18.0000i −0.896644 + 0.896644i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −12.0000 + 12.0000i −0.594818 + 0.594818i
\(408\) 0 0
\(409\) 12.0000i 0.593362i −0.954977 0.296681i \(-0.904120\pi\)
0.954977 0.296681i \(-0.0958798\pi\)
\(410\) 0 0
\(411\) −6.00000 −0.295958
\(412\) 0 0
\(413\) 10.0000 + 10.0000i 0.492068 + 0.492068i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 6.00000 + 6.00000i 0.293821 + 0.293821i
\(418\) 0 0
\(419\) 10.0000i 0.488532i 0.969708 + 0.244266i \(0.0785470\pi\)
−0.969708 + 0.244266i \(0.921453\pi\)
\(420\) 0 0
\(421\) 12.0000i 0.584844i 0.956289 + 0.292422i \(0.0944612\pi\)
−0.956289 + 0.292422i \(0.905539\pi\)
\(422\) 0 0
\(423\) 9.00000 + 9.00000i 0.437595 + 0.437595i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −12.0000 12.0000i −0.580721 0.580721i
\(428\) 0 0
\(429\) 24.0000 1.15873
\(430\) 0 0
\(431\) 30.0000i 1.44505i −0.691345 0.722525i \(-0.742982\pi\)
0.691345 0.722525i \(-0.257018\pi\)
\(432\) 0 0
\(433\) 7.00000 7.00000i 0.336399 0.336399i −0.518611 0.855010i \(-0.673551\pi\)
0.855010 + 0.518611i \(0.173551\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 18.0000 18.0000i 0.861057 0.861057i
\(438\) 0 0
\(439\) 8.00000 0.381819 0.190910 0.981608i \(-0.438856\pi\)
0.190910 + 0.981608i \(0.438856\pi\)
\(440\) 0 0
\(441\) −5.00000 −0.238095
\(442\) 0 0
\(443\) −25.0000 + 25.0000i −1.18779 + 1.18779i −0.210108 + 0.977678i \(0.567381\pi\)
−0.977678 + 0.210108i \(0.932619\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −2.00000 + 2.00000i −0.0945968 + 0.0945968i
\(448\) 0 0
\(449\) 12.0000i 0.566315i 0.959073 + 0.283158i \(0.0913819\pi\)
−0.959073 + 0.283158i \(0.908618\pi\)
\(450\) 0 0
\(451\) 24.0000 1.13012
\(452\) 0 0
\(453\) −10.0000 10.0000i −0.469841 0.469841i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −17.0000 17.0000i −0.795226 0.795226i 0.187112 0.982339i \(-0.440087\pi\)
−0.982339 + 0.187112i \(0.940087\pi\)
\(458\) 0 0
\(459\) 24.0000i 1.12022i
\(460\) 0 0
\(461\) 40.0000i 1.86299i 0.363760 + 0.931493i \(0.381493\pi\)
−0.363760 + 0.931493i \(0.618507\pi\)
\(462\) 0 0
\(463\) −1.00000 1.00000i −0.0464739 0.0464739i 0.683488 0.729962i \(-0.260462\pi\)
−0.729962 + 0.683488i \(0.760462\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 21.0000 + 21.0000i 0.971764 + 0.971764i 0.999612 0.0278481i \(-0.00886546\pi\)
−0.0278481 + 0.999612i \(0.508865\pi\)
\(468\) 0 0
\(469\) 18.0000 0.831163
\(470\) 0 0
\(471\) 6.00000i 0.276465i
\(472\) 0 0
\(473\) 12.0000 12.0000i 0.551761 0.551761i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −5.00000 + 5.00000i −0.228934 + 0.228934i
\(478\) 0 0
\(479\) −24.0000 −1.09659 −0.548294 0.836286i \(-0.684723\pi\)
−0.548294 + 0.836286i \(0.684723\pi\)
\(480\) 0 0
\(481\) 18.0000 0.820729
\(482\) 0 0
\(483\) −6.00000 + 6.00000i −0.273009 + 0.273009i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 1.00000 1.00000i 0.0453143 0.0453143i −0.684087 0.729401i \(-0.739799\pi\)
0.729401 + 0.684087i \(0.239799\pi\)
\(488\) 0 0
\(489\) 18.0000i 0.813988i
\(490\) 0 0
\(491\) 20.0000 0.902587 0.451294 0.892375i \(-0.350963\pi\)
0.451294 + 0.892375i \(0.350963\pi\)
\(492\) 0 0
\(493\) −6.00000 6.00000i −0.270226 0.270226i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −6.00000 6.00000i −0.269137 0.269137i
\(498\) 0 0
\(499\) 6.00000i 0.268597i −0.990941 0.134298i \(-0.957122\pi\)
0.990941 0.134298i \(-0.0428781\pi\)
\(500\) 0 0
\(501\) 6.00000i 0.268060i
\(502\) 0 0
\(503\) −21.0000 21.0000i −0.936344 0.936344i 0.0617480 0.998092i \(-0.480332\pi\)
−0.998092 + 0.0617480i \(0.980332\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −5.00000 5.00000i −0.222058 0.222058i
\(508\) 0 0
\(509\) 14.0000 0.620539 0.310270 0.950649i \(-0.399581\pi\)
0.310270 + 0.950649i \(0.399581\pi\)
\(510\) 0 0
\(511\) 10.0000i 0.442374i
\(512\) 0 0
\(513\) −24.0000 + 24.0000i −1.05963 + 1.05963i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 36.0000 36.0000i 1.58328 1.58328i
\(518\) 0 0
\(519\) 30.0000 1.31685
\(520\) 0 0
\(521\) 18.0000 0.788594 0.394297 0.918983i \(-0.370988\pi\)
0.394297 + 0.918983i \(0.370988\pi\)
\(522\) 0 0
\(523\) 15.0000 15.0000i 0.655904 0.655904i −0.298504 0.954408i \(-0.596488\pi\)
0.954408 + 0.298504i \(0.0964877\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 18.0000 18.0000i 0.784092 0.784092i
\(528\) 0 0
\(529\) 5.00000i 0.217391i
\(530\) 0 0
\(531\) −10.0000 −0.433963
\(532\) 0 0
\(533\) −18.0000 18.0000i −0.779667 0.779667i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −2.00000 2.00000i −0.0863064 0.0863064i
\(538\) 0 0
\(539\) 20.0000i 0.861461i
\(540\) 0 0
\(541\) 24.0000i 1.03184i 0.856637 + 0.515920i \(0.172550\pi\)
−0.856637 + 0.515920i \(0.827450\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −3.00000 3.00000i −0.128271 0.128271i 0.640057 0.768328i \(-0.278911\pi\)
−0.768328 + 0.640057i \(0.778911\pi\)
\(548\) 0 0
\(549\) 12.0000 0.512148
\(550\) 0 0
\(551\) 12.0000i 0.511217i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −31.0000 + 31.0000i −1.31351 + 1.31351i −0.394704 + 0.918808i \(0.629153\pi\)
−0.918808 + 0.394704i \(0.870847\pi\)
\(558\) 0 0
\(559\) −18.0000 −0.761319
\(560\) 0 0
\(561\) −24.0000 −1.01328
\(562\) 0 0
\(563\) −1.00000 + 1.00000i −0.0421450 + 0.0421450i −0.727865 0.685720i \(-0.759487\pi\)
0.685720 + 0.727865i \(0.259487\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 5.00000 5.00000i 0.209980 0.209980i
\(568\) 0 0
\(569\) 12.0000i 0.503066i 0.967849 + 0.251533i \(0.0809347\pi\)
−0.967849 + 0.251533i \(0.919065\pi\)
\(570\) 0 0
\(571\) −12.0000 −0.502184 −0.251092 0.967963i \(-0.580790\pi\)
−0.251092 + 0.967963i \(0.580790\pi\)
\(572\) 0 0
\(573\) 6.00000 + 6.00000i 0.250654 + 0.250654i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 19.0000 + 19.0000i 0.790980 + 0.790980i 0.981654 0.190673i \(-0.0610671\pi\)
−0.190673 + 0.981654i \(0.561067\pi\)
\(578\) 0 0
\(579\) 10.0000i 0.415586i
\(580\) 0 0
\(581\) 6.00000i 0.248922i
\(582\) 0 0
\(583\) 20.0000 + 20.0000i 0.828315 + 0.828315i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −15.0000 15.0000i −0.619116 0.619116i 0.326188 0.945305i \(-0.394236\pi\)
−0.945305 + 0.326188i \(0.894236\pi\)
\(588\) 0 0
\(589\) −36.0000 −1.48335
\(590\) 0 0
\(591\) 10.0000i 0.411345i
\(592\) 0 0
\(593\) 15.0000 15.0000i 0.615976 0.615976i −0.328521 0.944497i \(-0.606550\pi\)
0.944497 + 0.328521i \(0.106550\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −16.0000 + 16.0000i −0.654836 + 0.654836i
\(598\) 0 0
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 0 0
\(601\) −10.0000 −0.407909 −0.203954 0.978980i \(-0.565379\pi\)
−0.203954 + 0.978980i \(0.565379\pi\)
\(602\) 0 0
\(603\) −9.00000 + 9.00000i −0.366508 + 0.366508i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −7.00000 + 7.00000i −0.284121 + 0.284121i −0.834750 0.550629i \(-0.814388\pi\)
0.550629 + 0.834750i \(0.314388\pi\)
\(608\) 0 0
\(609\) 4.00000i 0.162088i
\(610\) 0 0
\(611\) −54.0000 −2.18461
\(612\) 0 0
\(613\) 9.00000 + 9.00000i 0.363507 + 0.363507i 0.865102 0.501596i \(-0.167253\pi\)
−0.501596 + 0.865102i \(0.667253\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 15.0000 + 15.0000i 0.603877 + 0.603877i 0.941339 0.337462i \(-0.109568\pi\)
−0.337462 + 0.941339i \(0.609568\pi\)
\(618\) 0 0
\(619\) 42.0000i 1.68812i 0.536247 + 0.844061i \(0.319842\pi\)
−0.536247 + 0.844061i \(0.680158\pi\)
\(620\) 0 0
\(621\) 24.0000i 0.963087i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 24.0000 + 24.0000i 0.958468 + 0.958468i
\(628\) 0 0
\(629\) −18.0000 −0.717707
\(630\) 0 0
\(631\) 30.0000i 1.19428i −0.802137 0.597141i \(-0.796303\pi\)
0.802137 0.597141i \(-0.203697\pi\)
\(632\) 0 0
\(633\) −12.0000 + 12.0000i −0.476957 + 0.476957i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 15.0000 15.0000i 0.594322 0.594322i
\(638\) 0 0
\(639\) 6.00000 0.237356
\(640\) 0 0
\(641\) 30.0000 1.18493 0.592464 0.805597i \(-0.298155\pi\)
0.592464 + 0.805597i \(0.298155\pi\)
\(642\) 0 0
\(643\) 3.00000 3.00000i 0.118308 0.118308i −0.645474 0.763782i \(-0.723340\pi\)
0.763782 + 0.645474i \(0.223340\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 9.00000 9.00000i 0.353827 0.353827i −0.507705 0.861531i \(-0.669506\pi\)
0.861531 + 0.507705i \(0.169506\pi\)
\(648\) 0 0
\(649\) 40.0000i 1.57014i
\(650\) 0 0
\(651\) 12.0000 0.470317
\(652\) 0 0
\(653\) 33.0000 + 33.0000i 1.29139 + 1.29139i 0.933928 + 0.357462i \(0.116358\pi\)
0.357462 + 0.933928i \(0.383642\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −5.00000 5.00000i −0.195069 0.195069i
\(658\) 0 0
\(659\) 22.0000i 0.856998i −0.903542 0.428499i \(-0.859042\pi\)
0.903542 0.428499i \(-0.140958\pi\)
\(660\) 0 0
\(661\) 12.0000i 0.466746i −0.972387 0.233373i \(-0.925024\pi\)
0.972387 0.233373i \(-0.0749763\pi\)
\(662\) 0 0
\(663\) 18.0000 + 18.0000i 0.699062 + 0.699062i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −6.00000 6.00000i −0.232321 0.232321i
\(668\) 0 0
\(669\) 26.0000 1.00522
\(670\) 0 0
\(671\) 48.0000i 1.85302i
\(672\) 0 0
\(673\) −25.0000 + 25.0000i −0.963679 + 0.963679i −0.999363 0.0356839i \(-0.988639\pi\)
0.0356839 + 0.999363i \(0.488639\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −27.0000 + 27.0000i −1.03769 + 1.03769i −0.0384331 + 0.999261i \(0.512237\pi\)
−0.999261 + 0.0384331i \(0.987763\pi\)
\(678\) 0 0
\(679\) 14.0000 0.537271
\(680\) 0 0
\(681\) 22.0000 0.843042
\(682\) 0 0
\(683\) 27.0000 27.0000i 1.03313 1.03313i 0.0336941 0.999432i \(-0.489273\pi\)
0.999432 0.0336941i \(-0.0107272\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −6.00000 + 6.00000i −0.228914 + 0.228914i
\(688\) 0 0
\(689\) 30.0000i 1.14291i
\(690\) 0 0
\(691\) 12.0000 0.456502 0.228251 0.973602i \(-0.426699\pi\)
0.228251 + 0.973602i \(0.426699\pi\)
\(692\) 0 0
\(693\) 4.00000 + 4.00000i 0.151947 + 0.151947i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 18.0000 + 18.0000i 0.681799 + 0.681799i
\(698\) 0 0
\(699\) 30.0000i 1.13470i
\(700\) 0 0
\(701\) 20.0000i 0.755390i −0.925930 0.377695i \(-0.876717\pi\)
0.925930 0.377695i \(-0.123283\pi\)
\(702\) 0 0
\(703\) 18.0000 + 18.0000i 0.678883 + 0.678883i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 8.00000 + 8.00000i 0.300871 + 0.300871i
\(708\) 0 0
\(709\) −42.0000 −1.57734 −0.788672 0.614815i \(-0.789231\pi\)
−0.788672 + 0.614815i \(0.789231\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 18.0000 18.0000i 0.674105 0.674105i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 24.0000 24.0000i 0.896296 0.896296i
\(718\) 0 0
\(719\) 24.0000 0.895049 0.447524 0.894272i \(-0.352306\pi\)
0.447524 + 0.894272i \(0.352306\pi\)
\(720\) 0 0
\(721\) 22.0000 0.819323
\(722\) 0 0
\(723\) 18.0000 18.0000i 0.669427 0.669427i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 25.0000 25.0000i 0.927199 0.927199i −0.0703254 0.997524i \(-0.522404\pi\)
0.997524 + 0.0703254i \(0.0224038\pi\)
\(728\) 0 0
\(729\) 29.0000i 1.07407i
\(730\) 0 0
\(731\) 18.0000 0.665754
\(732\) 0 0
\(733\) −15.0000 15.0000i −0.554038 0.554038i 0.373566 0.927604i \(-0.378135\pi\)
−0.927604 + 0.373566i \(0.878135\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 36.0000 + 36.0000i 1.32608 + 1.32608i
\(738\) 0 0
\(739\) 30.0000i 1.10357i −0.833987 0.551784i \(-0.813947\pi\)
0.833987 0.551784i \(-0.186053\pi\)
\(740\) 0 0
\(741\) 36.0000i 1.32249i
\(742\) 0 0
\(743\) −9.00000 9.00000i −0.330178 0.330178i 0.522476 0.852654i \(-0.325008\pi\)
−0.852654 + 0.522476i \(0.825008\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 3.00000 + 3.00000i 0.109764 + 0.109764i
\(748\) 0 0
\(749\) −6.00000 −0.219235
\(750\) 0 0
\(751\) 42.0000i 1.53260i 0.642482 + 0.766301i \(0.277905\pi\)
−0.642482 + 0.766301i \(0.722095\pi\)
\(752\) 0 0
\(753\) 4.00000 4.00000i 0.145768 0.145768i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 9.00000 9.00000i 0.327111 0.327111i −0.524376 0.851487i \(-0.675701\pi\)
0.851487 + 0.524376i \(0.175701\pi\)
\(758\) 0 0
\(759\) −24.0000 −0.871145
\(760\) 0 0
\(761\) 18.0000 0.652499 0.326250 0.945284i \(-0.394215\pi\)
0.326250 + 0.945284i \(0.394215\pi\)
\(762\) 0 0
\(763\) 18.0000 18.0000i 0.651644 0.651644i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 30.0000 30.0000i 1.08324 1.08324i
\(768\) 0 0
\(769\) 40.0000i 1.44244i 0.692708 + 0.721218i \(0.256418\pi\)
−0.692708 + 0.721218i \(0.743582\pi\)
\(770\) 0 0
\(771\) −6.00000 −0.216085
\(772\) 0 0
\(773\) 9.00000 + 9.00000i 0.323708 + 0.323708i 0.850188 0.526480i \(-0.176489\pi\)
−0.526480 + 0.850188i \(0.676489\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −6.00000 6.00000i −0.215249 0.215249i
\(778\) 0 0
\(779\) 36.0000i 1.28983i
\(780\) 0 0
\(781\) 24.0000i 0.858788i
\(782\) 0 0
\(783\) 8.00000 + 8.00000i 0.285897 + 0.285897i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −15.0000 15.0000i −0.534692 0.534692i 0.387273 0.921965i \(-0.373417\pi\)
−0.921965 + 0.387273i \(0.873417\pi\)
\(788\) 0 0
\(789\) 18.0000 0.640817
\(790\) 0 0
\(791\) 6.00000i 0.213335i
\(792\) 0 0
\(793\) −36.0000 + 36.0000i −1.27840 + 1.27840i
\(794\) 0 0
\(795\) 0