Properties

Label 1600.2.n.c.1407.1
Level $1600$
Weight $2$
Character 1600.1407
Analytic conductor $12.776$
Analytic rank $1$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1600,2,Mod(1343,1600)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1600, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 0, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1600.1343");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1600 = 2^{6} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1600.n (of order \(4\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.7760643234\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 160)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 1407.1
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 1600.1407
Dual form 1600.2.n.c.1343.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.00000 - 1.00000i) q^{3} +(-3.00000 + 3.00000i) q^{7} -1.00000i q^{9} +O(q^{10})\) \(q+(-1.00000 - 1.00000i) q^{3} +(-3.00000 + 3.00000i) q^{7} -1.00000i q^{9} -2.00000i q^{11} +(3.00000 - 3.00000i) q^{13} +(-1.00000 - 1.00000i) q^{17} +4.00000 q^{19} +6.00000 q^{21} +(-1.00000 - 1.00000i) q^{23} +(-4.00000 + 4.00000i) q^{27} +10.0000i q^{31} +(-2.00000 + 2.00000i) q^{33} +(-1.00000 - 1.00000i) q^{37} -6.00000 q^{39} -10.0000 q^{41} +(-5.00000 - 5.00000i) q^{43} +(-3.00000 + 3.00000i) q^{47} -11.0000i q^{49} +2.00000i q^{51} +(-5.00000 + 5.00000i) q^{53} +(-4.00000 - 4.00000i) q^{57} -12.0000 q^{59} -2.00000 q^{61} +(3.00000 + 3.00000i) q^{63} +(1.00000 - 1.00000i) q^{67} +2.00000i q^{69} +2.00000i q^{71} +(-1.00000 + 1.00000i) q^{73} +(6.00000 + 6.00000i) q^{77} -8.00000 q^{79} +5.00000 q^{81} +(-5.00000 - 5.00000i) q^{83} +16.0000i q^{89} +18.0000i q^{91} +(10.0000 - 10.0000i) q^{93} +(3.00000 + 3.00000i) q^{97} -2.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{3} - 6 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 2 q^{3} - 6 q^{7} + 6 q^{13} - 2 q^{17} + 8 q^{19} + 12 q^{21} - 2 q^{23} - 8 q^{27} - 4 q^{33} - 2 q^{37} - 12 q^{39} - 20 q^{41} - 10 q^{43} - 6 q^{47} - 10 q^{53} - 8 q^{57} - 24 q^{59} - 4 q^{61} + 6 q^{63} + 2 q^{67} - 2 q^{73} + 12 q^{77} - 16 q^{79} + 10 q^{81} - 10 q^{83} + 20 q^{93} + 6 q^{97} - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1600\mathbb{Z}\right)^\times\).

\(n\) \(577\) \(901\) \(1151\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
<
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.00000 1.00000i −0.577350 0.577350i 0.356822 0.934172i \(-0.383860\pi\)
−0.934172 + 0.356822i \(0.883860\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −3.00000 + 3.00000i −1.13389 + 1.13389i −0.144370 + 0.989524i \(0.546115\pi\)
−0.989524 + 0.144370i \(0.953885\pi\)
\(8\) 0 0
\(9\) 1.00000i 0.333333i
\(10\) 0 0
\(11\) 2.00000i 0.603023i −0.953463 0.301511i \(-0.902509\pi\)
0.953463 0.301511i \(-0.0974911\pi\)
\(12\) 0 0
\(13\) 3.00000 3.00000i 0.832050 0.832050i −0.155747 0.987797i \(-0.549778\pi\)
0.987797 + 0.155747i \(0.0497784\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −1.00000 1.00000i −0.242536 0.242536i 0.575363 0.817898i \(-0.304861\pi\)
−0.817898 + 0.575363i \(0.804861\pi\)
\(18\) 0 0
\(19\) 4.00000 0.917663 0.458831 0.888523i \(-0.348268\pi\)
0.458831 + 0.888523i \(0.348268\pi\)
\(20\) 0 0
\(21\) 6.00000 1.30931
\(22\) 0 0
\(23\) −1.00000 1.00000i −0.208514 0.208514i 0.595121 0.803636i \(-0.297104\pi\)
−0.803636 + 0.595121i \(0.797104\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) −4.00000 + 4.00000i −0.769800 + 0.769800i
\(28\) 0 0
\(29\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(30\) 0 0
\(31\) 10.0000i 1.79605i 0.439941 + 0.898027i \(0.354999\pi\)
−0.439941 + 0.898027i \(0.645001\pi\)
\(32\) 0 0
\(33\) −2.00000 + 2.00000i −0.348155 + 0.348155i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −1.00000 1.00000i −0.164399 0.164399i 0.620113 0.784512i \(-0.287087\pi\)
−0.784512 + 0.620113i \(0.787087\pi\)
\(38\) 0 0
\(39\) −6.00000 −0.960769
\(40\) 0 0
\(41\) −10.0000 −1.56174 −0.780869 0.624695i \(-0.785223\pi\)
−0.780869 + 0.624695i \(0.785223\pi\)
\(42\) 0 0
\(43\) −5.00000 5.00000i −0.762493 0.762493i 0.214280 0.976772i \(-0.431260\pi\)
−0.976772 + 0.214280i \(0.931260\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −3.00000 + 3.00000i −0.437595 + 0.437595i −0.891202 0.453607i \(-0.850137\pi\)
0.453607 + 0.891202i \(0.350137\pi\)
\(48\) 0 0
\(49\) 11.0000i 1.57143i
\(50\) 0 0
\(51\) 2.00000i 0.280056i
\(52\) 0 0
\(53\) −5.00000 + 5.00000i −0.686803 + 0.686803i −0.961524 0.274721i \(-0.911414\pi\)
0.274721 + 0.961524i \(0.411414\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −4.00000 4.00000i −0.529813 0.529813i
\(58\) 0 0
\(59\) −12.0000 −1.56227 −0.781133 0.624364i \(-0.785358\pi\)
−0.781133 + 0.624364i \(0.785358\pi\)
\(60\) 0 0
\(61\) −2.00000 −0.256074 −0.128037 0.991769i \(-0.540868\pi\)
−0.128037 + 0.991769i \(0.540868\pi\)
\(62\) 0 0
\(63\) 3.00000 + 3.00000i 0.377964 + 0.377964i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 1.00000 1.00000i 0.122169 0.122169i −0.643379 0.765548i \(-0.722468\pi\)
0.765548 + 0.643379i \(0.222468\pi\)
\(68\) 0 0
\(69\) 2.00000i 0.240772i
\(70\) 0 0
\(71\) 2.00000i 0.237356i 0.992933 + 0.118678i \(0.0378657\pi\)
−0.992933 + 0.118678i \(0.962134\pi\)
\(72\) 0 0
\(73\) −1.00000 + 1.00000i −0.117041 + 0.117041i −0.763202 0.646160i \(-0.776374\pi\)
0.646160 + 0.763202i \(0.276374\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 6.00000 + 6.00000i 0.683763 + 0.683763i
\(78\) 0 0
\(79\) −8.00000 −0.900070 −0.450035 0.893011i \(-0.648589\pi\)
−0.450035 + 0.893011i \(0.648589\pi\)
\(80\) 0 0
\(81\) 5.00000 0.555556
\(82\) 0 0
\(83\) −5.00000 5.00000i −0.548821 0.548821i 0.377279 0.926100i \(-0.376860\pi\)
−0.926100 + 0.377279i \(0.876860\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 16.0000i 1.69600i 0.529999 + 0.847998i \(0.322192\pi\)
−0.529999 + 0.847998i \(0.677808\pi\)
\(90\) 0 0
\(91\) 18.0000i 1.88691i
\(92\) 0 0
\(93\) 10.0000 10.0000i 1.03695 1.03695i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 3.00000 + 3.00000i 0.304604 + 0.304604i 0.842812 0.538208i \(-0.180899\pi\)
−0.538208 + 0.842812i \(0.680899\pi\)
\(98\) 0 0
\(99\) −2.00000 −0.201008
\(100\) 0 0
\(101\) −6.00000 −0.597022 −0.298511 0.954406i \(-0.596490\pi\)
−0.298511 + 0.954406i \(0.596490\pi\)
\(102\) 0 0
\(103\) −9.00000 9.00000i −0.886796 0.886796i 0.107418 0.994214i \(-0.465742\pi\)
−0.994214 + 0.107418i \(0.965742\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −3.00000 + 3.00000i −0.290021 + 0.290021i −0.837088 0.547068i \(-0.815744\pi\)
0.547068 + 0.837088i \(0.315744\pi\)
\(108\) 0 0
\(109\) 4.00000i 0.383131i 0.981480 + 0.191565i \(0.0613564\pi\)
−0.981480 + 0.191565i \(0.938644\pi\)
\(110\) 0 0
\(111\) 2.00000i 0.189832i
\(112\) 0 0
\(113\) 3.00000 3.00000i 0.282216 0.282216i −0.551776 0.833992i \(-0.686050\pi\)
0.833992 + 0.551776i \(0.186050\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −3.00000 3.00000i −0.277350 0.277350i
\(118\) 0 0
\(119\) 6.00000 0.550019
\(120\) 0 0
\(121\) 7.00000 0.636364
\(122\) 0 0
\(123\) 10.0000 + 10.0000i 0.901670 + 0.901670i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −7.00000 + 7.00000i −0.621150 + 0.621150i −0.945825 0.324676i \(-0.894745\pi\)
0.324676 + 0.945825i \(0.394745\pi\)
\(128\) 0 0
\(129\) 10.0000i 0.880451i
\(130\) 0 0
\(131\) 10.0000i 0.873704i −0.899533 0.436852i \(-0.856093\pi\)
0.899533 0.436852i \(-0.143907\pi\)
\(132\) 0 0
\(133\) −12.0000 + 12.0000i −1.04053 + 1.04053i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 11.0000 + 11.0000i 0.939793 + 0.939793i 0.998288 0.0584943i \(-0.0186300\pi\)
−0.0584943 + 0.998288i \(0.518630\pi\)
\(138\) 0 0
\(139\) 12.0000 1.01783 0.508913 0.860818i \(-0.330047\pi\)
0.508913 + 0.860818i \(0.330047\pi\)
\(140\) 0 0
\(141\) 6.00000 0.505291
\(142\) 0 0
\(143\) −6.00000 6.00000i −0.501745 0.501745i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −11.0000 + 11.0000i −0.907265 + 0.907265i
\(148\) 0 0
\(149\) 4.00000i 0.327693i 0.986486 + 0.163846i \(0.0523901\pi\)
−0.986486 + 0.163846i \(0.947610\pi\)
\(150\) 0 0
\(151\) 6.00000i 0.488273i −0.969741 0.244137i \(-0.921495\pi\)
0.969741 0.244137i \(-0.0785045\pi\)
\(152\) 0 0
\(153\) −1.00000 + 1.00000i −0.0808452 + 0.0808452i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −1.00000 1.00000i −0.0798087 0.0798087i 0.666076 0.745884i \(-0.267973\pi\)
−0.745884 + 0.666076i \(0.767973\pi\)
\(158\) 0 0
\(159\) 10.0000 0.793052
\(160\) 0 0
\(161\) 6.00000 0.472866
\(162\) 0 0
\(163\) −1.00000 1.00000i −0.0783260 0.0783260i 0.666858 0.745184i \(-0.267639\pi\)
−0.745184 + 0.666858i \(0.767639\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 1.00000 1.00000i 0.0773823 0.0773823i −0.667356 0.744739i \(-0.732574\pi\)
0.744739 + 0.667356i \(0.232574\pi\)
\(168\) 0 0
\(169\) 5.00000i 0.384615i
\(170\) 0 0
\(171\) 4.00000i 0.305888i
\(172\) 0 0
\(173\) −5.00000 + 5.00000i −0.380143 + 0.380143i −0.871154 0.491011i \(-0.836628\pi\)
0.491011 + 0.871154i \(0.336628\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 12.0000 + 12.0000i 0.901975 + 0.901975i
\(178\) 0 0
\(179\) −12.0000 −0.896922 −0.448461 0.893802i \(-0.648028\pi\)
−0.448461 + 0.893802i \(0.648028\pi\)
\(180\) 0 0
\(181\) −22.0000 −1.63525 −0.817624 0.575753i \(-0.804709\pi\)
−0.817624 + 0.575753i \(0.804709\pi\)
\(182\) 0 0
\(183\) 2.00000 + 2.00000i 0.147844 + 0.147844i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −2.00000 + 2.00000i −0.146254 + 0.146254i
\(188\) 0 0
\(189\) 24.0000i 1.74574i
\(190\) 0 0
\(191\) 14.0000i 1.01300i −0.862239 0.506502i \(-0.830938\pi\)
0.862239 0.506502i \(-0.169062\pi\)
\(192\) 0 0
\(193\) 15.0000 15.0000i 1.07972 1.07972i 0.0831899 0.996534i \(-0.473489\pi\)
0.996534 0.0831899i \(-0.0265108\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −13.0000 13.0000i −0.926212 0.926212i 0.0712470 0.997459i \(-0.477302\pi\)
−0.997459 + 0.0712470i \(0.977302\pi\)
\(198\) 0 0
\(199\) 16.0000 1.13421 0.567105 0.823646i \(-0.308063\pi\)
0.567105 + 0.823646i \(0.308063\pi\)
\(200\) 0 0
\(201\) −2.00000 −0.141069
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −1.00000 + 1.00000i −0.0695048 + 0.0695048i
\(208\) 0 0
\(209\) 8.00000i 0.553372i
\(210\) 0 0
\(211\) 14.0000i 0.963800i 0.876226 + 0.481900i \(0.160053\pi\)
−0.876226 + 0.481900i \(0.839947\pi\)
\(212\) 0 0
\(213\) 2.00000 2.00000i 0.137038 0.137038i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −30.0000 30.0000i −2.03653 2.03653i
\(218\) 0 0
\(219\) 2.00000 0.135147
\(220\) 0 0
\(221\) −6.00000 −0.403604
\(222\) 0 0
\(223\) −1.00000 1.00000i −0.0669650 0.0669650i 0.672831 0.739796i \(-0.265078\pi\)
−0.739796 + 0.672831i \(0.765078\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 5.00000 5.00000i 0.331862 0.331862i −0.521431 0.853293i \(-0.674602\pi\)
0.853293 + 0.521431i \(0.174602\pi\)
\(228\) 0 0
\(229\) 8.00000i 0.528655i 0.964433 + 0.264327i \(0.0851500\pi\)
−0.964433 + 0.264327i \(0.914850\pi\)
\(230\) 0 0
\(231\) 12.0000i 0.789542i
\(232\) 0 0
\(233\) −21.0000 + 21.0000i −1.37576 + 1.37576i −0.524097 + 0.851658i \(0.675597\pi\)
−0.851658 + 0.524097i \(0.824403\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 8.00000 + 8.00000i 0.519656 + 0.519656i
\(238\) 0 0
\(239\) −16.0000 −1.03495 −0.517477 0.855697i \(-0.673129\pi\)
−0.517477 + 0.855697i \(0.673129\pi\)
\(240\) 0 0
\(241\) −2.00000 −0.128831 −0.0644157 0.997923i \(-0.520518\pi\)
−0.0644157 + 0.997923i \(0.520518\pi\)
\(242\) 0 0
\(243\) 7.00000 + 7.00000i 0.449050 + 0.449050i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 12.0000 12.0000i 0.763542 0.763542i
\(248\) 0 0
\(249\) 10.0000i 0.633724i
\(250\) 0 0
\(251\) 6.00000i 0.378717i 0.981908 + 0.189358i \(0.0606408\pi\)
−0.981908 + 0.189358i \(0.939359\pi\)
\(252\) 0 0
\(253\) −2.00000 + 2.00000i −0.125739 + 0.125739i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −5.00000 5.00000i −0.311891 0.311891i 0.533751 0.845642i \(-0.320782\pi\)
−0.845642 + 0.533751i \(0.820782\pi\)
\(258\) 0 0
\(259\) 6.00000 0.372822
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 11.0000 + 11.0000i 0.678289 + 0.678289i 0.959613 0.281324i \(-0.0907735\pi\)
−0.281324 + 0.959613i \(0.590774\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 16.0000 16.0000i 0.979184 0.979184i
\(268\) 0 0
\(269\) 20.0000i 1.21942i −0.792624 0.609711i \(-0.791286\pi\)
0.792624 0.609711i \(-0.208714\pi\)
\(270\) 0 0
\(271\) 14.0000i 0.850439i −0.905090 0.425220i \(-0.860197\pi\)
0.905090 0.425220i \(-0.139803\pi\)
\(272\) 0 0
\(273\) 18.0000 18.0000i 1.08941 1.08941i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 11.0000 + 11.0000i 0.660926 + 0.660926i 0.955598 0.294672i \(-0.0952105\pi\)
−0.294672 + 0.955598i \(0.595211\pi\)
\(278\) 0 0
\(279\) 10.0000 0.598684
\(280\) 0 0
\(281\) 6.00000 0.357930 0.178965 0.983855i \(-0.442725\pi\)
0.178965 + 0.983855i \(0.442725\pi\)
\(282\) 0 0
\(283\) 7.00000 + 7.00000i 0.416107 + 0.416107i 0.883859 0.467753i \(-0.154936\pi\)
−0.467753 + 0.883859i \(0.654936\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 30.0000 30.0000i 1.77084 1.77084i
\(288\) 0 0
\(289\) 15.0000i 0.882353i
\(290\) 0 0
\(291\) 6.00000i 0.351726i
\(292\) 0 0
\(293\) 11.0000 11.0000i 0.642627 0.642627i −0.308574 0.951200i \(-0.599852\pi\)
0.951200 + 0.308574i \(0.0998516\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 8.00000 + 8.00000i 0.464207 + 0.464207i
\(298\) 0 0
\(299\) −6.00000 −0.346989
\(300\) 0 0
\(301\) 30.0000 1.72917
\(302\) 0 0
\(303\) 6.00000 + 6.00000i 0.344691 + 0.344691i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 17.0000 17.0000i 0.970241 0.970241i −0.0293286 0.999570i \(-0.509337\pi\)
0.999570 + 0.0293286i \(0.00933691\pi\)
\(308\) 0 0
\(309\) 18.0000i 1.02398i
\(310\) 0 0
\(311\) 18.0000i 1.02069i 0.859971 + 0.510343i \(0.170482\pi\)
−0.859971 + 0.510343i \(0.829518\pi\)
\(312\) 0 0
\(313\) −9.00000 + 9.00000i −0.508710 + 0.508710i −0.914130 0.405420i \(-0.867125\pi\)
0.405420 + 0.914130i \(0.367125\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −13.0000 13.0000i −0.730153 0.730153i 0.240497 0.970650i \(-0.422690\pi\)
−0.970650 + 0.240497i \(0.922690\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 6.00000 0.334887
\(322\) 0 0
\(323\) −4.00000 4.00000i −0.222566 0.222566i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 4.00000 4.00000i 0.221201 0.221201i
\(328\) 0 0
\(329\) 18.0000i 0.992372i
\(330\) 0 0
\(331\) 26.0000i 1.42909i −0.699590 0.714545i \(-0.746634\pi\)
0.699590 0.714545i \(-0.253366\pi\)
\(332\) 0 0
\(333\) −1.00000 + 1.00000i −0.0547997 + 0.0547997i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 15.0000 + 15.0000i 0.817102 + 0.817102i 0.985687 0.168585i \(-0.0539198\pi\)
−0.168585 + 0.985687i \(0.553920\pi\)
\(338\) 0 0
\(339\) −6.00000 −0.325875
\(340\) 0 0
\(341\) 20.0000 1.08306
\(342\) 0 0
\(343\) 12.0000 + 12.0000i 0.647939 + 0.647939i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 9.00000 9.00000i 0.483145 0.483145i −0.422989 0.906135i \(-0.639019\pi\)
0.906135 + 0.422989i \(0.139019\pi\)
\(348\) 0 0
\(349\) 8.00000i 0.428230i 0.976808 + 0.214115i \(0.0686868\pi\)
−0.976808 + 0.214115i \(0.931313\pi\)
\(350\) 0 0
\(351\) 24.0000i 1.28103i
\(352\) 0 0
\(353\) 15.0000 15.0000i 0.798369 0.798369i −0.184469 0.982838i \(-0.559057\pi\)
0.982838 + 0.184469i \(0.0590565\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) −6.00000 6.00000i −0.317554 0.317554i
\(358\) 0 0
\(359\) −32.0000 −1.68890 −0.844448 0.535638i \(-0.820071\pi\)
−0.844448 + 0.535638i \(0.820071\pi\)
\(360\) 0 0
\(361\) −3.00000 −0.157895
\(362\) 0 0
\(363\) −7.00000 7.00000i −0.367405 0.367405i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −15.0000 + 15.0000i −0.782994 + 0.782994i −0.980335 0.197341i \(-0.936769\pi\)
0.197341 + 0.980335i \(0.436769\pi\)
\(368\) 0 0
\(369\) 10.0000i 0.520579i
\(370\) 0 0
\(371\) 30.0000i 1.55752i
\(372\) 0 0
\(373\) −9.00000 + 9.00000i −0.466002 + 0.466002i −0.900617 0.434614i \(-0.856885\pi\)
0.434614 + 0.900617i \(0.356885\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 20.0000 1.02733 0.513665 0.857991i \(-0.328287\pi\)
0.513665 + 0.857991i \(0.328287\pi\)
\(380\) 0 0
\(381\) 14.0000 0.717242
\(382\) 0 0
\(383\) −1.00000 1.00000i −0.0510976 0.0510976i 0.681096 0.732194i \(-0.261504\pi\)
−0.732194 + 0.681096i \(0.761504\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −5.00000 + 5.00000i −0.254164 + 0.254164i
\(388\) 0 0
\(389\) 4.00000i 0.202808i 0.994845 + 0.101404i \(0.0323335\pi\)
−0.994845 + 0.101404i \(0.967667\pi\)
\(390\) 0 0
\(391\) 2.00000i 0.101144i
\(392\) 0 0
\(393\) −10.0000 + 10.0000i −0.504433 + 0.504433i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 15.0000 + 15.0000i 0.752828 + 0.752828i 0.975006 0.222178i \(-0.0713165\pi\)
−0.222178 + 0.975006i \(0.571317\pi\)
\(398\) 0 0
\(399\) 24.0000 1.20150
\(400\) 0 0
\(401\) −22.0000 −1.09863 −0.549314 0.835616i \(-0.685111\pi\)
−0.549314 + 0.835616i \(0.685111\pi\)
\(402\) 0 0
\(403\) 30.0000 + 30.0000i 1.49441 + 1.49441i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −2.00000 + 2.00000i −0.0991363 + 0.0991363i
\(408\) 0 0
\(409\) 20.0000i 0.988936i 0.869196 + 0.494468i \(0.164637\pi\)
−0.869196 + 0.494468i \(0.835363\pi\)
\(410\) 0 0
\(411\) 22.0000i 1.08518i
\(412\) 0 0
\(413\) 36.0000 36.0000i 1.77144 1.77144i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −12.0000 12.0000i −0.587643 0.587643i
\(418\) 0 0
\(419\) 28.0000 1.36789 0.683945 0.729534i \(-0.260263\pi\)
0.683945 + 0.729534i \(0.260263\pi\)
\(420\) 0 0
\(421\) −34.0000 −1.65706 −0.828529 0.559946i \(-0.810822\pi\)
−0.828529 + 0.559946i \(0.810822\pi\)
\(422\) 0 0
\(423\) 3.00000 + 3.00000i 0.145865 + 0.145865i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 6.00000 6.00000i 0.290360 0.290360i
\(428\) 0 0
\(429\) 12.0000i 0.579365i
\(430\) 0 0
\(431\) 30.0000i 1.44505i −0.691345 0.722525i \(-0.742982\pi\)
0.691345 0.722525i \(-0.257018\pi\)
\(432\) 0 0
\(433\) −21.0000 + 21.0000i −1.00920 + 1.00920i −0.00923827 + 0.999957i \(0.502941\pi\)
−0.999957 + 0.00923827i \(0.997059\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −4.00000 4.00000i −0.191346 0.191346i
\(438\) 0 0
\(439\) −16.0000 −0.763638 −0.381819 0.924237i \(-0.624702\pi\)
−0.381819 + 0.924237i \(0.624702\pi\)
\(440\) 0 0
\(441\) −11.0000 −0.523810
\(442\) 0 0
\(443\) −25.0000 25.0000i −1.18779 1.18779i −0.977678 0.210108i \(-0.932619\pi\)
−0.210108 0.977678i \(-0.567381\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 4.00000 4.00000i 0.189194 0.189194i
\(448\) 0 0
\(449\) 12.0000i 0.566315i −0.959073 0.283158i \(-0.908618\pi\)
0.959073 0.283158i \(-0.0913819\pi\)
\(450\) 0 0
\(451\) 20.0000i 0.941763i
\(452\) 0 0
\(453\) −6.00000 + 6.00000i −0.281905 + 0.281905i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −9.00000 9.00000i −0.421002 0.421002i 0.464546 0.885549i \(-0.346217\pi\)
−0.885549 + 0.464546i \(0.846217\pi\)
\(458\) 0 0
\(459\) 8.00000 0.373408
\(460\) 0 0
\(461\) 2.00000 0.0931493 0.0465746 0.998915i \(-0.485169\pi\)
0.0465746 + 0.998915i \(0.485169\pi\)
\(462\) 0 0
\(463\) 11.0000 + 11.0000i 0.511213 + 0.511213i 0.914898 0.403685i \(-0.132271\pi\)
−0.403685 + 0.914898i \(0.632271\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 13.0000 13.0000i 0.601568 0.601568i −0.339160 0.940729i \(-0.610143\pi\)
0.940729 + 0.339160i \(0.110143\pi\)
\(468\) 0 0
\(469\) 6.00000i 0.277054i
\(470\) 0 0
\(471\) 2.00000i 0.0921551i
\(472\) 0 0
\(473\) −10.0000 + 10.0000i −0.459800 + 0.459800i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 5.00000 + 5.00000i 0.228934 + 0.228934i
\(478\) 0 0
\(479\) 40.0000 1.82765 0.913823 0.406112i \(-0.133116\pi\)
0.913823 + 0.406112i \(0.133116\pi\)
\(480\) 0 0
\(481\) −6.00000 −0.273576
\(482\) 0 0
\(483\) −6.00000 6.00000i −0.273009 0.273009i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −19.0000 + 19.0000i −0.860972 + 0.860972i −0.991451 0.130479i \(-0.958349\pi\)
0.130479 + 0.991451i \(0.458349\pi\)
\(488\) 0 0
\(489\) 2.00000i 0.0904431i
\(490\) 0 0
\(491\) 10.0000i 0.451294i −0.974209 0.225647i \(-0.927550\pi\)
0.974209 0.225647i \(-0.0724495\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −6.00000 6.00000i −0.269137 0.269137i
\(498\) 0 0
\(499\) 28.0000 1.25345 0.626726 0.779240i \(-0.284395\pi\)
0.626726 + 0.779240i \(0.284395\pi\)
\(500\) 0 0
\(501\) −2.00000 −0.0893534
\(502\) 0 0
\(503\) −17.0000 17.0000i −0.757993 0.757993i 0.217964 0.975957i \(-0.430058\pi\)
−0.975957 + 0.217964i \(0.930058\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −5.00000 + 5.00000i −0.222058 + 0.222058i
\(508\) 0 0
\(509\) 24.0000i 1.06378i −0.846813 0.531891i \(-0.821482\pi\)
0.846813 0.531891i \(-0.178518\pi\)
\(510\) 0 0
\(511\) 6.00000i 0.265424i
\(512\) 0 0
\(513\) −16.0000 + 16.0000i −0.706417 + 0.706417i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 6.00000 + 6.00000i 0.263880 + 0.263880i
\(518\) 0 0
\(519\) 10.0000 0.438951
\(520\) 0 0
\(521\) −14.0000 −0.613351 −0.306676 0.951814i \(-0.599217\pi\)
−0.306676 + 0.951814i \(0.599217\pi\)
\(522\) 0 0
\(523\) 15.0000 + 15.0000i 0.655904 + 0.655904i 0.954408 0.298504i \(-0.0964877\pi\)
−0.298504 + 0.954408i \(0.596488\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 10.0000 10.0000i 0.435607 0.435607i
\(528\) 0 0
\(529\) 21.0000i 0.913043i
\(530\) 0 0
\(531\) 12.0000i 0.520756i
\(532\) 0 0
\(533\) −30.0000 + 30.0000i −1.29944 + 1.29944i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 12.0000 + 12.0000i 0.517838 + 0.517838i
\(538\) 0 0
\(539\) −22.0000 −0.947607
\(540\) 0 0
\(541\) −30.0000 −1.28980 −0.644900 0.764267i \(-0.723101\pi\)
−0.644900 + 0.764267i \(0.723101\pi\)
\(542\) 0 0
\(543\) 22.0000 + 22.0000i 0.944110 + 0.944110i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −11.0000 + 11.0000i −0.470326 + 0.470326i −0.902020 0.431694i \(-0.857916\pi\)
0.431694 + 0.902020i \(0.357916\pi\)
\(548\) 0 0
\(549\) 2.00000i 0.0853579i
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 24.0000 24.0000i 1.02058 1.02058i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 27.0000 + 27.0000i 1.14403 + 1.14403i 0.987706 + 0.156320i \(0.0499632\pi\)
0.156320 + 0.987706i \(0.450037\pi\)
\(558\) 0 0
\(559\) −30.0000 −1.26886
\(560\) 0 0
\(561\) 4.00000 0.168880
\(562\) 0 0
\(563\) −33.0000 33.0000i −1.39078 1.39078i −0.823571 0.567213i \(-0.808022\pi\)
−0.567213 0.823571i \(-0.691978\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −15.0000 + 15.0000i −0.629941 + 0.629941i
\(568\) 0 0
\(569\) 12.0000i 0.503066i 0.967849 + 0.251533i \(0.0809347\pi\)
−0.967849 + 0.251533i \(0.919065\pi\)
\(570\) 0 0
\(571\) 34.0000i 1.42286i −0.702759 0.711428i \(-0.748049\pi\)
0.702759 0.711428i \(-0.251951\pi\)
\(572\) 0 0
\(573\) −14.0000 + 14.0000i −0.584858 + 0.584858i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 19.0000 + 19.0000i 0.790980 + 0.790980i 0.981654 0.190673i \(-0.0610671\pi\)
−0.190673 + 0.981654i \(0.561067\pi\)
\(578\) 0 0
\(579\) −30.0000 −1.24676
\(580\) 0 0
\(581\) 30.0000 1.24461
\(582\) 0 0
\(583\) 10.0000 + 10.0000i 0.414158 + 0.414158i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −23.0000 + 23.0000i −0.949312 + 0.949312i −0.998776 0.0494643i \(-0.984249\pi\)
0.0494643 + 0.998776i \(0.484249\pi\)
\(588\) 0 0
\(589\) 40.0000i 1.64817i
\(590\) 0 0
\(591\) 26.0000i 1.06950i
\(592\) 0 0
\(593\) 7.00000 7.00000i 0.287456 0.287456i −0.548618 0.836073i \(-0.684846\pi\)
0.836073 + 0.548618i \(0.184846\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −16.0000 16.0000i −0.654836 0.654836i
\(598\) 0 0
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 0 0
\(601\) −10.0000 −0.407909 −0.203954 0.978980i \(-0.565379\pi\)
−0.203954 + 0.978980i \(0.565379\pi\)
\(602\) 0 0
\(603\) −1.00000 1.00000i −0.0407231 0.0407231i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 5.00000 5.00000i 0.202944 0.202944i −0.598316 0.801260i \(-0.704163\pi\)
0.801260 + 0.598316i \(0.204163\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 18.0000i 0.728202i
\(612\) 0 0
\(613\) 15.0000 15.0000i 0.605844 0.605844i −0.336013 0.941857i \(-0.609079\pi\)
0.941857 + 0.336013i \(0.109079\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −13.0000 13.0000i −0.523360 0.523360i 0.395224 0.918585i \(-0.370667\pi\)
−0.918585 + 0.395224i \(0.870667\pi\)
\(618\) 0 0
\(619\) −12.0000 −0.482321 −0.241160 0.970485i \(-0.577528\pi\)
−0.241160 + 0.970485i \(0.577528\pi\)
\(620\) 0 0
\(621\) 8.00000 0.321029
\(622\) 0 0
\(623\) −48.0000 48.0000i −1.92308 1.92308i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) −8.00000 + 8.00000i −0.319489 + 0.319489i
\(628\) 0 0
\(629\) 2.00000i 0.0797452i
\(630\) 0 0
\(631\) 14.0000i 0.557331i −0.960388 0.278666i \(-0.910108\pi\)
0.960388 0.278666i \(-0.0898921\pi\)
\(632\) 0 0
\(633\) 14.0000 14.0000i 0.556450 0.556450i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −33.0000 33.0000i −1.30751 1.30751i
\(638\) 0 0
\(639\) 2.00000 0.0791188
\(640\) 0 0
\(641\) 30.0000 1.18493 0.592464 0.805597i \(-0.298155\pi\)
0.592464 + 0.805597i \(0.298155\pi\)
\(642\) 0 0
\(643\) 27.0000 + 27.0000i 1.06478 + 1.06478i 0.997751 + 0.0670247i \(0.0213506\pi\)
0.0670247 + 0.997751i \(0.478649\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 29.0000 29.0000i 1.14011 1.14011i 0.151678 0.988430i \(-0.451532\pi\)
0.988430 0.151678i \(-0.0484676\pi\)
\(648\) 0 0
\(649\) 24.0000i 0.942082i
\(650\) 0 0
\(651\) 60.0000i 2.35159i
\(652\) 0 0
\(653\) −1.00000 + 1.00000i −0.0391330 + 0.0391330i −0.726403 0.687270i \(-0.758809\pi\)
0.687270 + 0.726403i \(0.258809\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 1.00000 + 1.00000i 0.0390137 + 0.0390137i
\(658\) 0 0
\(659\) −36.0000 −1.40236 −0.701180 0.712984i \(-0.747343\pi\)
−0.701180 + 0.712984i \(0.747343\pi\)
\(660\) 0 0
\(661\) 30.0000 1.16686 0.583432 0.812162i \(-0.301709\pi\)
0.583432 + 0.812162i \(0.301709\pi\)
\(662\) 0 0
\(663\) 6.00000 + 6.00000i 0.233021 + 0.233021i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 2.00000i 0.0773245i
\(670\) 0 0
\(671\) 4.00000i 0.154418i
\(672\) 0 0
\(673\) 3.00000 3.00000i 0.115642 0.115642i −0.646918 0.762560i \(-0.723942\pi\)
0.762560 + 0.646918i \(0.223942\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 3.00000 + 3.00000i 0.115299 + 0.115299i 0.762402 0.647103i \(-0.224020\pi\)
−0.647103 + 0.762402i \(0.724020\pi\)
\(678\) 0 0
\(679\) −18.0000 −0.690777
\(680\) 0 0
\(681\) −10.0000 −0.383201
\(682\) 0 0
\(683\) 11.0000 + 11.0000i 0.420903 + 0.420903i 0.885515 0.464611i \(-0.153806\pi\)
−0.464611 + 0.885515i \(0.653806\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 8.00000 8.00000i 0.305219 0.305219i
\(688\) 0 0
\(689\) 30.0000i 1.14291i
\(690\) 0 0
\(691\) 14.0000i 0.532585i 0.963892 + 0.266293i \(0.0857987\pi\)
−0.963892 + 0.266293i \(0.914201\pi\)
\(692\) 0 0
\(693\) 6.00000 6.00000i 0.227921 0.227921i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 10.0000 + 10.0000i 0.378777 + 0.378777i
\(698\) 0 0
\(699\) 42.0000 1.58859
\(700\) 0 0
\(701\) −34.0000 −1.28416 −0.642081 0.766637i \(-0.721929\pi\)
−0.642081 + 0.766637i \(0.721929\pi\)
\(702\) 0 0
\(703\) −4.00000 4.00000i −0.150863 0.150863i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 18.0000 18.0000i 0.676960 0.676960i
\(708\) 0 0
\(709\) 48.0000i 1.80268i −0.433114 0.901339i \(-0.642585\pi\)
0.433114 0.901339i \(-0.357415\pi\)
\(710\) 0 0
\(711\) 8.00000i 0.300023i
\(712\) 0 0
\(713\) 10.0000 10.0000i 0.374503 0.374503i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 16.0000 + 16.0000i 0.597531 + 0.597531i
\(718\) 0 0
\(719\) −16.0000 −0.596699 −0.298350 0.954457i \(-0.596436\pi\)
−0.298350 + 0.954457i \(0.596436\pi\)
\(720\) 0 0
\(721\) 54.0000 2.01107
\(722\) 0 0
\(723\) 2.00000 + 2.00000i 0.0743808 + 0.0743808i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −3.00000 + 3.00000i −0.111264 + 0.111264i −0.760547 0.649283i \(-0.775069\pi\)
0.649283 + 0.760547i \(0.275069\pi\)
\(728\) 0 0
\(729\) 29.0000i 1.07407i
\(730\) 0 0
\(731\) 10.0000i 0.369863i
\(732\) 0 0
\(733\) 27.0000 27.0000i 0.997268 0.997268i −0.00272852 0.999996i \(-0.500869\pi\)
0.999996 + 0.00272852i \(0.000868517\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −2.00000 2.00000i −0.0736709 0.0736709i
\(738\) 0 0
\(739\) −28.0000 −1.03000 −0.514998 0.857191i \(-0.672207\pi\)
−0.514998 + 0.857191i \(0.672207\pi\)
\(740\) 0 0
\(741\) −24.0000 −0.881662
\(742\) 0 0
\(743\) −21.0000 21.0000i −0.770415 0.770415i 0.207764 0.978179i \(-0.433381\pi\)
−0.978179 + 0.207764i \(0.933381\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −5.00000 + 5.00000i −0.182940 + 0.182940i
\(748\) 0 0
\(749\) 18.0000i 0.657706i
\(750\) 0 0
\(751\) 2.00000i 0.0729810i 0.999334 + 0.0364905i \(0.0116179\pi\)
−0.999334 + 0.0364905i \(0.988382\pi\)
\(752\) 0 0
\(753\) 6.00000 6.00000i 0.218652 0.218652i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 19.0000 + 19.0000i 0.690567 + 0.690567i 0.962357 0.271790i \(-0.0876156\pi\)
−0.271790 + 0.962357i \(0.587616\pi\)
\(758\) 0 0
\(759\) 4.00000 0.145191
\(760\) 0 0
\(761\) 18.0000 0.652499 0.326250 0.945284i \(-0.394215\pi\)
0.326250 + 0.945284i \(0.394215\pi\)
\(762\) 0 0
\(763\) −12.0000 12.0000i −0.434429 0.434429i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −36.0000 + 36.0000i −1.29988 + 1.29988i
\(768\) 0 0
\(769\) 8.00000i 0.288487i −0.989542 0.144244i \(-0.953925\pi\)
0.989542 0.144244i \(-0.0460749\pi\)
\(770\) 0 0
\(771\) 10.0000i 0.360141i
\(772\) 0 0
\(773\) −17.0000 + 17.0000i −0.611448 + 0.611448i −0.943323 0.331876i \(-0.892319\pi\)
0.331876 + 0.943323i \(0.392319\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −6.00000 6.00000i −0.215249 0.215249i
\(778\) 0 0
\(779\) −40.0000 −1.43315
\(780\) 0 0
\(781\) 4.00000 0.143131
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −31.0000 + 31.0000i −1.10503 + 1.10503i −0.111237 + 0.993794i \(0.535481\pi\)
−0.993794 + 0.111237i \(0.964519\pi\)
\(788\) 0 0
\(789\) 22.0000i 0.783221i
\(790\) 0 0
\(791\) 18.0000i 0.640006i
\(792\) 0 0
\(793\) −6.00000 + 6.00000i −0.213066 + 0.213066i
\(794\) 0 0