Properties

Label 1600.2.n.u
Level $1600$
Weight $2$
Character orbit 1600.n
Analytic conductor $12.776$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $8$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1600 = 2^{6} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1600.n (of order \(4\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(12.7760643234\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{24})\)
Defining polynomial: \(x^{8} - x^{4} + 1\)
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 400)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{24}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( \zeta_{24} - \zeta_{24}^{5} ) q^{3} -4 \zeta_{24}^{3} q^{7} + 2 \zeta_{24}^{6} q^{9} +O(q^{10})\) \( q + ( \zeta_{24} - \zeta_{24}^{5} ) q^{3} -4 \zeta_{24}^{3} q^{7} + 2 \zeta_{24}^{6} q^{9} + ( -3 + 6 \zeta_{24}^{4} ) q^{11} + ( 2 \zeta_{24} + 2 \zeta_{24}^{5} ) q^{13} + ( 3 \zeta_{24}^{3} - 6 \zeta_{24}^{7} ) q^{17} + ( -2 \zeta_{24}^{2} + \zeta_{24}^{6} ) q^{19} -4 q^{21} + ( -6 \zeta_{24} + 6 \zeta_{24}^{5} ) q^{23} + 5 \zeta_{24}^{3} q^{27} + 6 \zeta_{24}^{6} q^{29} + ( 2 - 4 \zeta_{24}^{4} ) q^{31} + ( 3 \zeta_{24} + 3 \zeta_{24}^{5} ) q^{33} + ( 4 \zeta_{24}^{2} - 2 \zeta_{24}^{6} ) q^{39} -3 q^{41} + ( -4 \zeta_{24} + 4 \zeta_{24}^{5} ) q^{43} + 6 \zeta_{24}^{3} q^{47} + 9 \zeta_{24}^{6} q^{49} + ( 3 - 6 \zeta_{24}^{4} ) q^{51} + ( 6 \zeta_{24} + 6 \zeta_{24}^{5} ) q^{53} + ( -\zeta_{24}^{3} + 2 \zeta_{24}^{7} ) q^{57} + ( 12 \zeta_{24}^{2} - 6 \zeta_{24}^{6} ) q^{59} + 4 q^{61} + ( 8 \zeta_{24} - 8 \zeta_{24}^{5} ) q^{63} -7 \zeta_{24}^{3} q^{67} + 6 \zeta_{24}^{6} q^{69} + ( -6 + 12 \zeta_{24}^{4} ) q^{71} + ( 9 \zeta_{24} + 9 \zeta_{24}^{5} ) q^{73} + ( 12 \zeta_{24}^{3} - 24 \zeta_{24}^{7} ) q^{77} - q^{81} + ( 3 \zeta_{24} - 3 \zeta_{24}^{5} ) q^{83} + 6 \zeta_{24}^{3} q^{87} + 3 \zeta_{24}^{6} q^{89} + ( 8 - 16 \zeta_{24}^{4} ) q^{91} + ( -2 \zeta_{24} - 2 \zeta_{24}^{5} ) q^{93} + ( 4 \zeta_{24}^{3} - 8 \zeta_{24}^{7} ) q^{97} + ( -12 \zeta_{24}^{2} + 6 \zeta_{24}^{6} ) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8q + O(q^{10}) \) \( 8q - 32q^{21} - 24q^{41} + 32q^{61} - 8q^{81} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1600\mathbb{Z}\right)^\times\).

\(n\) \(577\) \(901\) \(1151\)
\(\chi(n)\) \(-\zeta_{24}^{3}\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1343.1
0.258819 + 0.965926i
−0.965926 0.258819i
−0.258819 0.965926i
0.965926 + 0.258819i
−0.965926 + 0.258819i
0.258819 0.965926i
0.965926 0.258819i
−0.258819 + 0.965926i
0 −0.707107 + 0.707107i 0 0 0 2.82843 + 2.82843i 0 2.00000i 0
1343.2 0 −0.707107 + 0.707107i 0 0 0 2.82843 + 2.82843i 0 2.00000i 0
1343.3 0 0.707107 0.707107i 0 0 0 −2.82843 2.82843i 0 2.00000i 0
1343.4 0 0.707107 0.707107i 0 0 0 −2.82843 2.82843i 0 2.00000i 0
1407.1 0 −0.707107 0.707107i 0 0 0 2.82843 2.82843i 0 2.00000i 0
1407.2 0 −0.707107 0.707107i 0 0 0 2.82843 2.82843i 0 2.00000i 0
1407.3 0 0.707107 + 0.707107i 0 0 0 −2.82843 + 2.82843i 0 2.00000i 0
1407.4 0 0.707107 + 0.707107i 0 0 0 −2.82843 + 2.82843i 0 2.00000i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1407.4
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner
5.b even 2 1 inner
5.c odd 4 2 inner
20.d odd 2 1 inner
20.e even 4 2 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1600.2.n.u 8
4.b odd 2 1 inner 1600.2.n.u 8
5.b even 2 1 inner 1600.2.n.u 8
5.c odd 4 2 inner 1600.2.n.u 8
8.b even 2 1 400.2.n.d 8
8.d odd 2 1 400.2.n.d 8
20.d odd 2 1 inner 1600.2.n.u 8
20.e even 4 2 inner 1600.2.n.u 8
24.f even 2 1 3600.2.x.m 8
24.h odd 2 1 3600.2.x.m 8
40.e odd 2 1 400.2.n.d 8
40.f even 2 1 400.2.n.d 8
40.i odd 4 2 400.2.n.d 8
40.k even 4 2 400.2.n.d 8
120.i odd 2 1 3600.2.x.m 8
120.m even 2 1 3600.2.x.m 8
120.q odd 4 2 3600.2.x.m 8
120.w even 4 2 3600.2.x.m 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
400.2.n.d 8 8.b even 2 1
400.2.n.d 8 8.d odd 2 1
400.2.n.d 8 40.e odd 2 1
400.2.n.d 8 40.f even 2 1
400.2.n.d 8 40.i odd 4 2
400.2.n.d 8 40.k even 4 2
1600.2.n.u 8 1.a even 1 1 trivial
1600.2.n.u 8 4.b odd 2 1 inner
1600.2.n.u 8 5.b even 2 1 inner
1600.2.n.u 8 5.c odd 4 2 inner
1600.2.n.u 8 20.d odd 2 1 inner
1600.2.n.u 8 20.e even 4 2 inner
3600.2.x.m 8 24.f even 2 1
3600.2.x.m 8 24.h odd 2 1
3600.2.x.m 8 120.i odd 2 1
3600.2.x.m 8 120.m even 2 1
3600.2.x.m 8 120.q odd 4 2
3600.2.x.m 8 120.w even 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1600, [\chi])\):

\( T_{3}^{4} + 1 \)
\( T_{7}^{4} + 256 \)
\( T_{11}^{2} + 27 \)
\( T_{13}^{4} + 144 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} \)
$3$ \( ( 1 + T^{4} )^{2} \)
$5$ \( T^{8} \)
$7$ \( ( 256 + T^{4} )^{2} \)
$11$ \( ( 27 + T^{2} )^{4} \)
$13$ \( ( 144 + T^{4} )^{2} \)
$17$ \( ( 729 + T^{4} )^{2} \)
$19$ \( ( -3 + T^{2} )^{4} \)
$23$ \( ( 1296 + T^{4} )^{2} \)
$29$ \( ( 36 + T^{2} )^{4} \)
$31$ \( ( 12 + T^{2} )^{4} \)
$37$ \( T^{8} \)
$41$ \( ( 3 + T )^{8} \)
$43$ \( ( 256 + T^{4} )^{2} \)
$47$ \( ( 1296 + T^{4} )^{2} \)
$53$ \( ( 11664 + T^{4} )^{2} \)
$59$ \( ( -108 + T^{2} )^{4} \)
$61$ \( ( -4 + T )^{8} \)
$67$ \( ( 2401 + T^{4} )^{2} \)
$71$ \( ( 108 + T^{2} )^{4} \)
$73$ \( ( 59049 + T^{4} )^{2} \)
$79$ \( T^{8} \)
$83$ \( ( 81 + T^{4} )^{2} \)
$89$ \( ( 9 + T^{2} )^{4} \)
$97$ \( ( 2304 + T^{4} )^{2} \)
show more
show less