Properties

Label 1600.2.o
Level $1600$
Weight $2$
Character orbit 1600.o
Rep. character $\chi_{1600}(543,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $72$
Newform subspaces $12$
Sturm bound $480$
Trace bound $39$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1600 = 2^{6} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1600.o (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 40 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 12 \)
Sturm bound: \(480\)
Trace bound: \(39\)
Distinguishing \(T_p\): \(3\), \(7\), \(79\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1600, [\chi])\).

Total New Old
Modular forms 552 72 480
Cusp forms 408 72 336
Eisenstein series 144 0 144

Trace form

\( 72 q + O(q^{10}) \) \( 72 q - 24 q^{17} + 24 q^{73} + 120 q^{81} + 120 q^{97} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(1600, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1600.2.o.a 1600.o 40.k $2$ $12.776$ \(\Q(\sqrt{-1}) \) None 320.2.o.a \(0\) \(-2\) \(0\) \(-2\) $\mathrm{SU}(2)[C_{4}]$ \(q+(i-1)q^{3}+(i-1)q^{7}+i q^{9}+4 q^{11}+\cdots\)
1600.2.o.b 1600.o 40.k $2$ $12.776$ \(\Q(\sqrt{-1}) \) None 320.2.o.a \(0\) \(-2\) \(0\) \(2\) $\mathrm{SU}(2)[C_{4}]$ \(q+(i-1)q^{3}+(-i+1)q^{7}+i q^{9}+\cdots\)
1600.2.o.c 1600.o 40.k $2$ $12.776$ \(\Q(\sqrt{-1}) \) None 320.2.o.a \(0\) \(2\) \(0\) \(-2\) $\mathrm{SU}(2)[C_{4}]$ \(q+(-i+1)q^{3}+(i-1)q^{7}+i q^{9}+\cdots\)
1600.2.o.d 1600.o 40.k $2$ $12.776$ \(\Q(\sqrt{-1}) \) None 320.2.o.a \(0\) \(2\) \(0\) \(2\) $\mathrm{SU}(2)[C_{4}]$ \(q+(-i+1)q^{3}+(-i+1)q^{7}+i q^{9}+\cdots\)
1600.2.o.e 1600.o 40.k $8$ $12.776$ 8.0.49787136.1 None 320.2.o.e \(0\) \(0\) \(0\) \(-4\) $\mathrm{SU}(2)[C_{4}]$ \(q-\beta _{2}q^{3}+(-\beta _{1}+\beta _{4})q^{7}+(2\beta _{1}+\beta _{4}+\cdots)q^{9}+\cdots\)
1600.2.o.f 1600.o 40.k $8$ $12.776$ 8.0.\(\cdots\).1 None 1600.2.o.f \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q+\beta _{7}q^{3}+2\beta _{6}q^{7}-4\beta _{3}q^{9}-\beta _{4}q^{11}+\cdots\)
1600.2.o.g 1600.o 40.k $8$ $12.776$ \(\Q(\zeta_{24})\) None 1600.2.o.g \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q+\beta_1 q^{3}+\beta_{2} q^{7}+\beta_{3} q^{9}-\beta_{7} q^{11}+\cdots\)
1600.2.o.h 1600.o 40.k $8$ $12.776$ \(\Q(\zeta_{24})\) None 1600.2.o.h \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q-\beta_{5} q^{3}+2\beta_{3} q^{9}-\beta_{6} q^{11}+4\beta_1 q^{13}+\cdots\)
1600.2.o.i 1600.o 40.k $8$ $12.776$ \(\Q(\zeta_{24})\) None 1600.2.o.h \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q-\beta_{5} q^{3}+2\beta_{3} q^{9}-\beta_{6} q^{11}-4\beta_1 q^{13}+\cdots\)
1600.2.o.j 1600.o 40.k $8$ $12.776$ \(\Q(\zeta_{24})\) None 1600.2.o.g \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q+\beta_1 q^{3}+\beta_{2} q^{7}+\beta_{3} q^{9}+\beta_{7} q^{11}+\cdots\)
1600.2.o.k 1600.o 40.k $8$ $12.776$ 8.0.\(\cdots\).1 None 1600.2.o.f \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q+\beta _{7}q^{3}-2\beta _{6}q^{7}-4\beta _{3}q^{9}-\beta _{4}q^{11}+\cdots\)
1600.2.o.l 1600.o 40.k $8$ $12.776$ 8.0.49787136.1 None 320.2.o.e \(0\) \(0\) \(0\) \(4\) $\mathrm{SU}(2)[C_{4}]$ \(q-\beta _{2}q^{3}+(\beta _{1}-\beta _{4})q^{7}+(2\beta _{1}+\beta _{4}+\cdots)q^{9}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(1600, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1600, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(40, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(160, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(200, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(320, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(800, [\chi])\)\(^{\oplus 2}\)